1
|
Someah MS, Golbabaei F, Arjomandi R, Semiromi FB, Mohammadi A. Oxidative Stress and DNA Damages Induced by Occupational Exposure to Asbestos: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1613-1625. [PMID: 37744536 PMCID: PMC10512136 DOI: 10.18502/ijph.v52i8.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/19/2022] [Indexed: 09/26/2023]
Abstract
Background Asbestos is one of the most important environmental and occupational carcinogens. Nevertheless, the mechanisms by which asbestos fiber exposure causes chronic diseases are not fully understood. We performed the first systematic review on the epidemiological evidence to examine the association between occupational exposure to asbestos and oxidative stress and DNA damage. Methods In this systematic review study, the PubMed and Scopus databases were searched for English-language publications. Eleven cross-sectional studies were included in the systematic review. A literature search was conducted by the main keywords including "Asbestos", "crocidolite", "chrysotile", "amphibole", "amosite", "Oxidative Stress", "DNA Damage", and "DNA injury". To evaluate the quality of studies, the "Newcastle-Ottawa Quality Assessment Scale" (NOS) was used. Results Overall, 1235 articles were achieved by searching in databases. Finally, by considering the inclusion, and exclusion criteria, 11 articles were conducted for this study. These studies were published between 1986 and 2020. Oxidative stress and DNA damage can occur in exposure to asbestos. Among various biomarkers, 8-OHdG is the best. The analysis of 8-oxodG in asbestos workers can help identify subjects with a higher level of genotoxic damage. Conclusion This systematic review suggests that oxidative stress and DNA damage are two main outputs of asbestos exposure. Therefore, oxidative stress and DNA damage biomarkers can be used for identifying subjects at higher risk of cancer. These findings support policy initiatives aimed at detecting and eliminating asbestos fiber exposure and preventing potential health hazards in occupational settings.
Collapse
Affiliation(s)
- Mirghani Seyed Someah
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farideh Golbabaei
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Arjomandi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzam Babaei Semiromi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammadi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
3
|
Cellai F, Bonassi S, Cristaudo A, Bonotti A, Neri M, Ceppi M, Bruzzone M, Milić M, Munnia A, Peluso M. Chromatographic Detection of 8-Hydroxy-2'-Deoxyguanosine in Leukocytes of Asbestos Exposed Workers for Assessing Past and Recent Carcinogen Exposures. Diagnostics (Basel) 2020; 10:E239. [PMID: 32326213 PMCID: PMC7235992 DOI: 10.3390/diagnostics10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Asbestos fibers include a group of silicate minerals that occur in the environment and are widely employed in occupational settings. Asbestos exposure has been associated to various chronic diseases; such as pulmonary fibrosis; mesothelioma; and lung cancer; often characterized by a long period of latency. Underlying mechanisms that are behind the carcinogenic effect of asbestos have not been fully clarified. Therefore; we have conducted an epidemiological study to evaluate the relationship between 8-hydroxy-2'-deoxyguanosine (8-oxodG), one of the most reliable biomarkers of oxidative stress and oxidative DNA damage; and asbestos exposure in the peripheral blood of residents in Tuscany and Liguria regions; Italy; stratified by occupational exposure to this carcinogen. Levels of 8-oxodG were expressed such as relative adduct labeling (RAL); the frequency of 8-oxodG per 105 deoxyguanosine was significantly higher among exposed workers with respect to the controls; i.e., 3.0 ± 0.2 Standard Error (SE) in asbestos workers versus a value of 1.3 ± 0.1 (SE) in unexposed controls (p < 0.001). When the relationship with occupational history was investigated; significant higher levels of 8-oxodG were measured in current and former asbestos workers vs. healthy controls; 3.1 ± 0.3 (SE) and 2.9 ± 0.2 (SE), respectively. After stratification for occupational history; a significant 194% excess of adducts was found in workers with 10 or more years of past asbestos exposure (p < 0.001). 8-oxodG can be used for medical surveillance programs of cohorts of workers with past and recent exposures to carcinogens for the identification of subjects requiring a more intense clinical surveillance.
Collapse
Affiliation(s)
- Filippo Cellai
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (S.B.); (M.N.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56010 Pisa, Italy;
- Occupational Medicine Unit, University of Pisa, 56010 Pisa, Italy;
| | | | - Monica Neri
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (S.B.); (M.N.)
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy; (M.C.); (M.B.)
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy; (M.C.); (M.B.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Armelle Munnia
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| | - Marco Peluso
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| |
Collapse
|
4
|
Cellai F, Capacci F, Sgarrella C, Poli C, Arena L, Tofani L, Giese RW, Peluso M. A Cross-Sectional Study on 3-(2-Deoxy-β-D-Erythro-Pentafuranosyl)Pyrimido[1,2-α]Purin-10(3H)-One Deoxyguanosine Adducts among Woodworkers in Tuscany, Italy. Int J Mol Sci 2019; 20:ijms20112763. [PMID: 31195682 PMCID: PMC6600535 DOI: 10.3390/ijms20112763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Occupational exposure to wood dust has been estimated to affect 3.6 million workers within the European Union (EU). The most serious health effect caused by wood dust is the nasal and sinonasal cancer (SNC), which has been observed predominantly among woodworkers. Free radicals produced by inflammatory reactions as a consequence of wood dust could play a major role in SNC development. Therefore, we investigated the association between wood dust and oxidative DNA damage in the cells of nasal epithelia, the target site of SNC. We have analyzed oxidative DNA damage by determining the levels of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG), a major-peroxidation-derived DNA adduct and a biomarker of cancer risk in 136 woodworkers compared to 87 controls in Tuscany, Italy. We then examined the association of M1dG with co-exposure to volatile organic compounds (VOCs), exposure length, and urinary 15-F2t isoprostane (15-F2t-IsoP), a biomarker of oxidant status. Wood dust at the workplace was estimated by the Information System for Recording Occupational Exposures to Carcinogens. M1dG was measured using 32P-postlabeling and mass spectrometry. 15-F2t-IsoP was analyzed using ELISA. Results show a significant excess of M1dG in the woodworkers exposed to average levels of 1.48 mg/m3 relative to the controls. The overall mean ratio (MR) between the woodworkers and the controls was 1.28 (95% C.I. 1.03-1.58). After stratification for smoking habits and occupational status (exposure to wood dust alone and co-exposure to VOCs), the association of M1dG with wood dust (alone) was even greater in non-smokers workers, MR of 1.43 (95% C.I. 1.09-1.87). Conversely, not consistent results were found in ex-smokers and current smokers. M1dG was significantly associated with co-exposure to VOCs, MR of 1.95 (95% C.I. 1.46-2.61), and occupational history, MR of 2.47 (95% C.I. 1.67-3.62). Next, the frequency of M1dG was significantly correlated to the urinary excretion of 15-F2t-IsoP, regression coefficient (β) = 0.442 ± 0.172 (SE). Consistent with the hypothesis of a genotoxic mechanism, we observed an enhanced frequency of M1dG adducts in woodworkers, even at the external levels below the regulatory limit. Our data implement the understanding of SNC and could be useful for the management of the adverse effects caused by this carcinogen.
Collapse
Affiliation(s)
- Filippo Cellai
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Fabio Capacci
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, 50139 Florence, Italy.
| | - Carla Sgarrella
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, 50139 Florence, Italy.
| | - Carla Poli
- Department of Prevention, Azienda USL Toscana Centro, 50139 Florence, Italy.
| | - Luciano Arena
- Department of Prevention, Azienda USL Toscana Centro, 50139 Florence, Italy.
| | - Lorenzo Tofani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy.
| | - Roger W Giese
- Bouve College of Health Sciences, Barnett Institute, Northeastern University, Northeastern University, Boston, MA 02115, USA.
| | - Marco Peluso
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
5
|
Bono R, Capacci F, Cellai F, Sgarrella C, Bellisario V, Trucco G, Tofani L, Peluso A, Poli C, Arena L, Piro S, Miligi L, Munnia A, Peluso M. Wood dust and urinary 15-F 2t isoprostane in Italian industry workers. ENVIRONMENTAL RESEARCH 2019; 173:300-305. [PMID: 30939330 DOI: 10.1016/j.envres.2019.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Wood dust is one of the most common occupational exposures, with about 3.6 million of workers in the wood industry in Europe. Wood particles can deposit in the nose and the respiratory tract and cause adverse health effects. Occupational exposure to wood dust has been associated with malignant tumors of the nasal cavity and paranasal sinuses. The induction of oxidative stress and the generation of reactive oxygen species through activation of inflammatory cells could have a role in the carcinogenicity of respirable wood dust. Therefore, we conducted a cross-sectional study to evaluate the prevalence of urinary 15-F2t isoprostane (15-F2t-IsoP), a biomarker of oxidative stress and peroxidation of lipids, in 123 wood workers compared to 57 unexposed controls living in Tuscany region, Italy. 15-F2t-IsoP generation was measured by ELISA. The main result of the present study showed that a statistically significant excess of this biomarker occurred in the workers exposed to 1.48 mg/m3 of airborne wood dust with respect to the unexposed controls. The overall mean ratio (MR) between the workers exposed to wood dust and the controls was 1.36, 95% Confidence Interval (C.I.) 1.18-1.57, after correction for age and smoking habits. A significant increment of 15-F2t-IsoP (43%) was observed in the smokers as compared to the non-smokers. The urinary excretion of 15-F2t-IsoP was significantly associated with co-exposure to organic solvents, i.e., MR of 1.41, 95% C.I. 1.17-1.70, after adjustment for age and smoking habits. A 41% excess was observed in long-term wood workers, 95% C.I. 1.14-1.75. Multivariate regression analysis showed that the level of 15-F2t-IsoP was linearly correlated to the length of exposure, regression coefficient (β) = 0.244 ± 0.002 (SE). The overall increment by exposure group persisted after stratification for smoking habits. For instance, in smokers, a 53% excess was detected in the wood workers as compared to the controls, 95% C.I. 1.23-1.91. Our data support the hypothesis that oxidative stress and lipid peroxidation can have a role in the toxicity of wood dust F2-IsoP measure can be a tool for the evaluation of the effectiveness of targeted interventions aimed to reduce exposures to environmental carcinogens.
Collapse
Affiliation(s)
- Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, Italy
| | - Fabio Capacci
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, Florence, Italy
| | - Filippo Cellai
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139, Florence, Italy
| | - Carla Sgarrella
- Functional Unit for Prevention, Health and Safety in the Workplace, ASL10, Florence, Italy
| | | | - Giulia Trucco
- Department of Public Health and Pediatrics, University of Turin, Italy
| | - Lorenzo Tofani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Carla Poli
- Department of Prevention, ASL11, Empoli, Florence, Italy
| | - Luciano Arena
- Department of Prevention, ASL11, Empoli, Florence, Italy
| | - Sara Piro
- Unit of Environmental and Occupational Epidemiology, ISPRO-Study, Prevention and Oncology Network Institute, 50139, Florence, Italy
| | - Lucia Miligi
- Unit of Environmental and Occupational Epidemiology, ISPRO-Study, Prevention and Oncology Network Institute, 50139, Florence, Italy
| | - Armelle Munnia
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139, Florence, Italy
| | - Marco Peluso
- Cancer Factor Risk Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139, Florence, Italy.
| |
Collapse
|
6
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|