1
|
Kirsch-Volders M, Mišík M, Fenech M. Tetraploidy in normal tissues and diseases: mechanisms and consequences. Chromosoma 2025; 134:3. [PMID: 40117022 PMCID: PMC11928420 DOI: 10.1007/s00412-025-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Tetraploidisation plays a crucial role in evolution, development, stress adaptation, and disease, but its beneficial or pathological effects in different tissues remain unclear. This study aims to compare physiological and unphysiological tetraploidy in eight steps: 1) mechanisms of diploidy-to-tetraploidy transition, 2) induction and elimination of unphysiological tetraploidy, 3) tetraploid cell characteristics, 4) stress-induced unphysiological tetraploidy, 5) comparison of physiological vs. unphysiological tetraploidy, 6) consequences of unphysiological stress-induced tetraploidy, 7) nutritional or pharmacological prevention strategies of tetraploidisation, and 8) knowledge gaps and future perspectives. Unphysiological tetraploidy is an adaptive stress response at a given threshold, often involving mitotic slippage. If tetraploid cells evade elimination through apoptosis or immune surveillance, they may re-enter the cell cycle, causing genetic instability, micronuclei formation, aneuploidy, modification of the epigenome and the development of diseases. The potential contributions of unphysiological tetraploidy to neurodegenerative, cardiovascular and diabetes related diseases are summarized in schematic figures and contrasted with its role in cancer development. The mechanisms responsible for the transition from physiological to unphysiological tetraploidy and the tolerance to tetraploidisation in unphysiological tetraploidy are not fully understood. Understanding these mechanisms is of critical importance to allow the development of targeted nutritional and pharmacological prevention strategies and therapies.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia
| |
Collapse
|
2
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
3
|
Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: a cancer perspective. Front Genet 2023; 14:1290903. [PMID: 38075697 PMCID: PMC10702394 DOI: 10.3389/fgene.2023.1290903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 07/29/2024] Open
Abstract
Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term "oncohistones." At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
4
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Hong X, Ma N, Li D, Zhang M, Dong W, Huang J, Ci X, Zhang S. UBE2E2 enhances Snail-mediated epithelial-mesenchymal transition and Nrf2-mediated antioxidant activity in ovarian cancer. Cell Death Dis 2023; 14:100. [PMID: 36765041 PMCID: PMC9918489 DOI: 10.1038/s41419-023-05636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Dissemination of ovarian cancer (OvCa) cells can lead to inoperable metastatic lesions in the bowel and omentum, which have a poor prognosis despite surgical and chemotherapeutical options. A better understanding of the mechanisms underlying metastasis is urgently needed. In this study, bioinformatics analyses revealed that UBE2E2, a less-studied ubiquitin (Ub)-conjugating enzyme (E2), was upregulated in OvCa and was associated with poor prognosis. Subsequently, we performed western blot analysis and IHC staining with 88 OvCa and 26 normal ovarian tissue samples, which further confirmed that UBE2E2 protein is highly expressed in OvCa tissue but weakly expressed in normal tissue. Furthermore, the silencing of UBE2E2 blocked OvCa cell migration, epithelial-mesenchymal transition (EMT) and metastasis in vitro, whereas UBE2E2 overexpression exerted the opposite effects. Mechanistically, UBE2E2 promoted p62 accumulation and increased the activity of the Nrf2-antioxidant response element (ARE) system, which ultimately activated the Snail signaling pathway by inhibiting the ubiquitin-mediated degradation of Snail. Additionally, co-IP and immunofluorescence demonstrated that a direct interaction exists between UBE2E2 and Nrf2, and the N-terminal of UBE2E2 (residues 1-52) is required and sufficient for its interaction with Nrf2 protein. Mutations in the active site cysteine (Cys139) impaired both the function and cellular distribution of UBE2E2. More importantly, the deletion of UBE2E2 reduced tumorigenicity and metastasis in xenograft OvCa mouse models. Taken together, our findings reveal the role of the UBE2E2-Nrf2-p62-Snail signaling axis in OvCa and thus provides novel therapeutic targets for the prevention of OvCa metastasis.
Collapse
Affiliation(s)
- Xiaoling Hong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Danjie Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenqiuzi Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
6
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
7
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Okano H, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (Ldlrad4) in the liver of rats treated with nongenotoxic hepatocarcinogen to induce transforming growth factor β signaling promoting cell proliferation and suppressing apoptosis in early hepatocarcinogenesis. J Appl Toxicol 2020; 40:1467-1479. [PMID: 32596862 DOI: 10.1002/jat.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
We previously found downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4), a negative regulator of transforming growth factor (TGF)-β signaling, in glutathione S-transferase placental form (GST-P) expressing (+ ) pre-neoplastic lesions produced by treatment with nongenotoxic hepatocarcinogens for up to 90 days in rats. Here, we investigated the relationship between LDLRAD4 downregulation and TGFβ signaling in nongenotoxic hepatocarcinogenesis. The transcripts of Tgfb and Hb-egf increased after ≥28 days of treatment. After 84 or 90 days, Snai1 increased transcripts and the subpopulation of GST-P+ foci downregulating LDLRAD4 co-expressed TGFβ1, phosphorylated EGFR, or phosphorylated AKT2, and downregulated PTEN, showing higher incidences than those in GST-P+ foci expressing LDLRAD4. The subpopulation of GST-P+ foci downregulating LDLRAD4 also co-expressed caveolin-1 or TACE/ADAM17, suggesting that disruptive activation of TGFβ signaling through a loss of LDLRAD4 enhances EGFR and PTEN/AKT-dependent pathways via caveolin-1-dependent activation of TACE/ADAM17 during nongenotoxic hepatocarcinogenesis. The numbers of c-MYC+ cells and PCNA+ cells were higher in LDLRAD4-downregulated GST-P+ foci than in LDLRAD4-expressing GST-P+ foci, suggesting a preferential proliferation of pre-neoplastic cells by LDLRAD4 downregulation. Nongenotoxic hepatocarcinogens markedly downregulated Nox4 after 28 days and later decreased cleaved caspase 3+ cells in LDLRAD4-downregulated GST-P+ foci, suggesting an attenuation of apoptosis by LDLRAD4 downregulation through activation of the EGFR pathway. At the late hepatocarcinogenesis stage in a two-stage model, LDLRAD4 downregulation was higher in adenoma and carcinoma than in pre-neoplastic cell foci, suggesting a role of LDLRAD4 downregulation in tumor development. Our results suggest that nongenotoxic hepatocarcinogens cause disruptive activation of TGFβ signaling through downregulating LDLRAD4 toward carcinogenesis in the rat liver.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Tokyo, Japan.,Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Expression Characteristics of Genes Hypermethylated and Downregulated in Rat Liver Specific to Nongenotoxic Hepatocarcinogens. Toxicol Sci 2020; 169:122-136. [PMID: 30690589 PMCID: PMC6484883 DOI: 10.1093/toxsci/kfz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlrad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4− and PROC− foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-β signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
9
|
Mizukami S, Watanabe Y, Saegusa Y, Nakajima K, Ito Y, Masubuchi Y, Yoshida T, Shibutani M. Downregulation of UBE2E2 in rat liver cells after hepatocarcinogen treatment facilitates cell proliferation and slowing down of DNA damage response in GST-P-expressing preneoplastic lesions. Toxicol Appl Pharmacol 2017; 334:207-216. [PMID: 28899750 DOI: 10.1016/j.taap.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
We previously found downregulation of ubiquitin-conjugating enzyme E2E 2 (UBE2E2) in GST-P-positive (+) proliferative lesions produced by tumor promotion from early hepatocarcinogenesis stages in rats. Here we investigated the role of UBE2E2 downregulation in preneoplastic lesions of the liver and other target organs produced by tumor promotion in rats. Increased number of UBE2E2-related ubiquitination target proteins, phosphorylated c-MYC, KDM4A and KMT5A, was found in the UBE2E2-downregulated GST-P+ foci, compared with GST-P+ foci expressing UBE2E2. However, p21WAF1/CIP1, another UBE2E2 target protein, did not increase in the positive cells. Furthermore, the numbers of PCNA+ cells and γH2AX+ cells were increased in UBE2E2-downregulated foci. These results suggest sustained activation of c-MYC and stabilization of KMT5A to result in c-MYC-mediated transcript upregulation and following KMT5A-mediated protein stabilization of PCNA in GST-P+ foci, as well as KDM4A stabilization resulting in slowing down of DNA damage response in these lesions. Similar results were also observed in GST-P+ foci produced by repeated treatment of rats with a hepatocarcinogen, thioacetamide, for 90days. Hepatocarcinogen treatment for 28 or 90days also increased the numbers of liver cells expressing UBE2E2-related ubiquitination target proteins, as well as PCNA+ or γH2AX+ cells. Conversely, UBE2E2 downregulation was lacking in PPARα agonist-induced hepatocarcinogenesis, as well as in carcinogenic processes targeting other organs, suggestive of the loss of UBE2E2-related ubiquitination limited to hepatocarcinogenesis producing GST-P+ proliferative lesions. Our results suggest that repeated hepatocarcinogen treatment of rats causes stabilization of UBE2E2-related ubiquitination target proteins in liver cells to promote carcinogenesis.
Collapse
Affiliation(s)
- Sayaka Mizukami
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yukie Saegusa
- Environment Health and Safety Division, Environment Directorate, OECD, 2, rue André Pascal, 75775 Paris, Cedex 16, France.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
10
|
Mizukami S, Watanabe Y, Nakajima K, Hasegawa-Baba Y, Jin M, Yoshida T, Shibutani M. Downregulation of TMEM70 in Rat Liver Cells After Hepatocarcinogen Treatment Related to the Warburg Effect in Hepatocarcinogenesis Producing GST-P-Expressing Proliferative Lesions. Toxicol Sci 2017; 159:211-223. [DOI: 10.1093/toxsci/kfx131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|