1
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
2
|
Birdane YO, Atik H, Atik O, Aslan R. Mandarin peel ethanolic extract attenuates diclofenac sodium induced hepatorenal toxicity in rats by mitigating oxidative stress and inflammation. Drug Chem Toxicol 2024; 47:180-190. [PMID: 36541068 DOI: 10.1080/01480545.2022.2158848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute approximately one-third of the global pharmaceutical market and are the first drugs of choice when treating fever and pain. Furthermore, among NSAIDs, the use of diclofenac sodium (DS) is preferred as it is a strong inhibitor of cyclooxygenase enzyme. However, despite its strong efficacy, DS is known for its potential to cause hepatorenal damage. Currently, to mitigate the adverse effects of certain drugs, medically effective agricultural products are often preferred as they are inexpensive, effective and safe. One such agricultural product-mandarin-is noteworthy for its high phenolic contents. The purpose of the present study was to assess the efficacy of mandarin peel ethanolic extract (MPEE) in protecting against hepatorenal damage induced by DS. Four groups (six/group) of adult male albino rats received oral administration of physiological saline (control group), DS (10 mg/kg body weight), MPEE (200 mg/kg body weight), and DS + MPEE for 7 days. Rats in the DS group showed increased serum levels of ALT, AST, ALP, BUN, CRE, and UA. Furthermore, the hepatic and renal tissue levels of MDA, TNF-α and IL-1β increased, whereas those of GSH, SOD, GP-x and IL-10 decreased (p < 0.05). Investigation of MPEE in terms of its effects on biochemical, oxidative and inflammatory parameters, it exerted protective and healing effects. Therefore, MPEE can be used to ameliorate DS-induced hepatorenal damage.
Collapse
Affiliation(s)
- Yavuz Osman Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Hülya Atik
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Orkun Atik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Recep Aslan
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Zheleva-Dimitrova D, Simeonova R, Kondeva-Burdina M, Savov Y, Balabanova V, Zengin G, Petrova A, Gevrenova R. Antioxidant and Hepatoprotective Potential of Echinops ritro L. Extracts on Induced Oxidative Stress In Vitro/In Vivo. Int J Mol Sci 2023; 24:9999. [PMID: 37373147 DOI: 10.3390/ijms24129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Echinops ritro L. (Asteraceae) is traditionally used in the treatment of bacterial/fungal infections and respiratory and heart ailments. The aim of this study was to evaluate the potential of extracts from E. ritro leaves (ERLE) and flowering heads (ERFE) as antioxidant and hepatoprotective agents on diclofenac-induced lipid peroxidation and oxidative stress under in vitro and in vivo conditions. In isolated rat microsomes and hepatocytes, the extracts significantly alleviated oxidative stress by increasing cell viability and GSH levels and reducing LDH efflux and MDA production. During in vivo experiments, the administration of the ERFE alone or in combination with diclofenac resulted in a significant increase in cellular antioxidant protection and a decrease in lipid peroxidation witnessed by key markers and enzymes. A beneficial influence on the activity of the drug-metabolizing enzymes ethylmorphine-N-demetylase and aniline hydroxylase in liver tissue was found. In the acute toxicity test evaluation, the ERFE showed no toxicity. In the ultrahigh-performance liquid chromatography-high-resolution mass spectrometry analysis, 95 secondary metabolites were reported for the first time, including acylquinic acids, flavonoids, and coumarins. Protocatechuic acid O-hexoside, quinic, chlorogenic and 3, 5-dicaffeoylquinic acid, apigenin; apigenin 7-O-glucoside, hyperoside, jaceosidene, and cirsiliol dominated the profiles. The results suggest that both extracts should be designed for functional applications with antioxidant and hepatoprotective capacity.
Collapse
Affiliation(s)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Yonko Savov
- Institute of Emergency Medicine "N. I Pirogov", Bul. Totleben 21, 1606 Sofia, Bulgaria
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Mohamed MSM, Asair AA, Fetyan NAH, Elnagdy SM. Complete Biodegradation of Diclofenac by New Bacterial Strains: Postulated Pathways and Degrading Enzymes. Microorganisms 2023; 11:1445. [PMID: 37374947 DOI: 10.3390/microorganisms11061445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The accumulation of xenobiotic compounds in different environments interrupts the natural ecosystem and induces high toxicity in non-target organisms. Diclofenac is one of the commonly used pharmaceutical drugs that persist in the environment due to its low natural degradation rate and high toxicity. Therefore, this study aimed to isolate potential diclofenac-degrading bacteria, detect the intermediate metabolites formed, and determine the enzyme involved in the degradation process. Four bacterial isolates were selected based on their ability to utilize a high concentration of diclofenac (40 mg/L) as the sole carbon source. The growth conditions for diclofenac degradation were optimized, and bacteria were identified as Pseudomonas aeruginosa (S1), Alcaligenes aquatilis (S2), Achromobacter spanius (S11), and Achromobacter piechaudii (S18). The highest percentage of degradation was recorded (97.79 ± 0.84) after six days of incubation for A. spanius S11, as analyzed by HPLC. To detect and identify biodegradation metabolites, the GC-MS technique was conducted for the most efficient bacterial strains. In all tested isolates, the initial hydroxylation of diclofenac was detected. The cleavage step of the NH bridge between the aromatic rings and the subsequent cleavage of the ring adjacent to or in between the two hydroxyl groups of polyhydroxylated derivatives might be a key step that enables the complete biodegradation of diclofenac by A. piechaudii S18, as well as P. aeruginosa S1. Additionally, the laccase, peroxidase, and dioxygenase enzyme activities of the two Achromobacter strains, as well as P. aeruginosa S1, were tested in the presence and absence of diclofenac. The obtained results from this work are expected to be a useful reference for the development of effective detoxification bioprocesses utilizing bacterial cells as biocatalysts. The complete removal of pharmaceuticals from polluted water will stimulate water reuse, meeting the growing worldwide demand for clean and safe freshwater.
Collapse
Affiliation(s)
- Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayan A Asair
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nashwa A H Fetyan
- Department of Microbiology, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Sherif M Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
5
|
Huang Q, Chen Y, Zhang Z, Xue Z, Hua Z, Luo X, Li Y, Lu C, Lu A, Liu Y. The endoplasmic reticulum participated in drug metabolic toxicity. Cell Biol Toxicol 2022; 38:945-961. [PMID: 35040016 DOI: 10.1007/s10565-021-09689-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023]
Abstract
Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.
Collapse
Affiliation(s)
- Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Pfuhler S, Downs TR, Hewitt NJ, Hoffmann S, Mun GC, Ouedraogo G, Roy S, Curren RD, Aardema MJ. Validation of the 3D reconstructed human skin micronucleus (RSMN) assay: an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis 2021; 36:1-17. [PMID: 33544138 PMCID: PMC8081377 DOI: 10.1093/mutage/geaa035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
In vitro test batteries have become the standard approach to determine the genotoxic potential of substances of interest across industry sectors. While useful for hazard identification, standard in vitro genotoxicity assays in 2D cell cultures have limited capability to predict in vivo outcomes and may trigger unnecessary follow-up animal studies or the loss of promising substances where animal tests are prohibited or not desired. To address this problem, a team of regulatory, academia and industry scientists was established to develop and validate 3D in vitro human skin-based genotoxicity assays for use in testing substances with primarily topical exposure. Validation of the reconstructed human skin micronucleus (RSMN) assay in MatTek Epi-200™ skin models involved testing 43 coded chemicals selected by independent experts, in four US/European laboratories. The results were analysed by an independent statistician according to predefined criteria. The RSMN assay showed a reproducibly low background micronucleus frequency and exhibited sufficient capacity to metabolise pro-mutagens. The overall RSMN accuracy when compared to in vivo genotoxicity outcomes was 80%, with a sensitivity of 75% and a specificity of 84%, and the between- and within-laboratory reproducibility was 77 and 84%, respectively. A protocol involving a 72-h exposure showed increased sensitivity in detecting true positive chemicals compared to a 48-h exposure. An analysis of a test strategy using the RSMN assay as a follow-up test for substances positive in standard in vitro clastogenicity/aneugenicity assays and a reconstructed skin Comet assay for substances with positive results in standard gene mutation assays results in a sensitivity of 89%. Based on these results, the RSMN assay is considered sufficiently validated to establish it as a ‘tier 2’ assay for dermally exposed compounds and was recently accepted into the OECD’s test guideline development program.
Collapse
Affiliation(s)
| | | | | | | | - Greg C Mun
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | | | | | - Rodger D Curren
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | | |
Collapse
|
8
|
Schleiff MA, Payakachat S, Schleiff BM, Swamidass SJ, Boysen G, Miller GP. Impacts of diphenylamine NSAID halogenation on bioactivation risks. Toxicology 2021; 458:152832. [PMID: 34107285 DOI: 10.1016/j.tox.2021.152832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Diphenylamine NSAIDs are highly prescribed therapeutics for chronic pain despite causing symptomatic hepatotoxicity through mitochondrial damage in five percent of patients taking them. Differences in toxicity are attributed to structural modifications to the diphenylamine scaffold rather than its inherent toxicity. We hypothesize that marketed diphenylamine NSAID substituents affect preference and efficiency of bioactivation pathways and clearance. We parsed the FDA DILIrank hepatotoxicity database and modeled marketed drug bioactivation into quinone-species metabolites to identify a family of seven clinically relevant diphenylamine NSAIDs. These drugs fell into two subgroups, i.e., acetic acid and propionic acid diphenylamines, varying in hepatotoxicity risks and modeled bioactivation propensities. We carried out steady-state kinetic studies to assess bioactivation pathways by trapping quinone-species metabolites with dansyl glutathione. Analysis of the glutathione adducts by mass spectrometry characterized structures while dansyl fluorescence provided quantitative yields for their formation. Resulting kinetics identified four possible bioactivation pathways among the drugs, but reaction preference and efficiency depended upon structural modifications to the diphenylamine scaffold. Strikingly, diphenylamine dihalogenation promotes formation of quinone metabolites through four distinct metabolic pathways with high efficiency, whereas those without aromatic halogen atoms were metabolized less efficiently through two or fewer metabolic pathways. Overall metabolism of the drugs was comparable with bioactivation accounting for 4-13% of clearance. Lastly, we calculated daily bioload exposure of quinone-species metabolites based on bioactivation efficiency, bioavailability, and maximal daily dose. The results revealed stratification into the two subgroups; propionic acid diphenylamines had an average four-fold greater daily bioload compared to acetic acid diphenylamines. However, the lack of sufficient study on the hepatotoxicity for all drugs prevents further correlative analyses. These findings provide critical insights on the impact of diphenylamine bioactivation as a precursor to hepatotoxicity and thus, provide a foundation for better risk assessment in drug discovery and development.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sasin Payakachat
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | | | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63130, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Grover Paul Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
9
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
10
|
Tateishi Y, Ohe T, Ogawa M, Takahashi K, Nakamura S, Mashino T. Development of Novel Diclofenac Analogs Designed to Avoid Metabolic Activation and Hepatocyte Toxicity. ACS OMEGA 2020; 5:32608-32616. [PMID: 33376898 PMCID: PMC7758955 DOI: 10.1021/acsomega.0c04942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF) is widely used as a nonsteroidal anti-inflammatory drug; however, it is associated with severe liver injury. This adverse reaction is thought to be related to the reactive quinone imine (QI) and acyl glucuronide (AG) metabolites of DCF, but it remains controversial which reactive metabolites mainly contribute to DCF-induced toxicity. In this study, we synthesized five types of DCF analogs that were designed to mitigate the formation of reactive QI and/or AG metabolites and evaluated their metabolic stability, cyclooxygenase (COX) inhibitory activity, and toxicity to cryopreserved human hepatocytes. Compounds with fluorine at the 5- and 4'-positions of aromatic rings exhibited modest and high metabolic stability to oxidation by cytochrome P450, respectively, but induced cytotoxicity comparable to DCF. Replacing the carboxylic group of DCF with its bioisosteres was effective in terms of stability to oxidative metabolism and glucuronidation; however, sulfonic acid and sulfonamide groups were not preferable for COX inhibition, and tetrazole-containing analogs induced strong cytotoxicity. On the other hand, compounds that have fluorine at the benzylic position were resistant to glucuronidation and showed little toxicity to hepatocytes. In addition, among these compounds, those with hydrogen at the 4'-position (2a and 2c) selectively inhibited the COX-2 enzyme. Throughout these data, it was suggested that compounds 2a and 2c might be novel safer and more efficacious drug candidates instead of DCF.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tomoyuki Ohe
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Mai Ogawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kyoko Takahashi
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Shigeo Nakamura
- Department
of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| | - Tadahiko Mashino
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Inoue K, Mizuo H, Ishida T, Komori T, Kusano K. Bioactivation of diclofenac in human hepatocytes and the proposed human hepatic proteins modified by reactive metabolites. Xenobiotica 2020; 50:919-928. [PMID: 32039641 DOI: 10.1080/00498254.2020.1728592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To reveal putative bioactivation pathways of diclofenac, in vitro human liver materials such as microsomal fractions and hepatocytes were used to confirm metabolic activation of diclofenac by 35S-cysteine trapping assay and covalent binding assay. Candidate human liver proteins possibly targeted by 14C-diclofenac via bioactivation were investigated using two-dimensional gel electrophoresis followed by detection of remaining radioactivity on the modified proteins with bio-imaging analyzer.In the 35S-cysteine trapping assay, three and two adducts with 35S-cysteine were observed in NADPH-fortified and UDPGA-fortified human liver microsomes, respectively. In the covalent binding assay using 14C-diclofenac in human hepatocytes, the extent of covalent binding of diclofenac to human hepatic proteins increased time-dependently. Addition of glutathione attenuated the extent of covalent binding of 14C-diclofenac to human liver microsomal proteins.Fifty-nine proteins from human hepatocytes were proposed as the candidate proteins targeted by reactive metabolites of diclofenac. Proteins modified by cytochrome P450-mediated reactive metabolites were identified by using a cytochrome P450 inhibitor, 1-aminobenzyltriazole and seven of the nine radioactive protein spots were removed by 1-aminobenzyltriazole treatment.In contrast, the remaining two radioactive protein spots, mainly containing human serum albumin and heat shock proteins, were not affected by the addition of 1-aminobenzyltriazole, which suggested the involvement of the acyl glucuronide of diclofenac, formed via uridine diphosphate-glucuronosyl transferases, in the covalent modifications induced by diclofenac.
Collapse
Affiliation(s)
- Kazuko Inoue
- Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tsukuba, Japan
| | - Hitoshi Mizuo
- Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tsukuba, Japan
| | - Tomomi Ishida
- Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tsukuba, Japan
| | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tsukuba, Japan
| | - Kazutomi Kusano
- Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tsukuba, Japan
| |
Collapse
|
13
|
Ramesh M, Bharatam PV. Formation of a Toxic Quinoneimine Metabolite from Diclofenac: A Quantum Chemical Study. Drug Metab Lett 2018; 13:64-76. [PMID: 30210009 DOI: 10.2174/1872312812666180913120736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Diclofenac is a non-steroidal antiinflammatory drug. It is predominantly metabolized by CYP2C9. 4'-hydroxydiclofenac and its quinoneimine are the metabolites of diclofenac. However, few numbers of serious cases of idiosyncratic hepatotoxicity due to diclofenac metabolism were reported. The formation of the quinoneimine metabolite was found to be responsible for this idiosyncratic toxicity. Quinoneimine is an over-oxidized metabolite of diclofenac. METHOD In this work, computational studies were conducted to detail the formation of a quinoneimine metabolite from diclofenac. Further, the idiosyncratic toxicity of quinoneimine due to its reactivity was also investigated by quantum chemical analysis. RESULTS & CONCLUSION The results demonstrate the possibility of formation of quinoneimine metabolite due to various factors that are involved in the metabolism of diclofenac. The present study may provide the structural in-sights during the drug development processes to avoid the metabolism directed idiosyncratic toxicity.
Collapse
Affiliation(s)
- Muthusamy Ramesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar (Mohali)-160 062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar (Mohali)-160 062, India
| |
Collapse
|
14
|
Palomo L, Mleczko JE, Azkargorta M, Conde-Vancells J, González E, Elortza F, Royo F, Falcon-Perez JM. Abundance of Cytochromes in Hepatic Extracellular Vesicles Is Altered by Drugs Related With Drug-Induced Liver Injury. Hepatol Commun 2018; 2:1064-1079. [PMID: 30202821 PMCID: PMC6128234 DOI: 10.1002/hep4.1210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Drug‐induced liver injury (DILI) is a serious worldwide health problem that accounts for more than 50% of acute liver failure. There is a great interest in clinical diagnosis and pharmaceutical industry to elucidate underlying molecular mechanisms and find noninvasive biomarkers for this pathology. Cell‐secreted extracellular vesicles (EVs) have provided a new biological source to identify low disease invasive markers. Despite the intense research developed on these vesicles, there is currently a gap on their patho‐physiological effects. Here, we study EVs secreted by primary rat hepatocytes challenged with galactatosamine (GalN), acetaminophen, or diclofenac as DILI in vitromodels. Proteomics analysis of these EVs revealed an increase in enzymes already associated with liver damage, such as catecholamine‐methyl transferase and arginase 1. An increase in translation‐related proteins and a decrease in regulators of apoptosis were also observed. In addition, we show the presence of enzymatic activity of P450 cytochrome 2d1 in EVs. The activity specifically is decreased in EVs secreted by hepatocytes after acetaminophen treatment and increased in EVs derived from GalN‐treated hepatocytes. By using in vivo preclinical models, we demonstrate the presence of this cytochrome activity in circulation under normal conditions and an increased activity after GalN‐induced injury. Conclusion: Hepatocyte‐secreted EVs carry active xenobiotic‐metabolizing enzymes that might be relevant in extracellular metabolism of drugs and be associated with DILI. (Hepatology Communications 2018;0:00‐00)
Collapse
Affiliation(s)
- Laura Palomo
- Exosomes Laboratory, CIC bioGUNE, CIBERehd Bizkaia Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed Bizkaia Spain
| | | | | | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed Bizkaia Spain
| | - Félix Royo
- Exosomes Laboratory, CIC bioGUNE, CIBERehd Bizkaia Spain
| | - Juan M Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE, CIBERehd Bizkaia Spain.,IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
15
|
In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochem Pharmacol 2018; 152:272-278. [DOI: 10.1016/j.bcp.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022]
|
16
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wang Z, Fang Y, Rock D, Ma J. Rapid screening and characterization of glutathione-trapped reactive metabolites using a polarity switch-based approach on a high-resolution quadrupole orbitrap mass spectrometer. Anal Bioanal Chem 2017; 410:1595-1606. [DOI: 10.1007/s00216-017-0814-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022]
|
18
|
Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 2017; 284:70-78. [PMID: 29203276 DOI: 10.1016/j.toxlet.2017.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.
Collapse
Affiliation(s)
- Katarzyna E Lazarska
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450. Int J Mol Sci 2017; 18:ijms18112353. [PMID: 29117101 PMCID: PMC5713322 DOI: 10.3390/ijms18112353] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s.
Collapse
|
20
|
Abo Dena AS, Abdel Gaber SA. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:239-248. [PMID: 28371723 DOI: 10.1016/j.saa.2017.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.
Collapse
Affiliation(s)
- Ahmed S Abo Dena
- National Organization for Drug Control and Research (NODCAR), P.O. Box 29, Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo, Egypt.
| | - Sara A Abdel Gaber
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
21
|
Klenk JM, Nebel BA, Porter JL, Kulig JK, Hussain SA, Richter SM, Tavanti M, Turner NJ, Hayes MA, Hauer B, Flitsch SL. The self-sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5-hydroxylation of diclofenac. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600520] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/12/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jan M. Klenk
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Bernd A. Nebel
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Joanne L. Porter
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Justyna K. Kulig
- Cardiovascular and Metabolic Diseases DMPK; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
- Present address: Crop Science Division; Bayer AG; Monheim am Rhein Germany
| | - Shaneela A. Hussain
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Sven M. Richter
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Michele Tavanti
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Nicholas J. Turner
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| | - Martin A. Hayes
- Cardiovascular and Metabolic Diseases DMPK; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
| | - Bernhard Hauer
- Institute of Technical Biochemistry; University of Stuttgart; Stuttgart Germany
| | - Sabine L. Flitsch
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; Manchester UK
| |
Collapse
|
22
|
den Braver MW, Vermeulen NPE, Commandeur JNM. Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:185-194. [PMID: 28189104 DOI: 10.1016/j.jchromb.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1H NMR, but with a more than 100-fold lower detection limit for absolute quantification.
Collapse
Affiliation(s)
- Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Yan C, Parmeggiani F, Jones EA, Claude E, Hussain SA, Turner NJ, Flitsch SL, Barran PE. Real-Time Screening of Biocatalysts in Live Bacterial Colonies. J Am Chem Soc 2017; 139:1408-1411. [DOI: 10.1021/jacs.6b12165] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cunyu Yan
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Fabio Parmeggiani
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Emrys A. Jones
- Waters Corp., Stamford
Avenue, Altrincham Road, SK9 4AX, Wilmslow, United Kingdom
| | - Emmanuelle Claude
- Waters Corp., Stamford
Avenue, Altrincham Road, SK9 4AX, Wilmslow, United Kingdom
| | - Shaneela A. Hussain
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Nicholas J. Turner
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Sabine L. Flitsch
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Perdita E. Barran
- Manchester
Synthetic Biology Research Centre for Fine and Speciality Chemicals
(SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| |
Collapse
|
24
|
Dixit VA, Deshpande S. Advances in Computational Prediction of Regioselective and Isoform-Specific Drug Metabolism Catalyzed by CYP450s. ChemistrySelect 2016. [DOI: 10.1002/slct.201601051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmaceutical Chemistry; School of Pharmacy and Technology Management (SPTM), Shri Vile Parle Kelavani Mandal's (SVKM's) Narsee Monjee Institute of Management Studies (NMIMS), Mukesh Patel Technology Park, Babulde, Bank of Tapi River; Mumbai-Agra Road Shirpur, Dist. Dhule−425405 India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry; School of Pharmacy and Technology Management (SPTM), Shri Vile Parle Kelavani Mandal's (SVKM's) Narsee Monjee Institute of Management Studies (NMIMS), Mukesh Patel Technology Park, Babulde, Bank of Tapi River; Mumbai-Agra Road Shirpur, Dist. Dhule−425405 India
| |
Collapse
|
25
|
Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol 2016; 90:2979-3003. [PMID: 27659300 PMCID: PMC5104805 DOI: 10.1007/s00204-016-1845-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
The current test systems employed by pharmaceutical industry are poorly predictive for drug-induced liver injury (DILI). The ‘MIP-DILI’ project addresses this situation by the development of innovative preclinical test systems which are both mechanism-based and of physiological, pharmacological and pathological relevance to DILI in humans. An iterative, tiered approach with respect to test compounds, test systems, bioanalysis and systems analysis is adopted to evaluate existing models and develop new models that can provide validated test systems with respect to the prediction of specific forms of DILI and further elucidation of mechanisms. An essential component of this effort is the choice of compound training set that will be used to inform refinement and/or development of new model systems that allow prediction based on knowledge of mechanisms, in a tiered fashion. In this review, we focus on the selection of MIP-DILI training compounds for mechanism-based evaluation of non-clinical prediction of DILI. The selected compounds address both hepatocellular and cholestatic DILI patterns in man, covering a broad range of pharmacologies and chemistries, and taking into account available data on potential DILI mechanisms (e.g. mitochondrial injury, reactive metabolites, biliary transport inhibition, and immune responses). Known mechanisms by which these compounds are believed to cause liver injury have been described, where many if not all drugs in this review appear to exhibit multiple toxicological mechanisms. Thus, the training compounds selection offered a valuable tool to profile DILI mechanisms and to interrogate existing and novel in vitro systems for the prediction of human DILI.
Collapse
|