1
|
Qian ST, Chen LM, He MF, Li HJ. Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation. Chem Res Toxicol 2024; 37:1976-1988. [PMID: 39566033 DOI: 10.1021/acs.chemrestox.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and in vitro liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and in vitro liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.
Collapse
Affiliation(s)
- Si-Tong Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liang-Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
2
|
Mo D, Lv M, Mao X. Using different zebrafish models to explore liver regeneration. Front Cell Dev Biol 2024; 12:1485773. [PMID: 39544362 PMCID: PMC11560876 DOI: 10.3389/fcell.2024.1485773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
The liver possesses an impressive capability to regenerate following various injuries. Given its profound implications for the treatment of liver diseases, which afflict millions globally, liver regeneration stands as a pivotal area of digestive organ research. Zebrafish (Danio rerio) has emerged as an ideal model organism in regenerative medicine, attributed to their remarkable ability to regenerate tissues and organs, including the liver. Many fantastic studies have been performed to explore the process of liver regeneration using zebrafish, especially the extreme hepatocyte injury model. Biliary-mediated liver regeneration was first discovered in the zebrafish model and then validated in mammalian models and human patients. Considering the notable expansion of biliary epithelial cells in many end-stage liver diseases, the promotion of biliary-mediated liver regeneration might be another way to treat these refractory liver diseases. To date, a comprehensive review discussing the current advancements in zebrafish liver regeneration models is lacking. Therefore, this review aims to investigate the utility of different zebrafish models in exploring liver regeneration, highlighting the genetic and cellular insights gained and discussing the potential translational impact on human health.
Collapse
Affiliation(s)
- Dashuang Mo
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, China
| |
Collapse
|
3
|
Felisardo RJA, Brillas E, Boyer TH, Cavalcanti EB, Garcia-Segura S. Electrochemical degradation of acetaminophen in urine matrices: Unraveling complexity and implications for realistic treatment strategies. WATER RESEARCH 2024; 261:122034. [PMID: 38996729 DOI: 10.1016/j.watres.2024.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Urine has an intricate composition with high concentrations of organic compounds like urea, creatinine, and uric acid. Urine poses a formidable challenge for advanced effluent treatment processes following urine diversion strategies. Urine matrix complexity is heightened when dealing with pharmaceutical residues like acetaminophen (ACT) and metabolized pharmaceuticals. This work explores ACT degradation in synthetic, fresh real, and hydrolyzed real urines using electrochemical oxidation with a dimensional stable anode (DSA). Analyzing drug concentration (2.5 - 40 mg L-1) over 180 min at various current densities in fresh synthetic effluent revealed a noteworthy 75% removal at 48 mA cm-2. ACT degradation kinetics and that of the other organic components followed a pseudo-first-order reaction. Uric acid degradation competed with ACT degradation, whereas urea and creatinine possessed higher oxidation resistance. Fresh real urine presented the most challenging scenario for the electrochemical process. Whereas, hydrolyzed real urine achieved higher ACT removal than fresh synthetic urine. Carboxylic acids like acetic, tartaric, maleic, and oxalic were detected as main by-products. Inorganic ionic species nitrate, nitrite, and ammonium ions were released to the medium from N-containing organic compounds. These findings underscore the importance of considering urine composition complexities and provide significant advancements in strategies for efficiently addressing trace pharmaceutical contamination.
Collapse
Affiliation(s)
- Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States
| | - Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Treavor H Boyer
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States
| | - Eliane Bezerra Cavalcanti
- Graduate Program in Process Engineering, Tiradentes University, 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil; Institute of Technology and Research. 300 Murilo Dantas Avenue, Aracaju 49032-490, SE, Brazil
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85287, AZ, United States.
| |
Collapse
|
4
|
Ni X, Gao C, Zhu X, Zhang X, Fang Y, Hao Z. Isobavachalcone induces hepatotoxicity in zebrafish embryos and HepG2 cells via the System Xc --GSH-GPX4 signaling pathway in ferroptosis response. J Appl Toxicol 2024; 44:1139-1152. [PMID: 38581191 DOI: 10.1002/jat.4607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Isobavachalcone (IBC) is a flavonoid component of the traditional Chinese medicine Psoraleae Fructus, with a range of pharmacological properties. However, IBC causes some hepatotoxicity, and the mechanism of toxicity is unclear. The purpose of this paper was to investigate the possible mechanism of toxicity of IBC on HepG2 cells and zebrafish embryos. The results showed that exposure to IBC increased zebrafish embryo mortality and decreased hatchability. Meanwhile, IBC induced liver injury and increased expression of ALT and AST activity. Further studies showed that IBC caused the increase of ROS and MDA the decrease of CAT, GSH, and GSH-Px; the increase of Fe2+ content; and the changes of ferroptosis related genes (acsl4, gpx4, and xct) and iron storage related genes (tf, fth, and fpn) in zebrafish embryos. Through in vitro verification, it was found that IBC also caused oxidative stress and increased Fe2+ content in HepG2 cells. IBC caused depolarization of mitochondrial membrane potential (MMP) and reduction of mitochondrial ATP, as well as altered expression of ACSl4, SLC7A11, GPX4, and FTH1 proteins. Treatment of HepG2 cells with ferrostatin-1 could reverse the effect of IBC. Targeting the System Xc--GSH-GPX4 pathway of ferroptosis and preventing oxidative stress damage might offer a theoretical foundation for practical therapy and prevention of IBC-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xuan Ni
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaolin Zhu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaosong Zhang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yizhuo Fang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Bustad E, Mudrock E, Nilles EM, Mcquate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. Front Pharmacol 2024; 15:1363545. [PMID: 38515847 PMCID: PMC10955247 DOI: 10.3389/fphar.2024.1363545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Emma Mudrock
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Elizabeth M. Nilles
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andrea Mcquate
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Monica Bergado
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alden Gu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Louie Galitan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Natalie Gleason
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Henry C. Ou
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- VM Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Rafael E. Hernandez
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Bustad E, Mudrock E, Nilles EM, McQuate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566159. [PMID: 37986751 PMCID: PMC10659329 DOI: 10.1101/2023.11.08.566159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
|
7
|
Zhang Z, Qiu T, Zhou J, Gong X, Yang K, Zhang X, Lan Y, Yang C, Zhou Z, Ji Y. Toxic effects of sirolimus and everolimus on the development and behavior of zebrafish embryos. Biomed Pharmacother 2023; 166:115397. [PMID: 37659200 DOI: 10.1016/j.biopha.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
Sirolimus and everolimus have been widely used in children. These mammalian target of rapamycin (mTOR) inhibitors have shown excellent efficacy not only in organ transplant patients as immunosuppressive agents but also in patients with some other diseases. However, whether mTOR inhibitors can affect the growth and development of children is of great concern. In this study, using zebrafish models, we discovered that sirolimus and everolimus could slow the development of zebrafish, affecting indicators such as survival, hatching, deformities, body length, and movement. In addition to these basic indicators, sirolimus and everolimus had certain slowing effects on the growth and development of the nervous system, blood vessels, and the immune system. These effects were dose dependent. When the drug concentration reached or exceeded 0.5 μM, the impacts of sirolimus and everolimus were very significant. More interestingly, the impact was transient. Over time, the various manifestations of experimental embryos gradually approached those of control embryos. We also compared the effects of sirolimus and everolimus on zebrafish, and we revealed that there was no significant difference between these drugs in terms of their effects. In summary, the dose of sirolimus and everolimus in children should be strictly controlled, and the drug concentration should be monitored over time. Otherwise, drug overdosing may have a certain impact on the growth and development of children.
Collapse
Affiliation(s)
- Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuepeng Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Congxia Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zilong Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
9
|
Le Mentec H, Monniez E, Legrand A, Monvoisin C, Lagadic-Gossmann D, Podechard N. A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. Int J Mol Sci 2023; 24:ijms24043942. [PMID: 36835354 PMCID: PMC9959061 DOI: 10.3390/ijms24043942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which starts with liver steatosis, is a growing worldwide epidemic responsible for chronic liver diseases. Among its risk factors, exposure to environmental contaminants, such as endocrine disrupting compounds (EDC), has been recently emphasized. Given this important public health concern, regulation agencies need novel simple and fast biological tests to evaluate chemical risks. In this context, we developed a new in vivo bioassay called StAZ (Steatogenic Assay on Zebrafish) using an alternative model to animal experimentation, the zebrafish larva, to screen EDCs for their steatogenic properties. Taking advantage of the transparency of zebrafish larvae, we established a method based on fluorescent staining with Nile red to estimate liver lipid content. Following testing of known steatogenic molecules, 10 EDCs suspected to induce metabolic disorders were screened and DDE, the main metabolite of the insecticide DDT, was identified as a potent inducer of steatosis. To confirm this and optimize the assay, we used it in a transgenic zebrafish line expressing a blue fluorescent liver protein reporter. To obtain insight into DDE's effect, the expression of several genes related to steatosis was analyzed; an up-regulation of scd1 expression, probably relying on PXR activation, was found, partly responsible for both membrane remodeling and steatosis.
Collapse
Affiliation(s)
- Hélène Le Mentec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Emmanuelle Monniez
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Antoine Legrand
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Céline Monvoisin
- UMR 1236-MOBIDIC, INSERM, Université Rennes, Etablissement Français du Sang Bretagne, 35043 Rennes, France
| | - Dominique Lagadic-Gossmann
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Normand Podechard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
10
|
Peralta-Hernández JM, Brillas E. A critical review over the removal of paracetamol (acetaminophen) from synthetic waters and real wastewaters by direct, hybrid catalytic, and sequential ozonation processes. CHEMOSPHERE 2023; 313:137411. [PMID: 36460148 DOI: 10.1016/j.chemosphere.2022.137411] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Paracetamol (PCT) or acetaminophen is a widely prescribed drug to treat fever and mild to moderate pain. The PCT uptake by animals and humans is not complete, being excreted through their urine to contaminate the aquatic/natural environments. Trace amounts of this drug have been found in sewage sludge, hospital wastewaters, wastewater plant treatments, surface waters, and even drinking water. PCT denatures proteins and oxidize lipids in cells with damage of their genetic code. Its toxicity over macrophytes, protozoan, algae, bacteria, and fishes has been reported. Ozonation methods have been proposed as efficient treatments to solve this pollution. This comprehensive and critical review is focused on the application of ozonation processes to remove PCT polluted water from different sources, like natural waters, synthetic waters, and real wastewaters. The fundamentals, operating variables, and best results by direct ozonation and hybrid catalytic ozonation are described, with attention to produced reactive oxygen species and their oxidative action. Single ozonation, catalytic modification of materials, and hybrid non-catalytic processes are detailed as direct ozonation methods. Ozonation with metal-based catalysts and photolytic and photocatalytic ozonation as hybrid catalytic methods are analyzed. Sequential non-biological and biological treatments with ozone and ozonation for wastewater remediation in treatment plants are described. Reaction sequences proposed for PCT mineralization are finally discussed, showing the initial formation of hydroquinone and 2-hydroxy-4-(N-acetyl)-aminophenol and their consecutive evolution to ultimate carboxylic acids like oxalic and oxamic. The ability of the methods to destroy these acids and their iron- and/or copper-complexes explains their mineralization performance.
Collapse
Affiliation(s)
- Juan Manuel Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
11
|
Pacheco-Álvarez M, Picos Benítez R, Rodríguez-Narváez OM, Brillas E, Peralta-Hernández JM. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. CHEMOSPHERE 2022; 303:134883. [PMID: 35577132 DOI: 10.1016/j.chemosphere.2022.134883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (PCT), also known as acetaminophen, is a drug used to treat fever and mild to moderate pain. After consumption by animals and humans, it is excreted through the urine to the sewer systems, wastewater treatment plants, and other aquatic/natural environments. It has been detected in trace amounts in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water. PCT can cause genetic code damage, oxidative degradation of lipids, and denaturation of protein in cells, and its toxicity has been well-proven in bacteria, algae, macrophytes, protozoan, and fishes. To avoid its harmful health problems over living beings, powerful Fenton and Fenton-based treatments as pre-eminent advanced oxidation processes (AOPs) have been developed because of the inefficient treatment by conventional treatments. This paper presents a comprehensive and critical review over the application of such Fenton technologies to remove PCT from natural waters, synthetic wastewaters, and real wastewaters. The characteristics and main results obtained using Fenton, photo-Fenton, electro-Fenton, and photoelectro-Fenton are described, making special emphasis in the oxidative action of the generated reactive oxygen species. Hybrid processes based on the coupling with ultrasounds, gamma radiation, photocatalysis, photoelectrocatalysis, zero-valent iron-activated persulfate, adsorption, and microbial fuel cells, are analyzed. Sequential treatments involving the initiation with plasma gliding arc discharge and post-biological process are detailed. Comparative results with other available AOPs are also described and discussed. Finally, 13 aromatic by-products and 9 short-linear aliphatic carboxylic acid detected during the PCT removal by Fenton and Fenton-based processes are reported, with the proposal of three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico
| | - Ricardo Picos Benítez
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, 98160, Zacatecas, Zac., Mexico
| | - Oscar M Rodríguez-Narváez
- Dirección de Investigación y Soluciones Tecnológicas, Centro de Innovación Aplicado en Tecnologías Competitivas, Omega 201, Leon, Guanajuato, 37545, Mexico
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| |
Collapse
|
12
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
13
|
Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021; 22:13417. [PMID: 34948215 PMCID: PMC8707050 DOI: 10.3390/ijms222413417] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Collapse
Affiliation(s)
- Benedikt Bauer
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-University, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Xia P, Peng Y, Fang W, Tian M, Shen Y, Ma C, Crump D, O'Brien JM, Shi W, Zhang X. Cross-Model Comparison of Transcriptomic Dose-Response of Short-Chain Chlorinated Paraffins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8149-8158. [PMID: 34038106 DOI: 10.1021/acs.est.1c00975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) have attracted attention because of their toxicological potential in humans and wildlife at environmentally relevant doses. However, limited information is available regarding mechanistic differences across species in terms of the biological pathways that are impacted by SCCP exposure. Here, a concentration-dependent reduced human transcriptome (RHT) approach was conducted to evaluate 15 SCCPs in HepG2 cells and compared with our previous results using a reduced zebrafish transcriptome (RZT) approach in zebrafish embryos (ZFEs). Generally, SCCPs induced a broader suite of biological pathways in ZFEs than HepG2 cells, and all of the 15 SCCPs were more potent in HepG2 cells compared to ZFEs. Despite these general differences, the transcriptional potency of SCCPs in both model systems showed a significant linear relationship (p = 0.0017, r2 = 0.57), and the average ratios of transcriptional potency for each SCCP in RZT to that in RHT were ∼100,000. C10H14Cl8 was the most potent SCCP, while C10H17Cl5 was the least potent in both ZFEs and HepG2 cells. An adverse outcome pathway network-based analysis demonstrated model-specific responses, such as xenobiotic metabolism that may be mediated by different nuclear receptor-mediated pathways between HepG2 cells (e.g., CAR and AhR activation) and ZFEs (e.g., PXR activation). Moreover, induced transcriptional changes in ZFEs associated with pathways and molecular initiating events (e.g., activation of nicotinic acetylcholine receptor) suggest that SCCPs may disrupt neural development processes. The cross-model comparison of concentration-dependent transcriptomics represents a promising approach to assess and prioritize SCCPs.
Collapse
Affiliation(s)
- Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ying Peng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Wendi Fang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yanhong Shen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Cong Ma
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Wei Shi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Li RA, Talikka M, Gubian S, Vom Berg C, Martin F, Peitsch MC, Hoeng J, Zupanic A. Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish. Front Genet 2021; 12:652632. [PMID: 34211495 PMCID: PMC8239408 DOI: 10.3389/fgene.2021.652632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation of individual proteins; rather, they are often caused by system-level perturbations in networks of molecular events. To fully understand the mechanisms of toxicity, it is necessary to recognize the interactions of molecules, pathways, and biological processes within these networks. The developing brain is a prime example of an extremely complex network, which makes developmental neurotoxicity one of the most challenging areas in toxicology. We have developed a systems toxicology method that uses a computable biological network to represent molecular interactions in the developing brain of zebrafish larvae. The network is curated from scientific literature and describes interactions between biological processes, signaling pathways, and adverse outcomes associated with neurotoxicity. This allows us to identify important signaling hubs, pathway interactions, and emergent adverse outcomes, providing a more complete understanding of neurotoxicity. Here, we describe the construction of a zebrafish developmental neurotoxicity network and its validation by integration with publicly available neurotoxicity-related transcriptomic datasets. Our network analysis identified consistent regulation of tumor suppressors p53 and retinoblastoma 1 (Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically induced developmental neurotoxicity. The developed network can be used to interpret transcriptomic data in a neurotoxicological context.
Collapse
Affiliation(s)
- Roman A Li
- Eawag, Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anze Zupanic
- Eawag, Dübendorf, Switzerland.,National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
16
|
Wang B, Liu L, Li Y, Zou J, Li D, Zhao D, Li W, Sun W. Ustilaginoidin D induces hepatotoxicity and behaviour aberrations in zebrafish larvae. Toxicology 2021; 456:152786. [PMID: 33872729 DOI: 10.1016/j.tox.2021.152786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Ustilaginoidins, a group of bis-naphtho-γ-pyrones, are one of the major mycotoxins produced by Ustilaginoidea virens. This group of bis-naphtho-γ-pyrone mycotoxins has been demonstrated to have antibacterial and immunological inhibitory activities and strong cytotoxicity to human oral epidermoid carcinoma. However, little is yet known about the toxicity of ustilaginoidins to animals or toxicity mechanisms. In this study, toxicity assays to zebrafish larvae show that ustilaginoidin D is highly toxic to zebrafish with an LC50 of ∼7.50 μM. Ustilaginoidin D causes an obvious yolk sac absorption delay and liver damage in zebrafish, which is indicated by liver atrophy and the increased alanine and aspartate transaminase activities. Interestingly, different doses of ustilaginoidin D can alter zebrafish movement behavior in a distinct manner. Transcriptome analyses show that global gene expression profiling in zebrafish is significantly changed in response to ustilaginoidin D exposure. KEGG pathway analyses reveal that differentially expressed genes are enriched in the pathways related to lipid metabolism and hyperbilirubinemia, which are indicators of severe liver injury. Consistently, the expression of the marker genes for hepatotoxic responses is significantly induced by ustilaginoidin D. The findings indicate that ustilaginoidin D induces lipid metabolism disorders and hepatotoxicity in zebrafish larvae and poses a potential risk to food safety.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yuejiao Li
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiaying Zou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Assessment of long-term functional maintenance of primary human hepatocytes to predict drug-induced hepatoxicity in vitro. Arch Toxicol 2021; 95:2431-2442. [PMID: 33852043 DOI: 10.1007/s00204-021-03050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Hepatocytes are the main cell components of the liver and perform metabolic, detoxification, and endocrine functions. Functional hepatocytes are of great value in drug development, toxicity evaluation, and cell therapy for liver diseases. In recent years, an increasing number of in vitro models have been developed to screen drugs and test their toxicity. However, maintaining hepatocyte function in vitro for a long time is a serious challenge. Even freshly isolated liver cells cultured for a short time may lose function via spontaneous dedifferentiation. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long-term in vitro studies are required. In this study, we developed a conditioned culture system composed of a small-molecule combination that can maintain hepatocyte morphology and functions over the long term. Two-month culture of primary human hepatocytes showed that the conditioned medium was able to stably preserve hepatic functions such as albumin and α-antitrypsin secretion, hepatic transport activity, urea synthesis, and ammonia elimination. Furthermore, this culture model can be used to assess drug-induced hepatotoxicity in vitro. In summary, our work suggests a feasible approach to maintain hepatocyte function in vitro and proposes a promising model for long-term toxicological studies and drug development.
Collapse
|
18
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
19
|
Luijten M, Wackers PFK, Rorije E, Pennings JLA, Heusinkveld HJ. Relevance of In Vitro Transcriptomics for In Vivo Mode of Action Assessment. Chem Res Toxicol 2020; 34:452-459. [PMID: 33378166 DOI: 10.1021/acs.chemrestox.0c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, we reported an in vitro toxicogenomics comparison approach to categorize chemical substances according to similarities in their proposed toxicological modes of action. Use of such an approach for regulatory purposes requires, among others, insight into the extent of biological concordance between in vitro and in vivo findings. To that end, we applied the comparison approach to transcriptomics data from the Open TG-GATEs database for 137 substances with diverging modes of action and evaluated the outcomes obtained for rat primary hepatocytes and for rat liver. The results showed that a relatively small number of matches observed in vitro were also observed in vivo, whereas quite a large number of matches between substances were found to be relevant solely in vivo or in vitro. The latter could not be explained by physicochemical properties, leading to insufficient bioavailability or poor water solubility. Nevertheless, pathway analyses indicated that for relevant matches the mechanisms perturbed in vitro are consistent with those perturbed in vivo. These findings support the utility of the comparison approach as tool in mechanism-based risk assessment.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Paul F K Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
20
|
Banerjee S, Ghoshal S, Stevens JR, McCommis KS, Gao S, Castro-Sepulveda M, Mizgier ML, Girardet C, Kumar KG, Galgani JE, Niehoff ML, Farr SA, Zhang J, Butler AA. Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. J Biol Chem 2020; 295:13753-13768. [PMID: 32727846 DOI: 10.1074/jbc.ra120.014381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.
Collapse
Affiliation(s)
- Subhashis Banerjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarbani Ghoshal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Joseph R Stevens
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri USA
| | - Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Mauricio Castro-Sepulveda
- Laboratorio de Ciencias del Ejercicio. Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Maria L Mizgier
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - K Ganesh Kumar
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA
| | - Jose E Galgani
- Departamento de Ciencias de la SaludCarrera de Nutrición y Dietética and Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael L Niehoff
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Susan A Farr
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Saint Louis University School of Medicine; Research Service, John Cochran Division, Saint Louis Veterans Affairs Medical Center, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, USA; Department of Metabolism and Aging, Scripps Research Institute, Jupiter, Florida, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Li R, Zupanic A, Talikka M, Belcastro V, Madan S, Dörpinghaus J, Berg CV, Szostak J, Martin F, Peitsch MC, Hoeng J. Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chem Res Toxicol 2020; 33:2550-2564. [PMID: 32638588 DOI: 10.1021/acs.chemrestox.0c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptomic approaches can give insight into molecular mechanisms underlying chemical toxicity and are increasingly being used as part of toxicological assessments. To aid the interpretation of transcriptomic data, we have developed a systems toxicology method that relies on a computable biological network model. We created the first network model describing cardiotoxicity in zebrafish larvae-a valuable emerging model species in testing cardiotoxicity associated with drugs and chemicals. The network is based on scientific literature and represents hierarchical molecular pathways that lead from receptor activation to cardiac pathologies. To test the ability of our approach to detect cardiotoxic outcomes from transcriptomic data, we have selected three publicly available data sets that reported chemically induced heart pathologies in zebrafish larvae for five different chemicals. Network-based analysis detected cardiac perturbations for four out of five chemicals tested, for two of them using transcriptomic data collected up to 3 days before the onset of a visible phenotype. Additionally, we identified distinct molecular pathways that were activated by the different chemicals. The results demonstrate that the proposed integrational method can be used for evaluating the effects of chemicals on the zebrafish cardiac function and, together with observed cardiac apical end points, can provide a comprehensive method for connecting molecular events to organ toxicity. The computable network model is freely available and may be used to generate mechanistic hypotheses and quantifiable perturbation values from any zebrafish transcriptomic data.
Collapse
Affiliation(s)
- Roman Li
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Jens Dörpinghaus
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
22
|
Zhao C, Wang M, Jia Z, Li E, Zhao X, Li F, Lin R. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112440. [PMID: 31786445 DOI: 10.1016/j.jep.2019.112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Rhizoma Paridis, as a Traditional Chinese Medicine (TCM), has been used in clinic for thousands of years. Recently, the hepatic toxicity was reported in some published articles while its hepatotoxicity mechanisms have not been well established. Therefore, the present study was performed to determine the effect of Rhizoma Paridis treatment on the lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism through L02 cell, rat and zebrafish larvae. Rhizoma Paridis could diminish cell activity and cell proliferation, brought on cell apoptosis and elevated the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the control group, as evaluated in cell cultures. Rhizoma Paridis could result in the change of the liver structure and the liver function in the rat model and zebrafish larvae. Our results showed that Rhizoma Paridis could increase hepatic lipid accumulation, which was similar to the previous study and probably exerted toxic effect through intensive fatty acid lipogenesis, inhibition of fat degradation. Meanwhile, this experiment highlighted the importance of the oxidative stress, mitochondrial dysfunction, ER function, and the inflammation response in Rhizoma Paridis-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for interpretation of Rhizoma Paridis exposure inducing the disorder of lipid metabolism in vertebrates. Furthermore, the result of this experiment suggested that the toxicity response of zebrafish larvae was similar to the conventional model with a significant advantage.
Collapse
Affiliation(s)
- Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhe Jia
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Erwen Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Farong Li
- Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
23
|
de Sá Hyacienth BM, Tavares Picanço KR, Sánchez-Ortiz BL, Barros Silva L, Matias Pereira AC, Machado Góes LD, Sousa Borges R, Cardoso Ataíde R, dos Santos CBR, de Oliveira Carvalho H, Gonzalez Anduaga GM, Navarrete A, Tavares Carvalho JC. Hydroethanolic extract from Endopleura uchi (Huber) Cuatrecasas and its marker bergenin: Toxicological and pharmacokinetic studies in silico and in vivo on zebrafish. Toxicol Rep 2020; 7:217-232. [PMID: 32042599 PMCID: PMC6997909 DOI: 10.1016/j.toxrep.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
E. uchi stem bark hydroethanolic extract in zebrafish. Evaluating the in silico pharmacokinetic and toxicological parameters. Behavioral, biochemical and histopathological changes was dose dependent. In silico bergenin and its metabolites showed high intestinal absorption. Bergenin inhibited CYP2C9, CYP3A4 and CYP2C19.
Endopleura uchi, is used for the treatment of inflammatory disease and related to the female reproductive tract. The aim of this study was to evaluate the acute toxicity of the Endopleura uchi stem bark hydroethanolic extract (EEu) in zebrafish, emphasizing the histopathological and biochemical parameters, as well as evaluating the in silico pharmacokinetic and toxicological parameters of the phytochemical/pharmacological marker, bergenin, as their metabolites. The animals were orally treated with EEu at a single dose of 75 mg/kg, 500 mg/kg, 1000 mg/kg and 3000 mg/kg. the oral LD50 of the EEu higher to the dose of 3000 mg/kg. Behavioral, biochemical and histopathological changes were dose dependent. In silico pharmacokinetic predictions for bergenin and its metabolites showed moderate absorption in high human intestinal absorption (HIA) and Caco-2 models, reduced plasma protein binding, by low brain tissue binding and no P-glycoprotein (P-Gp) inhibition. Their metabolism is defined by the CYP450 enzyme, in addition to bergenin inhibition of CYP2C9, CYP3A4 and CYP2C19. In the bergenin and its metabolites in silico toxicity test it have been shown to cause carcinogenicity and a greater involvement of the bergenin with the CYP enzymes in the I and II hepatic and renal metabolism’s phases was observed. It is possible to suggest that the histopathological damages are involved with the interaction of this major compound and its metabolites at the level of the cellular-biochemical mechanisms which involve the absorption, metabolization and excretion of these possible prodrug and drug.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BBB, Brain-blood partition coefficient (C.brain/C.blood)
- Bergenin
- Biotrasformation
- EEu, Endopleura uchi stem bark hydroethanolic extract
- Endopleura uchi
- HAI, Index of Histopathological Changes
- HBA, Hydrogen bonding acceptors
- HBD, Hydrogen bonding donors
- HIA, Human intestinal absorption
- Hepatoxity
- IAN, Regional Herbarium of the Eastern Amazonian Embrapa
- MM, Molecular mass
- Nephrotoxity
- P-Gp, P-glycoprotein
- PPB, Plasma protein binding
- Toxicology
- hERG, ether-a-go-related human gene
Collapse
Affiliation(s)
- Beatriz Martins de Sá Hyacienth
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
| | - Karyny Roberta Tavares Picanço
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Brenda Lorena Sánchez-Ortiz
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Luciane Barros Silva
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Arlindo César Matias Pereira
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Larissa Daniele Machado Góes
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Raphaelle Sousa Borges
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Rodrigo Cardoso Ataíde
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Cleydson Breno Rodrigues dos Santos
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Helison de Oliveira Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Gloria Melisa Gonzalez Anduaga
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Andrés Navarrete
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - José Carlos Tavares Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
- Corresponding author.
| |
Collapse
|
24
|
Baumann L, Holbech H, Schmidt-Posthaus H, Moissl AP, Hennies M, Tiedemann J, Weltje L, Segner H, Braunbeck T. Does hepatotoxicity interfere with endocrine activity in zebrafish (Danio rerio)? CHEMOSPHERE 2020; 238:124589. [PMID: 31437630 DOI: 10.1016/j.chemosphere.2019.124589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Vitellogenin (VTG), a well-established biomarker for the diagnosis of endocrine activity in fish, is used in multiple OECD test guidelines (TG) to identify activities of chemicals on hormonal pathways. However, the synthesis of VTG may not only be modified by typical endocrine-related pathways, but also through non-endocrine-mediated processes. In particular, hepatotoxicity, i.e. toxicant-induced impairment of liver structure and function, might influence VTG as a biomarker, since VTG is synthesized in hepatocytes. An intimate understanding of the interplay between endocrine-related and non-endocrine-related pathways influencing VTG production is crucial for the avoidance of erroneous diagnoses in hazard assessment for regulatory purposes of chemical compounds. In order to investigate whether hepatotoxicity may interfere with hepatic VTG synthesis, adult zebrafish (Danio rerio) were exposed to three well-known hepatotoxicants, acetaminophen, isoniazid and acetylsalicylic acid, according to OECD TG 230. Various hepatotoxicity- and endocrine system-related endpoints were recorded: mRNA expression of selected endocrine- and hepatotoxicity-related marker genes in the liver; VTG levels in head/tail homogenates; and liver histopathology. All three test compounds induced significant, but mild single cell necrosis of hepatocytes and transcriptional changes of hepatotoxicity-related marker genes, thus confirming hepatotoxic effects. A positive correlation between hepatotoxicity and reduced hepatic VTG synthesis was not observed, with the single exception of a weak increase in female zebrafish exposed to APAP. This suggests that - in studies conducted according to OECD TG 229 or 230 - it is unlikely that hepatotoxic chemicals will interfere with the hepatic capacity for VTG synthesis.
Collapse
Affiliation(s)
- Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany.
| | - Henrik Holbech
- University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012, Bern, Switzerland
| | - Angela P Moissl
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany
| | - Mark Hennies
- TECO Development, Marie-Curie-Strasse 1, D-53359, Rheinbach, Germany
| | - Janina Tiedemann
- TECO Development, Marie-Curie-Strasse 1, D-53359, Rheinbach, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, D-67117, Limburgerhof, Germany
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, CH-3012, Bern, Switzerland
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120, Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.
Collapse
Affiliation(s)
- Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Permoserstraβe 15 04318 Leipzig, Germany
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| | - Bianca Yaghoobi
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Pamela J. Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| |
Collapse
|
26
|
Velozo-Sá VS, Pereira LR, Lima AP, Mello-Andrade F, Rezende MRM, Goveia RM, Pires WC, Silva MM, Oliveira KM, Ferreira AG, Ellena J, Deflon VM, Grisolia CK, Batista AA, Silveira-Lacerda EP. In vitro cytotoxicity and in vivo zebrafish toxicity evaluation of Ru(ii)/2-mercaptopyrimidine complexes. Dalton Trans 2019; 48:6026-6039. [PMID: 30724926 DOI: 10.1039/c8dt03738h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA. HSA interaction with the complexes was studied using fluorescence emission spectroscopy, where the results indicate a spontaneous interaction between the species by a static quenching mechanism. The cytotoxicity of the complexes was evaluated against A549, MDA-MB-231 and HaCat cells by MTT assay. Complexes (1) and (2), which are very active against triple negative MDA-MB-231, were subjected to further biological tests with this cell line. The cytotoxic activity triggered by the complexes was confirmed by clonogenic assay. Cell cycle analyses demonstrated marked anti-proliferative effects, especially at the G0/G1 and S phases. The morphological detection of apoptosis and necrosis - HO/PI and Annexin V-FITC/PI assay, elucidated that the type of cell death triggered by these complexes was probably by apoptosis. The in vivo toxicological assessment performed on zebrafish embryos revealed that complexes (1) and (2) did not present embryotoxic or toxic effects during embryonic and larval development showing that they are promising new prototypes of safer and more effective drugs for triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Vivianne S Velozo-Sá
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goias-UFG, CEP 74690-900 Goiania, Goias, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
28
|
Bailone RL, Aguiar LKD, Roca RDO, Borra RC, Corrêa T, Janke H, Fukushima HCS. “Zebrafish as an animal model for food safety research: trends in the animal research”. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ricardo Lacava Bailone
- Department of Federal Inspection Service, Ministry of Agriculture, Livestock and Supply of Brazil, Federal Inspection Service, São Carlos, Brazil
- Food Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Luís Kluwe de Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Edgmond, United Kingdom of Great Britain and Northern Ireland
| | - Roberto de Oliveira Roca
- Department of Food Economics, Sociology and Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
29
|
Schüttler A, Altenburger R, Ammar M, Bader-Blukott M, Jakobs G, Knapp J, Krüger J, Reiche K, Wu GM, Busch W. Map and model-moving from observation to prediction in toxicogenomics. Gigascience 2019; 8:giz057. [PMID: 31140561 PMCID: PMC6539241 DOI: 10.1093/gigascience/giz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chemicals induce compound-specific changes in the transcriptome of an organism (toxicogenomic fingerprints). This provides potential insights about the cellular or physiological responses to chemical exposure and adverse effects, which is needed in assessment of chemical-related hazards or environmental health. In this regard, comparison or connection of different experiments becomes important when interpreting toxicogenomic experiments. Owing to lack of capturing response dynamics, comparability is often limited. In this study, we aim to overcome these constraints. RESULTS We developed an experimental design and bioinformatic analysis strategy to infer time- and concentration-resolved toxicogenomic fingerprints. We projected the fingerprints to a universal coordinate system (toxicogenomic universe) based on a self-organizing map of toxicogenomic data retrieved from public databases. Genes clustering together in regions of the map indicate functional relation due to co-expression under chemical exposure. To allow for quantitative description and extrapolation of the gene expression responses we developed a time- and concentration-dependent regression model. We applied the analysis strategy in a microarray case study exposing zebrafish embryos to 3 selected model compounds including 2 cyclooxygenase inhibitors. After identification of key responses in the transcriptome we could compare and characterize their association to developmental, toxicokinetic, and toxicodynamic processes using the parameter estimates for affected gene clusters. Furthermore, we discuss an association of toxicogenomic effects with measured internal concentrations. CONCLUSIONS The design and analysis pipeline described here could serve as a blueprint for creating comparable toxicogenomic fingerprints of chemicals. It integrates, aggregates, and models time- and concentration-resolved toxicogenomic data.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Madeleine Ammar
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marcella Bader-Blukott
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gianina Jakobs
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Johanna Knapp
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Janet Krüger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kristin Reiche
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| | - Gi-Mick Wu
- DEVELOP, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
30
|
The Toxicity and Metabolism Properties of Herba Epimedii Flavonoids on Laval and Adult Zebrafish. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3745051. [PMID: 30941194 PMCID: PMC6421038 DOI: 10.1155/2019/3745051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
Zebrafish is being increasingly used for metabolism and toxicity assessment. The drugs consumed in zebrafish metabolism studies are far less than those used in rat studies. In our study, zebrafish embryos were exposed to icariin, Baohuoside I (BI), Epimedin A (EA), Epimedin B (EB), Epimedin C (EC), Sagittatoside A (SA), Sagittatoside B (SB), and 2′′-O-rhamnosylicariside II (SC), respectively, to examine the toxicity and metabolic profiles of these flavonoids. The order of toxicity was SC, SB > EC, SA > BI, icariin, EA, EB. After 24 h exposure to SB and SC, the mortality of zebrafish larvae reached 100% and yolk sac swollen was obvious. Both SC and SB caused severe hepatocellular vacuolization and liver cells degeneration in adult zebrafish after 15 consecutive days' treatment. The metabolic profiles of these flavonoids with trace amount were also monitored in larvae. BI was the common metabolite shared by icariin, EA, EB, SA, and SB, via deglycosylation. Both BI and SC remained as the prototype in the medium, suggesting that it is hard for BI and SC to cleave the rhamnose residue. EC was metabolized into SC and BI in zebrafish, inferring that SC might be responsible for the toxicity observed in EC group. The metabolites of icariin, EA, EB, EC, and BI in zebrafish larvae coincided with results from rats and intestinal flora. These data support the use of this system as a surrogate in predicting metabolites and hepatotoxicity risk, especially for TCM compound with trace amount.
Collapse
|
31
|
van de Wiel SMW, Bijsmans ITGW, van Mil SWC, van de Graaf SFJ. Identification of FDA-approved drugs targeting the Farnesoid X Receptor. Sci Rep 2019; 9:2193. [PMID: 30778102 PMCID: PMC6379390 DOI: 10.1038/s41598-019-38668-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The farnesoid X receptor (FXR) belongs to the nuclear receptor family and is activated by bile acids. Multiple, chemically rather diverse, FXR agonists have been developed and several of these compounds are currently tested in clinical trials for NAFLD and cholestasis. Here, we investigated possible FXR-agonism or antagonism of existing FDA/EMA-approved drugs. By using our recently developed FRET-sensor, containing the ligand binding domain of FXR (FXR-LBD), 1280 FDA-approved drugs were screened for their ability to activate FXR in living cells using flow cytometry. Fifteen compounds induced the sensor for more than twenty percent above background. Real-time confocal microscopy confirmed that avermectin B1a, gliquidone, nicardipine, bepridil and triclosan activated the FRET sensor within two minutes. These compounds, including fluticasone, increased mRNA expression of FXR target genes OSTα and OSTβ in Huh7 cells, and in most cases also of MRP2, SHP and FGF19. Finally, avermectin B1a, gliquidone, nicardipine and bepridil significantly increased IBABP promoter activity in a luciferase reporter assay in a dose-dependent manner. In conclusion, six FDA/EMA-approved drugs currently used in the clinical practice exhibit moderate agonistic FXR activity. This may on the one hand explain (undesired) side-effects, but on the other hand may form an opportunity for polypharmacology.
Collapse
Affiliation(s)
- Sandra M W van de Wiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid T G W Bijsmans
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia W C van Mil
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Shehwana H, Konu O. Comparative Transcriptomics Between Zebrafish and Mammals: A Roadmap for Discovery of Conserved and Unique Signaling Pathways in Physiology and Disease. Front Cell Dev Biol 2019; 7:5. [PMID: 30775367 PMCID: PMC6367222 DOI: 10.3389/fcell.2019.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
33
|
Abstract
Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.
Collapse
Affiliation(s)
- Ghada Bouz
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University , Hradec Kralove , Czech Republic
| | - Nada Al Hasawi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Kuwait , State of Kuwait
| |
Collapse
|
34
|
Klaren WD, Ring C, Harris MA, Thompson CM, Borghoff S, Sipes NS, Hsieh JH, Auerbach SS, Rager JE. Identifying Attributes That Influence In Vitro-to-In Vivo Concordance by Comparing In Vitro Tox21 Bioactivity Versus In Vivo DrugMatrix Transcriptomic Responses Across 130 Chemicals. Toxicol Sci 2019; 167:157-171. [PMID: 30202884 PMCID: PMC6317427 DOI: 10.1093/toxsci/kfy220] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent efforts aimed at integrating in vitro high-throughput screening (HTS) data into chemical toxicity assessments are necessitating increased understanding of concordance between chemical-induced responses observed in vitro versus in vivo. This investigation set out to (1) measure concordance between in vitro HTS data and transcriptomic responses observed in vivo, focusing on the liver, and (2) identify attributes that can influence concordance. Signal response profiles from 130 substances were compared between in vitro data produced through Tox21 and liver transcriptomic data through DrugMatrix, collected from rats exposed to a chemical for ≤5 days. A global in vitro-to-in vivo comparative analysis based on pathway-level responses resulted in an overall average percent agreement of 79%, ranging on a per-chemical basis between 41% and 100%. Whereas concordance amongst inactive chemicals was high (89%), concordance amongst chemicals showing in vitro activity was only 13%, suggesting that follow-up in vivo and/or orthogonal in vitro assays would improve interpretations of in vitro activity. Attributes identified to influence concordance included experimental design attributes (eg, cell type), target pathways, and physicochemical properties (eg, logP). The attribute that most consistently increased concordance was dose applicability, evaluated by filtering for experimental doses administered to rats that were within 10-fold of those related to likely bioactivity, derived using Tox21 data and high-throughput toxicokinetic modeling. Together, findings suggest that in vitro screening approaches to predict in vivo toxicity are viable particularly when certain attributes are considered, including whether activity versus inactivity is observed, experimental design, chemical properties, and dose applicability.
Collapse
Affiliation(s)
- William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77840
| | | | | | | | | | - Nisha S Sipes
- National Toxicology Program, National Institutes of Health, Research Triangle Park, North Carolina 27709and
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina 27709
| | - Scott S Auerbach
- National Toxicology Program, National Institutes of Health, Research Triangle Park, North Carolina 27709and
| | | |
Collapse
|
35
|
Yao H, Xu X, Zhou Y, Xu C. Impacts of isopyrazam exposure on the development of early-life zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23799-23808. [PMID: 29876854 DOI: 10.1007/s11356-018-2449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Isopyrazam (IPZ) is a broad spectrum succinate dehydrogenase inhibitor fungicide. Little is known about its potential ecological risks of aquatic organisms recently. The present study examined the embryonic development effects of zebrafish exposed to IPZ under static condition using a fish embryo toxicity test. The lowest observed effect concentration of IPZ was 0.025 mg/L in 4-day exposure. Developmental abnormalities, including edema, small head deformity, body deformation and decreased pigmentation, and mortality were observed in zebrafish embryos of 0.05 mg/L and higher concentrations, which shown concentration dependency. The heart rate of zebrafish was disrupted by IPZ. Moreover, enzyme and gene experiments shown that IPZ exposure caused oxidative stress of zebrafish. Furthermore, it induced a decrease of succinate dehydrogenase (SDH) enzyme activity and gene transcription level in zebrafish larvae. It can be speculated that IPZ may have a lethal effect on zebrafish, which is accompanied by decreased SDH activity, oxidative stress, and abnormality. These results provide toxicological data about the IPZ on aquatic non-target organisms, which could be useful for further understanding potential environmental risks.
Collapse
Affiliation(s)
- Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
36
|
Kithcart AP, MacRae CA. Zebrafish assay development for cardiovascular disease mechanism and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:126-131. [PMID: 30518489 DOI: 10.1016/j.pbiomolbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Calum A MacRae
- Brigham and Women's Hospital, Harvard Medical School, USA.
| |
Collapse
|
37
|
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, Podechard N. Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules 2018; 8:biom8020026. [PMID: 29757947 PMCID: PMC6023014 DOI: 10.3390/biom8020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.
Collapse
Affiliation(s)
- Muhammad Imran
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Odile Sergent
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Arnaud Tête
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Isabelle Gallais
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Martine Chevanne
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| |
Collapse
|
38
|
Fraser K, Bruckner DM, Dordick JS. Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies. Chem Res Toxicol 2018; 31:412-430. [PMID: 29722533 DOI: 10.1021/acs.chemrestox.8b00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adverse drug reactions, particularly those that result in drug-induced liver injury (DILI), are a major cause of drug failure in clinical trials and drug withdrawals. Hepatotoxicity-mediated drug attrition occurs despite substantial investments of time and money in developing cellular assays, animal models, and computational models to predict its occurrence in humans. Underperformance in predicting hepatotoxicity associated with drugs and drug candidates has been attributed to existing gaps in our understanding of the mechanisms involved in driving hepatic injury after these compounds perfuse and are metabolized by the liver. Herein we assess in vitro, in vivo (animal), and in silico strategies used to develop predictive DILI models. We address the effectiveness of several two- and three-dimensional in vitro cellular methods that are frequently employed in hepatotoxicity screens and how they can be used to predict DILI in humans. We also explore how humanized animal models can recapitulate human drug metabolic profiles and associated liver injury. Finally, we highlight the maturation of computational methods for predicting hepatotoxicity, the untapped potential of artificial intelligence for improving in silico DILI screens, and how knowledge acquired from these predictions can shape the refinement of experimental methods.
Collapse
Affiliation(s)
- Keith Fraser
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Dylan M Bruckner
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Department of Biological Sciences Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
39
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018; 77:80-93. [PMID: 29458080 PMCID: PMC5878140 DOI: 10.1016/j.reprotox.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
There continues to be a need to develop in vivo high-throughput screening (HTS) and computational methods to screen chemicals for interaction with the estrogen, androgen, and thyroid pathways and as complements to in vitro HTS assays. This study explored the utility of an embryonic zebrafish HTS approach to identify and classify endocrine bioactivity using phenotypically-anchored transcriptome profiling. Transcriptome analysis was conducted on zebrafish embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at concentrations that elicited adverse malformations or mortality at 120 h post-fertilization in 80% of animals exposed. Analysis of the top 1000 significant differentially expressed transcripts and developmental toxicity profiles across all treatments identified a unique transcriptional and phenotypic signature for thyroid hormone receptor agonists. This unique signature has the potential to be used as a tiered in vivo HTS and may aid in identifying chemicals that interact with the thyroid hormone receptor.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Current: National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
40
|
Schüttler A, Reiche K, Altenburger R, Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol Sci 2018; 157:291-304. [PMID: 28329862 PMCID: PMC5443304 DOI: 10.1093/toxsci/kfx045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have been published in the past years investigating the transcriptome of the zebrafish embryo (ZFE) upon being subjected to chemical stress. Aiming at a more mechanistic understanding of the results of such studies, knowledge about commonalities of transcript regulation in response to chemical stress is needed. Thus, our goal in this study was to identify and interpret genes and gene sets constituting a general response to chemical exposure. Therefore, we aggregated and reanalyzed published toxicogenomics data obtained with the ZFE. We found that overlap of differentially transcribed genes in response to chemical stress across independent studies is generally low and the most commonly differentially transcribed genes appear in less than 50% of all treatments across studies. However, effect size analysis revealed several genes showing a common trend of differential expression, among which genes related to calcium homeostasis emerged as key, especially in exposure settings up to 24 h post-fertilization. Additionally, we found that these and other downregulated genes are often linked to anatomical regions developing during the respective exposure period. Genes showing a trend of increased expression were, among others, linked to signaling pathways (e.g., Wnt, Fgf) as well as lysosomal structures and apoptosis. The findings of this study help to increase the understanding of chemical stress responses in the developing zebrafish embryo and provide a starting point to improve experimental designs for this model system. In future, improved time- and concentration-resolved experiments should offer better understanding of stress response patterns and access to mechanistic information.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraβe 1, Leipzig, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipig, Germany
| |
Collapse
|
41
|
Poon KL, Wang X, Lee SGP, Ng AS, Goh WH, Zhao Z, Al-Haddawi M, Wang H, Mathavan S, Ingham PW, McGinnis C, Carney TJ. Editor's Highlight: Transgenic Zebrafish Reporter Lines as Alternative In Vivo Organ Toxicity Models. Toxicol Sci 2018; 156:133-148. [PMID: 28069987 DOI: 10.1093/toxsci/kfw250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs.
Collapse
Affiliation(s)
- Kar Lai Poon
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Xingang Wang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Serene G P Lee
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 138672 Singapore
| | - Ashley S Ng
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Wei Huang Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Zhonghua Zhao
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Muthafar Al-Haddawi
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Haishan Wang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore
| | - Sinnakaruppan Mathavan
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, 138672 Singapore
| | - Philip W Ingham
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Claudia McGinnis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore.,Roche Pharmaceutical Research & Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tom J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, 138673 Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
42
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
43
|
Kawamoto T, Ito Y, Morita O, Honda H. Mechanism-based risk assessment strategy for drug-induced cholestasis using the transcriptional benchmark dose derived by toxicogenomics. J Toxicol Sci 2017; 42:427-436. [PMID: 28717101 DOI: 10.2131/jts.42.427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cholestasis is one of the major causes of drug-induced liver injury (DILI), which can result in withdrawal of approved drugs from the market. Early identification of cholestatic drugs is difficult due to the complex mechanisms involved. In order to develop a strategy for mechanism-based risk assessment of cholestatic drugs, we analyzed gene expression data obtained from the livers of rats that had been orally administered with 12 known cholestatic compounds repeatedly for 28 days at three dose levels. Qualitative analyses were performed using two statistical approaches (hierarchical clustering and principle component analysis), in addition to pathway analysis. The transcriptional benchmark dose (tBMD) and tBMD 95% lower limit (tBMDL) were used for quantitative analyses, which revealed three compound sub-groups that produced different types of differential gene expression; these groups of genes were mainly involved in inflammation, cholesterol biosynthesis, and oxidative stress. Furthermore, the tBMDL values for each test compound were in good agreement with the relevant no observed adverse effect level. These results indicate that our novel strategy for drug safety evaluation using mechanism-based classification and tBMDL would facilitate the application of toxicogenomics for risk assessment of cholestatic DILI.
Collapse
Affiliation(s)
| | - Yuichi Ito
- Safety Science Research, Kao Corporation
| | | | | |
Collapse
|
44
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
45
|
Zhang Y, Han L, He Q, Chen W, Sun C, Wang X, Chen X, Wang R, Hsiao CD, Liu K. A rapid assessment for predicting drug-induced hepatotoxicity using zebrafish. J Pharmacol Toxicol Methods 2017; 84:102-110. [DOI: 10.1016/j.vascn.2016.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
|
46
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 2016; 308:32-45. [PMID: 27538710 DOI: 10.1016/j.taap.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
47
|
Abstract
The endoderm is the innermost embryonic germ layer, and in zebrafish, it gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls carbohydrate and lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity. In this chapter, we review the principal mechanisms of endoderm and liver formation and provide protocols to assess liver formation and liver regeneration.
Collapse
|
48
|
Reuter I, Knaup S, Romanos M, Lesch KP, Drepper C, Lillesaar C. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae. J Neural Transm (Vienna) 2016; 123:841-8. [PMID: 27116683 DOI: 10.1007/s00702-016-1556-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
First line pain relief medication during pregnancy relies nearly entirely on the over-the-counter analgesic acetaminophen, which is generally considered safe to use during gestation. However, recent epidemiological studies suggest a risk of developing attention-deficit/hyperactivity disorder (ADHD)-like symptoms in children if mothers use acetaminophen during pregnancy. Currently, there are no experimental proofs that prenatal acetaminophen exposure causes developmental brain alterations of progeny. Exposure to high acetaminophen concentrations causes liver toxicity, which is well investigated in different model organisms. However, sub-liver-toxic concentrations have not been experimentally investigated with respect to ADHD endophenotypes such as hyperactivity. We used zebrafish to investigate the potential impact of acetaminophen exposure on locomotor activity levels, and compared it to the established zebrafish Latrophilin 3 (Lphn3) ADHD-model. We determined the sub-liver-toxic concentration of acetaminophen in zebrafish larvae and treated wild-type and lphn3.1 knockdown larvae with increasing concentrations of acetaminophen. We were able to confirm that lphn3.1 knockdown alone causes hyperactivity, strengthening the implication of Lphn3 dysfunction as an ADHD risk factor. Neither acute nor chronic exposure to acetaminophen at sub-liver-toxic concentrations in wild-type or lphn3.1 knock-downs increases locomotor activity levels. Together our findings show that embryonic to larval exposure to acetaminophen does not cause hyperactivity in zebrafish larvae. Furthermore, there are no additive and/or synergistic effects of acetaminophen exposure in a susceptible background induced by knock-down of lphn3.1. Our experimental study suggests that there is, at least in zebrafish larvae, no direct link between embryonic acetaminophen exposure and hyperactivity. Further work is necessary to clarify this issue in humans.
Collapse
Affiliation(s)
- Isabel Reuter
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, ADHD Clinical Research Network, Laboratory of Translational Neuroscience, University of Würzburg, 97080, Würzburg, Germany
| | - Sabine Knaup
- Department of Human Genetics, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, ADHD Clinical Research Network, Laboratory of Translational Neuroscience, University of Würzburg, 97080, Würzburg, Germany
| | - Carsten Drepper
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, 97080, Würzburg, Germany.
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
49
|
Advancing epilepsy treatment through personalized genetic zebrafish models. PROGRESS IN BRAIN RESEARCH 2016; 226:195-207. [PMID: 27323944 DOI: 10.1016/bs.pbr.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts.
Collapse
|
50
|
Sutherland JJ, Jolly RA, Goldstein KM, Stevens JL. Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes. PLoS Comput Biol 2016; 12:e1004847. [PMID: 27028627 PMCID: PMC4814051 DOI: 10.1371/journal.pcbi.1004847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived from the models would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), human primary hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal lower concordance for all methods. We observe that the baseline state of untreated cultured cells relative to untreated rat liver shows striking similarity with toxicant-exposed cells in vivo, indicating that gross systems level perturbation in the underlying networks in culture may contribute to the low concordance. Gene expression studies in model systems are widely used for understanding the mechanism of drugs and other perturbations in biological systems. Other researchers have examined the reproducibility of microarray studies between laboratories, or comparing microarrays and/or RNA sequencing. However, no large scale studies have compared results from protocols which differ in minor details, or results generated in vivo vs. in vitro culture systems thought to serve as useful models. The rat liver is by far the most extensively studied model evaluating effects of drugs and other perturbations, and existing data allowed us to assess the level of concordance between rat liver and rat primary hepatocytes cultured in collagen-coated plates (i.e. “flat” culture) for hundreds of drugs. We found that the mouse liver serves as a better model of the rat liver than do rat primary hepatocytes, even after allowing for differences due to pharmacokinetics. The low concordance observed between rat liver and rat hepatocytes suggests that validating the utility of ‘omics data generated on emerging cell culture approaches (e.g. “organ-on-a-chip”, 3D-printed tissues) using rat cells and comparison to the rat liver may be necessary in order to gain confidence these approaches substantially improve on traditional culture models of human cells.
Collapse
Affiliation(s)
- Jeffrey J. Sutherland
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail: (JJS); (JLS)
| | - Robert A. Jolly
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Keith M. Goldstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - James L. Stevens
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail: (JJS); (JLS)
| |
Collapse
|