1
|
Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants. Int J Nanomedicine 2020; 15:6705-6720. [PMID: 32982228 PMCID: PMC7494401 DOI: 10.2147/ijn.s248848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022] Open
Abstract
Over the last decades, joint arthroplasty has become a successful treatment for joint disease. Nowadays, with a growing demand and increasingly younger and active patients accepting these approaches, orthopedic surgeons are seeking implants with improved mechanical behavior and longer life span. However, aseptic loosening as a result of wear debris from implants is considered to be the main cause of long-term implant failure. Previous studies have neatly illustrated the role of micrometric wear particles in the pathological mechanisms underlying aseptic loosening. Recent osteoimmunologic insights into aseptic loosening highlight the important and heretofore underrepresented contribution of nanometric orthopedic wear particles. The present review updates the characteristics of metallic and ceramic nanoparticles generated after prosthesis implantation and summarizes the current understanding of their hazardous effects on peri-prosthetic cells.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
4
|
Jiang W, Wang X, Osborne OJ, Du Y, Chang CH, Liao YP, Sun B, Jiang J, Ji Z, Li R, liu X, Lu J, Lin S, Meng H, Xia T, Nel AE. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS NANO 2017; 11:1869-1883. [PMID: 28177603 PMCID: PMC5543990 DOI: 10.1021/acsnano.6b07895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While it has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting as well as in animal studies, the effect of submicron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nanosized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible subacute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of insoluble In(OH)3 nanostructures. All considered, these data indicate that while nanoscale particles exhibit increased pro-inflammatory effects in the lung, most effects are transient, except for n-InAs and insoluble InCl3 species that are biopersistent and trigger pro-fibrotic effects. These results are of potential importance for the understanding the occupational health effects of III-V particulates.
Collapse
Affiliation(s)
- Wen Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Olivia J. Osborne
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yingjie Du
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Bingbing Sun
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Ruibin Li
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangsheng liu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Jianqin Lu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Sijie Lin
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China, 200092
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - André E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
- Address correspondence to: André E. Nel, M.D./Ph.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680, USA, Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|