1
|
Alharbi KS, Almalki WH, Albratty M, Meraya AM, Najmi A, Vyas G, Singh SK, Dua K, Gupta G. The therapeutic role of nutraceuticals targeting the Nrf2/HO-1 signaling pathway in liver cancer. J Food Biochem 2022; 46:e14357. [PMID: 35945911 DOI: 10.1111/jfbc.14357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Liver cancer (L.C.) is the most common cause of cancer death in the United States and the fifth most common globally. The overexpression of nuclear factor E2 related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) caused by oxidative stress has been associated with tumor growth, aggressiveness, treatment resistance, and poor prognosis. Nutraceuticals that inhibit Nrf2/HO-1 signaling may become the most effective strategy to treat liver cancer. Phytochemicals found in fruits and vegetables, also known as nutraceuticals, tend to emerge as chemopreventive agents, with the added benefit of low toxicity and high nutritional values. This paper reviews the present scientific knowledge of the Nrf2/HO-1 signaling as a possible target molecule for chemotherapeutic agents, its basic control mechanisms, and Nrf2/HO-1 inducers produced from natural products that might be employed as cancer chemopreventive drugs. The growing interest in the contribution of the Nrf2/ARE/HO-1 signaling in the development of liver cancer and the Use of nutraceuticals to treat liver cancer by targeting Nrf2/ARE/HO-1. PRACTICAL APPLICATIONS: An increase in Nrf2 expression indicates that Nrf2 is the most important player in liver cancer. Cancer patients are more resistant to chemotherapy because of this erroneous Nrf2 signaling. Furthermore, an increasing body of evidence indicates that activation of the Nrf2/HO-1 pathway results in the production of phase II detoxifying and antioxidant enzymes, which serve a defense purpose in cells. As a consequence, treating liver cancer. This master regulator may be a possibility. Nutraceuticals that reduce Nrf2/HO-1 signaling may be the most effective strategy for preventing liver cancer. The methods of action of numerous natural substances are examined in this article.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Govind Vyas
- R&D, Quality and Regulatory Compliance, Invahealth Inc., Cranbury, New Jersey, USA
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
2
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
3
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
4
|
Cucurbitacin B exhibits antitumor effects on CD133+ HepG2 liver cancer stem cells by inhibiting JAK2/STAT3 signaling pathway. Anticancer Drugs 2021; 32:548-557. [PMID: 33675610 DOI: 10.1097/cad.0000000000001062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer stem cells (CSCs), a crucial cancer cell subpopulation, possess stemness phenotypic characteristics. Cucurbitacin B (CuB), a tetracyclic triterpenoid isolated from Cucurbitaceae, exerts widely pharmacological activities in many diseases. The aim of this study was to enrich, identify liver CSCs and investigate antitumor effects of CuB as well as explore the underlying molecular mechanisms in these liver CSCs. HepG2 cell lines were used for the enrichment of liver CSCs by serum-free medium culture and magnetic-activated cell sorting. The CSC characteristics were analyzed by immunofluorescent staining, sphere-forming, western blot and xenograft tumorigenicity assay. CuB' antitumor effects and underlying molecular mechanism were measured by cell counting kit-8, colony formation, sphere-forming, cell cycle, xenograft and western blot assay. Our results showed that we could enrich 97.29% CD133+ HepG2 cells, which possessed CSC characteristics including re-renewal capacity, proliferative ability, sorafenib resistance, overexpressed stemness-related molecules and enhanced tumorigenic potential. Furthermore, we also found that CuB inhibited cell viability, sphere formation, colony formation and arrested cell cycle at G2/M phase as well as sensitized CD133+ HepG2 cells to sorafenib in vitro and in vivo. Western blot assay indicated that CuB inhibited expression levels of cyclin B1, CDK1, CD133, p-JAK2 and p-STAT3. In conclusion, our findings indicated that CuB could exhibit antitumor effects on CD133+ HepG2 CSCs by inhibiting the Janus kinase 2/signal transducers and activators of transcription-3 signaling pathway, expanding basic and preclinical investigations on liver CSCs.
Collapse
|
5
|
Hu WW, Lin CH, Hong ZJ. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr Polym 2019; 206:70-79. [DOI: 10.1016/j.carbpol.2018.10.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
|
6
|
Marchese S, Sorice A, Ariano A, Florio S, Budillon A, Costantini S, Severino L. Evaluation of Aflatoxin M1 Effects on the Metabolomic and Cytokinomic Profiling of a Hepatoblastoma Cell Line. Toxins (Basel) 2018; 10:E436. [PMID: 30373285 PMCID: PMC6265880 DOI: 10.3390/toxins10110436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatoblastoma incidence has been associated with different environmental factors even if no data are reported about a correlation between aflatoxin exposure and hepatoblastoma initiation. Considering that hepatoblastoma develops in infants and children and aflatoxin M1 (AFM1), the aflatoxin B1 (AFB1) hydroxylated metabolite, can be present in mothers' milk and in marketed milk products, in this study we decided to test the effects of AFM1 on a hepatoblastoma cell line (HepG2). Firstly, we evaluated the effects of AFM1 on the cell viability, apoptosis, cell cycle, and metabolomic and cytokinomic profile of HepG2 cells after treatment. AFM1 induced: (1) a decrease of HepG2 cell viability, reaching IC50 at 9 µM; (2) the blocking of the cell cycle in the G0/G1 phase; (3) the decrease of formiate levels and incremented level of some amino acids and metabolites in HepG2 cells after treatment; and (4) the increase of the concentration of three pro-inflammatory cytokines, IL-6, IL-8, and TNF-α, and the decrease of the anti-inflammatory interleukin, IL-4. Our results show that AFM1 inhibited the growth of HepG2 cells, inducing both a modulation of the lipidic, glycolytic, and amino acid metabolism and an increase of the inflammatory status of these cells.
Collapse
Affiliation(s)
- Silvia Marchese
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Angela Sorice
- Unità di Farmacologia Sperimentale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy.
| | - Andrea Ariano
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Salvatore Florio
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Alfredo Budillon
- Unità di Farmacologia Sperimentale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy.
| | - Susan Costantini
- Unità di Farmacologia Sperimentale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy.
| | - Lorella Severino
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| |
Collapse
|
7
|
Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins (Basel) 2018; 10:E214. [PMID: 29794965 PMCID: PMC6024316 DOI: 10.3390/toxins10060214] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Aflatoxins are fungal metabolites found in feeds and foods. When the ruminants eat feedstuffs containing Aflatoxin B1 (AFB1), this toxin is metabolized and Aflatoxin M1 (AFM1) is excreted in milk. International Agency for Research on Cancer (IARC) classified AFB1 and AFM1 as human carcinogens belonging to Group 1 and Group 2B, respectively, with the formation of DNA adducts. In the last years, some epidemiological studies were conducted on cancer patients aimed to evaluate the effects of AFB1 and AFM1 exposure on cancer cells in order to verify the correlation between toxin exposure and cancer cell proliferation and invasion. In this review, we summarize the activation pathways of AFB1 and AFM1 and the data already reported in literature about their correlation with cancer development and progression. Moreover, considering that few data are still reported about what genes/proteins/miRNAs can be used as damage markers due to AFB1 and AFM1 exposure, we performed a bioinformatic analysis based on interaction network and miRNA predictions to identify a panel of genes/proteins/miRNAs that can be used as targets in further studies for evaluating the effects of the damages induced by AFB1 and AFM1 and their capacity to induce cancer initiation.
Collapse
Affiliation(s)
- Silvia Marchese
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Andrea Polo
- Unità di Farmacologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Andrea Ariano
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Salvatore Velotto
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| | - Susan Costantini
- Unità di Farmacologia Sperimentale, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Lorella Severino
- Unità di Farmacologia e Tossicologia-Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", 80138 Napoli, Italy.
| |
Collapse
|
8
|
Ju H, Arumugam P, Lee J, Song JM. Impact of Environmental Pollutant Cadmium on the Establishment of a Cancer Stem Cell Population in Breast and Hepatic Cancer. ACS OMEGA 2017; 2:563-572. [PMID: 30023612 PMCID: PMC6044754 DOI: 10.1021/acsomega.6b00181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 05/09/2023]
Abstract
Cadmium, a heavy metal pollutant, causes cancer. The existence of cancer stem cells (CSCs) in tumors is widely considered to be the reason for the recurrence and treatment failure of cancer. Increasing evidence has confirmed that under certain conditions non-CSCs could be converted into CSCs. The impact of cadmium on the development of CSC lineage in the bulk tumor cell population is not yet studied. The aim of this study was to evaluate the effect of cadmium on the conversion of non-CSCs to CSCs and the identification of CSCs based on the concurrent monitoring of multiple CSC markers. High-content monitoring of molecular markers was performed using quantum dot (QD) nanoprobes and an acousto-optical tunable filter (AOTF)-based imaging device. Cadmium treatment significantly increased the CSC population in MCF-7 and HepG2 cell lines. The cadmium-induced CSCs were identified by a concurrent analysis of stem-cell markers, namely, CD44, CD24, CD133, and ALDH1. Moreover, increased m-RNA expression of CD44, ALDH1, and CD133 and protein expression of p-Ras, p-Raf-1, p-MEK-1, and p-ERK-1 were observed in the cadmium-treated MCF-7 and HepG2 cells. This study demonstrates that cadmium induces the gene expression of CSC markers in the breast and liver cancer cell lineage and promotes the conversion of non-CSCs to CSCs.
Collapse
Affiliation(s)
| | | | - Jungmi Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| |
Collapse
|