1
|
Casais-E-Silva LL, Cruz LF, Dos Reis VP, Paloschi MV, Teixeira C, Zuliani JP, da Silva Setubal S. Micrurus lemniscatus venom stimulates leukocyte functions in vivo. Arch Toxicol 2025; 99:1591-1603. [PMID: 39948207 DOI: 10.1007/s00204-025-03970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
While Micrurus venoms are primarily recognized for inducing neurotoxic effects, experimental findings have also documented additional manifestations such as local effects such as edema, myotoxicity, and inflammation. However, limited information is available regarding the impact of Micrurus venom on leukocyte functions. In this study, we investigated the in vivo effects of Micrurus lemniscatus venom (ML venom) on peritoneal leukocyte functions. Intraperitoneal (i.p.) injection of ML venom stimulated leukocyte migration, particularly at lower doses, with predominance of mononuclear cells. Both doses also triggered the release of cytokines (TNF-α, IL-1β, and IL-6) three hours after injection. Additionally, ML venom elicited the production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2), as well as enhanced phagocytosis, along with the release of dsDNA and lipid droplets by these cells. This study represents the first demonstration of peritoneal leukocyte activation by Micrurus lemniscatus venom.
Collapse
Affiliation(s)
- Luciana Lyra Casais-E-Silva
- Laboratório de Neuroimunoendocrinologia e Toxinologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil.
| | - Larissa Faustina Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Valdison P Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Catarina Teixeira
- Laboratório de Farmacologia-Instituto Butantan, São Paulo, SP, Brazil.
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Sulamita da Silva Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Rodríguez-Vargas A, Franco-Vásquez AM, Bolívar-Barbosa JA, Vega N, Reyes-Montaño E, Arreguín-Espinosa R, Carbajal-Saucedo A, Angarita-Sierra T, Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel) 2023; 15:622. [PMID: 37999485 PMCID: PMC10674450 DOI: 10.3390/toxins15110622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/25/2023] Open
Abstract
Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Janeth Alejandra Bolívar-Barbosa
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Mexico;
| | - Teddy Angarita-Sierra
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
- Grupo de investigación Biodiversidad para la Sociedad, Escuela de pregrados, Dirección Académica, Universidad Nacional de Colombia sede de La Paz, Cesar 22010, Colombia
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| |
Collapse
|
3
|
Baudou FG, Gutiérrez JM, Rodríguez JP. Immune response to neurotoxic South American snake venoms. Toxicon 2023; 234:107300. [PMID: 37757959 DOI: 10.1016/j.toxicon.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
South American rattlesnakes (Crotalus durissus spp) and coral snakes (Micrurus sp) venoms are characterized by inducing a limited inflammatory innate immune response, in contrast to Bothrops sp snake venoms which exert a prominent inflammatory activity. Some Crotalus durissus spp venoms, in addition, exert immunosuppressive activities that hamper the development of neutralizing antibodies in animals immunized for antivenom production. Micrurus sp venoms are rich in low molecular mass neurotoxins that elicit a limited immune response. These characteristics make it difficult to generate antivenoms of high neutralizing activity. Therefore, the study of the mechanisms operating behind this limited immune response to venoms is relevant from both fundamental and practical perspectives. This review summarizes key aspects of the immune response to these venoms and discusses some pending challenges to further understand these phenomena and to improve antivenom production.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
4
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
5
|
Dematei A, Costa SR, Moreira DC, Barbosa EA, Friaça Albuquerque LF, Vasconcelos AG, Nascimento T, Silva PC, Silva-Carvalho AÉ, Saldanha-Araújo F, Silva Mancini MC, Saboia Ponte LG, Neves Bezerra RM, Simabuco FM, Batagin-Neto A, Brand G, Borges TKS, Eaton P, Leite JRSA. Antioxidant and Neuroprotective Effects of the First Tryptophyllin Found in Snake Venom ( Bothrops moojeni). JOURNAL OF NATURAL PRODUCTS 2022; 85:2695-2705. [PMID: 36508333 DOI: 10.1021/acs.jnatprod.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Samuel Ribeiro Costa
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Eder Alves Barbosa
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucas F Friaça Albuquerque
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Tiago Nascimento
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Pedro Costa Silva
- Research Center on Biodiversity and Biotechnology (Biotec), Parnaiba Delta Federal University, Parnaíba 64202-020, Brazil
| | - Amandda É Silva-Carvalho
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Augusto Batagin-Neto
- Institute of Science and Engineering, São Paulo State University (UNESP), Itapeva, São Paulo 01049-010, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Tatiana Karla S Borges
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine (NMT), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
6
|
Casais-E-Silva LL, da Cruz-Hofling MA, Teixeira CFP. The edematogenic effect of Micrurus lemniscatus venom is dependent on venom phospholipase A 2 activity and modulated by non-neurogenic factors. Toxicol Lett 2022; 369:12-21. [PMID: 35970279 DOI: 10.1016/j.toxlet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Coral snakes mainly cause neurotoxic symptoms in human envenomation, but experimental studies have already demonstrated several pharmacological activities in addition to these effects. This investigation was carried out with the aim of evaluating (1) non-neurogenic mechanisms involved in the inflammatory response induced by Micrurus lemniscatus venom (MLV) in rat hind paws, (2) participation of PLA2 in this response, and (3) neutralizing efficiency of commercial anti-elapid antivenom on edema. MLV promoted a rapid, significant increase in vascular permeability, influx of leukocytes, and disorganization of collagen bundles, as demonstrated by histological analysis. Several pretreatments were applied to establish the involvement of inflammatory mediators in MLV-induced edema (5 µg/paw). Treatment of animals with chlorpromazine reduced MLV-induced edema, indicating participation of TNF-α. However, the inefficiency of other pharmacological treatments suggests that eicosanoids, leukotrienes, and nitric oxide have no role in this type of edema formation. In contrast, PAF negatively modulates this venom-induced effect. MLV was recognized by anti-elapid serum, but this antivenom did not neutralize edema formation. Chemical modification of MLV with p-bromophenacyl bromide abrogated the phospholipase activity and markedly reduced edema, demonstrating PLA2 participation in MLV-induced edema. In conclusion, the non-neurogenic inflammatory profile of MLV is characterized by TNF-α-mediated edema, participation of PLA2 activity, and down-regulation by PAF. MLV induces an influx of leukocytes and destruction of collagen fibers at the site of its injection.
Collapse
Affiliation(s)
- Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Department of Bioregulation, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| | - Maria Alice da Cruz-Hofling
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
7
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
8
|
Review of the Mechanisms of Snake Venom Induced Pain: It's All about Location, Location, Location. Int J Mol Sci 2022; 23:ijms23042128. [PMID: 35216244 PMCID: PMC8879488 DOI: 10.3390/ijms23042128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Pain—acute, chronic and debilitating—is the most feared neurotoxicity resulting from a survivable venomous snake bite. The purpose of this review is to present in a novel paradigm what we know about the molecular mechanisms responsible for pain after envenomation. Progressing from known pain modulating peptides and enzymes, to tissue level interactions with venom resulting in pain, to organ system level pain syndromes, to geographical level distribution of pain syndromes, the present work demonstrates that understanding the mechanisms responsible for pain is dependent on “location, location, location”. It is our hope that this work can serve to inspire the molecular and epidemiologic investigations needed to better understand the neurotoxic mechanisms responsible for these snake venom mediated diverse pain syndromes and ultimately lead to agent specific treatments beyond anti-venom alone.
Collapse
|
9
|
Gutiérrez JM, Teixeira CFP, Fan HW. Instituto Butantan and Instituto Clodomiro Picado: A long-standing partnership in science, technology, and public health. Toxicon 2021; 202:75-81. [PMID: 34562498 DOI: 10.1016/j.toxicon.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Instituto Butantan (São Paulo, Brazil) and Instituto Clodomiro Picado (San José, Costa Rica) are public institutions devoted to scientific and technological research, production of antivenoms and other immunobiologicals, and a variety of public health interventions aimed at confronting the problem of snakebite envenoming in their countries and elsewhere. In the context of the 120th anniversary of Instituto Butantan, this work describes the historical developments in the relationship between these institutions, which has evolved into a solid cooperation platform in science, technology, and public health. The relationship between Instituto Butantan and Costa Rica started early in the 20th century, with the provision of Brazilian antivenoms to Costa Rica through the coordination of Instituto Butantan and the health system of Costa Rica, with the leadership of Clodomiro Picado Twight. After the decade of 1980, a prolific collaborative network has been established between Instituto Butantan and Instituto Clodomiro Picado (founded in 1970) in the areas of scientific and technological research in pharmacology, biochemistry, experimental pathology, immunology, and public health, as well as in antivenom development, production, preclinical evaluation, and quality control. In addition, both institutions have played a key role in the integration of regional efforts in Latin America to create a network of public institutions devoted to antivenom production and quality control, in close coordination with the Pan American Health Organization (PAHO). This long-standing partnership is an example of a highly productive south-south cooperation under a frame of solidarity and public well-being.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | | | - Hui Wen Fan
- Núcleo de Produção de Soros, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
10
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
11
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
12
|
Braga JRM, Jorge ARC, Marinho AD, Silveira JADM, Nogueira-Junior FA, Valle MB, Alagón A, de Menezes RRPPB, Martins AMC, Feijão LX, Monteiro HSA, Jorge RJB. Renal effects of venoms of Mexican coral snakes Micrurus browni and Micrurus laticollaris. Toxicon 2020; 181:45-52. [DOI: 10.1016/j.toxicon.2020.04.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
13
|
Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n3.75992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Las serpientes del género Micrurus son animales de hábitos fosoriales, de temperamento pasivo y escasa producción de un potente veneno con características neurotóxicas que bloquean la transmisión sináptica en la placa neuromuscular.Objetivo. Presentar un panorama general de la neurotoxicidad del veneno de las serpientes Micrurus y su caracterización funcional mediante métodos de análisis ex vivo.Materiales y métodos. Se realizó una revisión de la literatura en MedLine y ScienceDirect usando términos específicos y sus combinaciones. Estrategia de búsqueda: tipo de estudios: artículos sobre la neurotoxicidad del veneno de serpientes Micrurus y técnicas para determinar su actividad neurotóxica mediante modelos in vitro, in vivo y ex vivo; periodo de publicación: sin limite inicial a junio de 2018; idiomas: inglés y español.Resultados. De los 88 estudios identificados en la búsqueda inicial, se excluyeron 28 por no cumplir los criterios de inclusión (basándose en la lectura de títulos y resúmenes); además, se incluyeron 8 documentos adicionales (libros e informes), que, a criterio de los autores, complementaban la información reportada por las referencias seleccionadas. Los estudios incluidos en la revisión (n=68) correspondieron a las siguientes tipologías: investigaciones originales (n=44), artículos de revisión (n=16) y capítulos de libros, informes, guías y consultas en internet (n=8).Conclusiones. Los estudios que describen el uso de preparaciones ex vivo de músculo y nervio para evaluar el efecto de neurotoxinas ofrecen un buen modelo para la caracterización del efecto presináptico y postsináptico del veneno producido por las serpientes Micrurus.
Collapse
|
14
|
Dos Santos RTF, Silva MFP, Porto RM, Lebrun I, Gonçalves LRDC, Batista IDFC, Sandoval MRL, Abdalla FMF. Effects of Mlx-8, a phospholipase A 2 from Brazilian coralsnake Micrurus lemniscatus venom, on muscarinic acetylcholine receptors in rat hippocampus. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190041. [PMID: 32063920 PMCID: PMC6986814 DOI: 10.1590/1678-9199-jvatitd-2019-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Background: Here, we described the presence of a neurotoxin with phospholipase
A2 activity isolated from Micrurus
lemniscatus venom (Mlx-8) with affinity for muscarinic
acetylcholine receptors (mAChRs). Methods: The purification, molecular mass determination, partial amino acid
sequencing, phospholipase A2 activity determination, inhibition
of the binding of the selective muscarinic ligand [3H]QNB and
inhibition of the total [3H]inositol phosphate accumulation in
rat hippocampus of the Mlx-8 were determined. Results: Thirty-one fractions were collected from HPLC chromatography, and the Mlx-8
toxin was used in this work. The molecular mass of Mlx-8 is 13.628 Da. Edman
degradation yielded the following sequence:
NLYQFKNMIQCTNTRSWL-DFADYG-CYCGRGGSGT. The Mlx-8 had phospholipase
A2 enzymatic activity. The pKi values were
determined for Mlx-8 toxin and the M1 selective muscarinic
antagonist pirenzepine in hippocampus membranes via [3H]QNB
competition binding assays. The pKi values obtained from the
analysis of Mlx-8 and pirenzepine displacement curves were 7.32 ± 0.15, n =
4 and 5.84 ± 0.18, n = 4, respectively. These results indicate that Mlx-8
has affinity for mAChRs. There was no effect on the inhibition ability of
the [3H]QNB binding in hippocampus membranes when 1 µM Mlx-8 was
incubated with 200 µM DEDA, an inhibitor of phospholipase A2.
This suggests that the inhibition of the phospholipase A2
activity of the venom did not alter its ability to bind to displace
[3H]QNB binding. In addition, the Mlx-8 toxin caused a
blockade of 43.31 ± 8.86%, n = 3 and 97.42 ± 2.02%, n = 3 for 0.1 and 1 µM
Mlx-8, respectively, on the total [3H]inositol phosphate content
induced by 10 µM carbachol. This suggests that Mlx-8 inhibits the
intracellular signaling pathway linked to activation of mAChRs in
hippocampus. Conclusion: The results of the present work show, for the first time, that muscarinic
receptors are also affected by the Mlx-8 toxin, a muscarinic ligand with
phospholipase A2 characteristics, obtained from the venom of the
Elapidae snake Micrurus lemniscatus, since this toxin was
able to compete with muscarinic ligand [3H]QNB in hippocampus of
rats. In addition, Mlx-8 also blocked the accumulation of total
[3H]inositol phosphate induced by muscarinic agonist
carbachol. Thus, Mlx-8 may be a new pharmacological tool for examining
muscarinic cholinergic function.
Collapse
Affiliation(s)
| | | | - Rafael Marques Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Salazar E, Salazar AM, Taylor P, Urdanibia I, Pérez K, Rodríguez-Acosta A, Sánchez EE, Guerrero B. Contribution of endothelial cell and macrophage activation in the alterations induced by the venom of Micrurus tener tener in C57BL/6 mice. Mol Immunol 2019; 116:45-55. [PMID: 31600647 DOI: 10.1016/j.molimm.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
Abstract
An acute inflammatory response, cellular infiltrates, anemia, hemorrhage and endogenous fibrinolysis activation were previously described in C57BL/6 mice injected with M. tener tener venom (Mtt). As the endothelium and innate immunity may participate in these disturbances and due to our poor understanding of the alterations produced by these venoms when the neurotoxic component is not predominant, we evaluated the effects in an in vitro model. At 24 h, the release of pro-inflammatory mediators was detected in peritoneal macrophages. At different times, the release of pro-inflammatory (TNF-α, IL-6, NO and E-Selectin), pro-coagulant (vWF and TF) and pro-fibrinolytic (uPA) mediators were seen in liver sinusoidal endothelial cells (LSECs). These results suggest that Mtt venom activates macrophages and endothelium, thus inducing the release of mediators, such as TNF-α, that orchestrate the acute inflammatory response and the later infiltration of mononuclear cells into liver in C57BL/6 mice. In addition, endothelium activation promotes TF expression, which may in turn modulate the inflammatory and hemostatic response. These findings suggest crosstalk between inflammation and hemostasis in the alterations observed in Micrurus envenomation, where the neurotoxic manifestations do not predominate.
Collapse
Affiliation(s)
- Emelyn Salazar
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela; National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363, USA
| | - Ana María Salazar
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Peter Taylor
- Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC) 1020A, Caracas, Venezuela
| | - Izaskun Urdanibia
- Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC) 1020A, Caracas, Venezuela
| | - Karin Pérez
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela 1051, Caracas, Venezuela
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, Kingsville, TX 78363, USA
| | - Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
17
|
Lomonte B, Camacho E, Fernández J, Salas M, Zavaleta A. Three-finger toxins from the venom of Micrurus tschudii tschudii (desert coral snake): Isolation and characterization of tschuditoxin-I. Toxicon 2019; 167:144-151. [DOI: 10.1016/j.toxicon.2019.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022]
|
18
|
da Silva AM, da Fonseca WL, de Araujo Valente Neto E, Bisneto PF, Contreras-Bernal J, Sachett J, Monteiro WM, Bernarde PS. Envenomation by Micrurus annellatus bolivianus (Peters, 1871) coral snake in the western Brazilian Amazon. Toxicon 2019; 166:34-38. [DOI: 10.1016/j.toxicon.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/13/2019] [Accepted: 05/18/2019] [Indexed: 01/15/2023]
|
19
|
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
20
|
Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coralsnake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom. Arch Toxicol 2019; 93:2065-2086. [PMID: 31123802 DOI: 10.1007/s00204-019-02476-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
We investigated the effect of South American coralsnake (Micrurus lemniscatus lemniscatus) venom on neurotransmission in vertebrate nerve-muscle preparations in vitro. The venom (0.1-30 µg/ml) showed calcium-dependent PLA2 activity and caused irreversible neuromuscular blockade in chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations. In BC preparations, contractures to exogenous acetylcholine and carbachol (CCh), but not KCl, were abolished by venom concentrations ≥ 0.3 µg/ml; in PND preparations, the amplitude of the tetanic response was progressively attenuated, but with little tetanic fade. In low Ca2+ physiological solution, venom (10 µg/ml) caused neuromuscular blockade in PND preparations within ~ 10 min that was reversible by washing; the addition of Ca2+ immediately after the blockade temporarily restored the twitch responses, but did not prevent the progression to irreversible blockade. Venom (10 µg/ml) did not depolarize diaphragm muscle, prevent depolarization by CCh, or cause muscle contracture or histological damage. Venom (3 µg/ml) had a biphasic effect on the frequency of miniature end-plate potentials, but did not affect their amplitude; there was a progressive decrease in the amplitude of evoked end-plate potentials. The amplitude of compound action potentials in mouse sciatic nerve was unaffected by venom (10 µg/ml). Pre-incubation of venom with coralsnake antivenom (Instituto Butantan) at the recommended antivenom:venom ratio did not neutralize the neuromuscular blockade in PND preparations, but total neutralization was achieved with a tenfold greater volume of antivenom. The addition of antivenom after 50% and 80% blockade restored the twitch responses. These results show that M. lemniscatus lemniscatus venom causes potent, irreversible neuromuscular blockade, without myonecrosis. This blockade is apparently mediated by pre- and postsynaptic neurotoxins and can be reversed by coralsnake antivenom.
Collapse
|
21
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|
22
|
Lauria PSS, Casais-E-Silva LL, do Espírito-Santo RF, de Souza CMV, Zingali RB, Caruso MB, Soares MBP, Villarreal CF. Pain-like behaviors and local mechanisms involved in the nociception experimentally induced by Latrodectus curacaviensis spider venom. Toxicol Lett 2018; 299:67-75. [PMID: 30261224 DOI: 10.1016/j.toxlet.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the behavioral manifestations of nociception and the local mechanisms involved with the nociceptive response elicited by Latrodectus curacaviensis venom (LCV) in mice. After the intraplantar LCV inoculation, spontaneous nociception, mechanical and thermal nociceptive thresholds, motor performance, edema and cytokine levels were evaluated using von Frey filaments, hot/cold plate, rota-rod, plethismometer and ELISA, respectively. Analysis of LCV was performed by SDS-PAGE and chromatography. Intraplantar injection of LCV (1-100 ng/paw) induced intense and heat-sensitive spontaneous nociception, mediated by serotonin and bradykinin receptors, TRPV1 channels, as well as by transient local inflammation. LCV (0.1-10 ng/paw) induced mechanical allodynia, which was reduced by the local pretreatment with H1 receptor or TRPV1 antagonists. Corroborating the TRPV1 involvement, in thermal nociception assays, LCV induced a similar response to that of capsaicin, a TRPV1 agonist, facilitating the response to noxious hot stimuli and inhibiting the response to cold noxious stimulation. LCV promoted mast cell degranulation, increased IL-1β paw levels, but did not produce a relevant edematogenic effect. Analysis of LCV components showed a predominance of high molecular weight proteins. This work provides the first mechanistic hypothesis to explain the local pain induced by LCV, the most frequent clinical symptom of human envenomation.
Collapse
Affiliation(s)
| | | | | | | | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marjolly Brígido Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz FIOCRUZ, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil
| | - Cristiane Flora Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil; Instituto Gonçalo Moniz FIOCRUZ, Salvador, BA, Brazil.
| |
Collapse
|
23
|
Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH. Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): A venom with proteome novelty, low toxicity and distinct antigenicity. J Proteomics 2018; 192:246-257. [PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022]
Abstract
The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jia Lee Liew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Evan S H Quah
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
24
|
da Silva IM, Bernal JC, Gonçalves Bisneto PF, Tavares AM, de Moura VM, Monteiro-Junior CS, Raad R, Bernarde PS, Sachett JDAG, Monteiro WM. Snakebite by Micrurus averyi (Schmidt, 1939) in the Brazilian Amazon basin: Case report. Toxicon 2018; 141:51-54. [DOI: 10.1016/j.toxicon.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
|
25
|
Casais-e-Silva LL, Teixeira C. Neurogenic mediators contribute to local edema induced by Micrurus lemniscatus venom. PLoS Negl Trop Dis 2017; 11:e0005874. [PMID: 29161255 PMCID: PMC5716551 DOI: 10.1371/journal.pntd.0005874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 12/05/2017] [Accepted: 08/15/2017] [Indexed: 01/10/2023] Open
Abstract
Background/Aims Micrurus is one of the four snake genera of medical importance in Brazil. Coral snakes have a broad geographic distribution from the southern United States to Argentina. Micrurine envenomation is characterized by neurotoxic symptoms leading to dyspnea and death. Moreover, various local manifestations, including edema formation, have been described in patients bitten by different species of Micrurus. Thus, we investigated the ability of Micrurus lemniscatus venom (MLV) to induce local edema. We also explored mechanisms underlying this effect, focusing on participation of neuropeptides and mast cells. Methodology/Principal findings Intraplantar injection of MLV (1–10 μg/paw) in rats caused dose- and time-dependent edema with a peak between 15 min and 1 h after injection. MLV also induced degranulation of peritoneal mast cells (MCs). MC depletion by compound 48/80 markedly reduced MLV-induced edema. Pre-treatment (30 min) of rats with either promethazine a histamine H1 receptor antagonist or methysergide, a nonselective 5-HT receptor antagonist, reduced MLV-induced edema. However, neither thioperamide, a histamine H3/H4 receptor antagonist, nor co-injection of MLV with HOE-140, a BK2 receptor antagonist, altered the response. Depletion of neuropeptides by capsaicin or treatment of animals with NK1- and NK2-receptor antagonists (SR 140333 and SR 48968, respectively) markedly reduced MLV-induced edema. Conclusions/Significance In conclusion, MLV induces paw edema in rats by mechanisms involving activation of mast cells and substance P-releasing sensory C-fibers. Tachykinins NKA and NKB, histamine, and serotonin are major mediators of the MLV-induced edematogenic response. Targeting mast cell- and sensory C-fiber-derived mediators should be considered as potential therapeutic approaches to interrupt development of local edema induced by Micrurus venoms. Micrurus venoms have neurotoxic activity that is responsible for the serious sequelae in human envenomation. However, various local manifestations of envenoming have been described in patients bitten by different Micrurus species and edematogenic activity has been experimentally demonstrated. Despite the low frequency of edema in Micrurus envenomation, this effect can worsen the clinical manifestations. However, there are few studies on local inflammatory effects induced by Micrurus snake venom. We investigated the edematogenic effect of Micrurus lemniscatus venom (MLV) and participation of neuropeptides and mast cells in inflammation. Results demonstrate that MLV induces prominent edema with rapid onset. Using specific pharmacological interferences, we found that MLV-induced edema is dependent on activation of mast cells and substance P-releasing sensory C-fibers. NKA and NKB tachykinins, histamine via H1 receptor and serotonin are major mediators of the MLV-induced edematogenic response. These findings suggest that mast cell- and C-fiber-derived mediators are promising therapeutic targets to efficiently counteract the local edema induced by Micrururs venoms.
Collapse
Affiliation(s)
- Luciana Lyra Casais-e-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Department of Bioregulation, Institute of Health Sciences (ICS), Federal University of Bahia, Salvador, Bahia, Brazil
| | - Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
26
|
Vulfius CA, Kasheverov IE, Kryukova EV, Spirova EN, Shelukhina IV, Starkov VG, Andreeva TV, Faure G, Zouridakis M, Tsetlin VI, Utkin YN. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS One 2017; 12:e0186206. [PMID: 29023569 PMCID: PMC5638340 DOI: 10.1371/journal.pone.0186206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.
Collapse
Affiliation(s)
- Catherine A. Vulfius
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Igor E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N. Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana V. Andreeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Grazyna Faure
- Unité Récepteurs-Canaux, Institut Pasteur, Paris, France
| | | | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Aird SD, da Silva NJ, Qiu L, Villar-Briones A, Saddi VA, Pires de Campos Telles M, Grau ML, Mikheyev AS. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins (Basel) 2017; 9:E187. [PMID: 28594382 PMCID: PMC5488037 DOI: 10.3390/toxins9060187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A₂s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15-35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar-Briones
- Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Vera Aparecida Saddi
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Oncogenética e Radiobiologia da Associação de Combate ao Câncer em Goiás, Universidade Federal de Goiás, Rua 239 no. 52-Setor Universitário, Goiânia, Goiás 74065-070, Brazil.
| | - Mariana Pires de Campos Telles
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Miguel L Grau
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
28
|
Rey-Suárez P, Núñez V, Saldarriaga-Córdoba M, Lomonte B. Primary structures and partial toxicological characterization of two phospholipases A 2 from Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie 2017; 137:88-98. [DOI: 10.1016/j.biochi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
|
29
|
Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, Bénard-Valle M, Sanz L, Corrêa-Netto C, Núñez V, Alape-Girón A, Alagón A, Gutiérrez JM, Calvete JJ. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 2016; 122:7-25. [DOI: 10.1016/j.toxicon.2016.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|