1
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
2
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [DOI: pmid: 38718731 doi: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
4
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Juárez-Facio AT, Rogez-Florent T, Méausoone C, Castilla C, Mignot M, Devouge-Boyer C, Lavanant H, Afonso C, Morin C, Merlet-Machour N, Chevalier L, Ouf FX, Corbière C, Yon J, Vaugeois JM, Monteil C. Ultrafine Particles Issued from Gasoline-Fuels and Biofuel Surrogates Combustion: A Comparative Study of the Physicochemical and In Vitro Toxicological Effects. TOXICS 2022; 11:21. [PMID: 36668747 PMCID: PMC9861194 DOI: 10.3390/toxics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.
Collapse
Affiliation(s)
| | | | | | - Clément Castilla
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Mélanie Mignot
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Hélène Lavanant
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Christophe Morin
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Laurence Chevalier
- Univ Rouen Normandie, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - François-Xavier Ouf
- Institut de Radioprotection et de Sureté Nucléaire, PSN-RES, SCA, LPMA, 91192 Gif-sur-Yvette, France
| | - Cécile Corbière
- Univ Rouen Normandie, UNICAEN, ABTE UR 4651 F, 76000 Rouen, France
| | - Jérôme Yon
- Univ Rouen Normandie, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | | | | |
Collapse
|
6
|
Rosales CMF, Jiang J, Lahib A, Bottorff BP, Reidy EK, Kumar V, Tasoglou A, Huber H, Dusanter S, Tomas A, Boor BE, Stevens PS. Chemistry and human exposure implications of secondary organic aerosol production from indoor terpene ozonolysis. SCIENCE ADVANCES 2022; 8:eabj9156. [PMID: 35213219 PMCID: PMC8880786 DOI: 10.1126/sciadv.abj9156] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub-10-nm particles (≥105 cm-3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.
Collapse
Affiliation(s)
| | - Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
| | - Ahmad Lahib
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
- IMT Lille Douai, Institut Mines-Télécom, Université de Lille, Center for Energy and Environment, 59000 Lille, France
| | | | - Emily K. Reidy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Vinay Kumar
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | | | - Heinz Huber
- RJ Lee Group Inc., Monroeville, PA 15146, USA
- Edelweiss Technology Solutions LLC, Novelty, OH 44072, USA
| | - Sebastien Dusanter
- IMT Lille Douai, Institut Mines-Télécom, Université de Lille, Center for Energy and Environment, 59000 Lille, France
| | - Alexandre Tomas
- IMT Lille Douai, Institut Mines-Télécom, Université de Lille, Center for Energy and Environment, 59000 Lille, France
| | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author. (B.E.B.); (P.S.S.)
| | - Philip S. Stevens
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
- Corresponding author. (B.E.B.); (P.S.S.)
| |
Collapse
|
7
|
Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AMG, Di Gioacchino M, Petrarca C. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO 2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). NANOMATERIALS 2021; 11:nano11020270. [PMID: 33494245 PMCID: PMC7909844 DOI: 10.3390/nano11020270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.
Collapse
Affiliation(s)
- Luca Di Giampaolo
- Specialization School of Occupational Medicine, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Gloria Zaccariello
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Giulia Vecchiotti
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Francesca Caposano
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Enrico Sabbioni
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Qiao Niu
- Occupational Health Department, Public Health School, Shanxi Medical University, Taiyuan 030000, China;
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
| | - Mario Di Gioacchino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11, 66010 Torrevecchia Teatina CH, Italy
| | - Claudia Petrarca
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Correspondence: ; Tel.: +39-087-154-1290
| |
Collapse
|
8
|
Zimmerman A, Petters MD, Meskhidze N. Observations of new particle formation, modal growth rates, and direct emissions of sub-10 nm particles in an urban environment. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 242:117835. [PMID: 32834729 PMCID: PMC7411388 DOI: 10.1016/j.atmosenv.2020.117835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/02/2023]
Abstract
Ultrafine particles with diameters less than 100 nm suspended in the air are a topic of interest in air quality and climate sciences. Sub-10 nm particles are of additional interest due to their health effects and contribution to particle growth processes. Ambient measurements were carried out at North Carolina State University in Raleigh, NC between April to June 2019 and November 2019 to May 2020 to investigate the temporal variability of size distribution and number concentration of ultrafine particles. A mobile lab was deployed between March and May 2020 to characterize the spatial distribution of sub-10 nm particle number concentration. New particle formation and growth events were observed regularly. Also observed were direct emissions of sub-10 nm particles. Analysis against meteorological variables, gas-phase species, and particle concentrations show that the sub-10nm particles dominated number concentration during periods of low planetary boundary layer height, low solar radiation, and northeast winds. The spatial patterns observed during mobile deployments suggest that multiple temporally stable and spatially confined point sources of sub-10 nm particles are present within the city. These sources likely include the campus utility plants and the Raleigh-Durham International Airport. Additionally, the timing of data collection allowed for investigation of variations in the urban aerosol number size distribution due to reduced economic activity during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alyssa Zimmerman
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - Markus D Petters
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicholas Meskhidze
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Abstract
The world energy production trumped by the exhaustive utilization of fossil fuels has highlighted the importance of searching for an alternative energy source that exhibits great potential. Ongoing efforts are being implemented to resolve the challenges regarding the preliminary processes before conversion to bioenergy such as pretreatment, enzymatic hydrolysis and cultivation of biomass. Nanotechnology has the ability to overcome the challenges associated with these biomass sources through their distinctive active sites for various reactions and processes. In this review, the potential of nanotechnology incorporated into these biomasses as an aid or addictive to enhance the efficiency of bioenergy generation has been reviewed. The fundamentals of nanomaterials along with their various bioenergy applications were discussed in-depth. Moreover, the optimization and enhancement of bioenergy production from lignocellulose, microalgae and wastewater using nanomaterials are comprehensively evaluated. The distinctive features of these nanomaterials contributing to better performance of biofuels, biodiesel, enzymes and microbial fuel cells are also critically reviewed. Subsequently, future trends and research needs are highlighted based on the current literature.
Collapse
|
11
|
Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part Fibre Toxicol 2019; 16:4. [PMID: 30621739 PMCID: PMC6504167 DOI: 10.1186/s12989-018-0284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| | - Ian Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| |
Collapse
|