1
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
2
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, Barakat K, El-Kadi AOS. Modulation of aryl hydrocarbon receptor activity by tyrosine kinase inhibitors (ponatinib and tofacitinib). Arch Biochem Biophys 2024; 759:110088. [PMID: 38992456 DOI: 10.1016/j.abb.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, Dyck JRB, Barakat K, El-Kadi AOS. Identification of aryl hydrocarbon receptor allosteric antagonists from clinically approved drugs. Drug Dev Res 2024; 85:e22232. [PMID: 38992915 DOI: 10.1002/ddr.22232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, Barakat K, El-Kadi AOS. Identifying novel aryl hydrocarbon receptor (AhR) modulators from clinically approved drugs: In silico screening and In vitro validation. Arch Biochem Biophys 2024; 754:109958. [PMID: 38499054 DOI: 10.1016/j.abb.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic trioxide (ATO) up-regulates cytochrome P450 1A (CYP1A) enzymes in murine hepatoma Hepa-1c1c7 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104214. [PMID: 37423394 DOI: 10.1016/j.etap.2023.104214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Arsenic trioxide (ATO) is a highly toxic arsenical which has been successfully exploited for treating acute promyelocytic leukemia (APL). Unfortunately, its therapeutic efficacy is accompanied by serious toxicities with undeciphered mechanisms. Cytochrome P450 1A (CYP1A) enzymes undergo modulation by arsenicals, with ensuing critical consequences regarding drug clearance or procarcinogen activation. Here, we investigated the potential of ATO to alter basal and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1/1A2 expressions. Mouse-derived hepatoma Hepa-1c1c7 cells were exposed to 0.63, 1.25, and 2.5μM ATO with or without 1nM TCDD. ATO increased TCDD-induced CYP1A1/1A2 mRNA, protein, and activity. Constitutively, ATO induced Cyp1a1/1a2 transcripts and CYP1A2 protein. ATO increased AHR nuclear accumulation and subsequently increased XRE-luciferase reporter activity. ATO enhanced CYP1A1 mRNA and protein stabilities. In conclusion, ATO up-regulates CYP1A in Hepa-1c1c7 cells transcriptionally, post-transcriptionally, and post-translationally. Therefore, ATO can be implicated in clearance-related interactions with CYP1A1/1A2 substrates, or in excessive activation of environmental procarcinogens.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Modulation of cytochrome P450 1A (CYP1A) enzymes by monomethylmonothioarsonic acid (MMMTA V) in vivo and in vitro. Chem Biol Interact 2023; 376:110447. [PMID: 36893905 DOI: 10.1016/j.cbi.2023.110447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Inorganic arsenic (iAs) is a natural toxicant which, upon entering the biosphere, undergoes extensive biotransformation and becomes a portal for generating various organic intermediates/products. The chemical diversity of iAs-derived organoarsenicals (oAs) is accompanied by varying degree of toxicity that can be held responsible, at least partly, for the overall health outcome of the originally encountered parent inorganic molecule. Such toxicity may originate from arsenicals ability to modulate cytochrome P450 1A (CYP1A) enzymes, whose activity is critical in activating/detoxifying procarcinogens. In this study, we evaluated the effect of monomethylmonothioarsonic acid (MMMTAV) on CYP1A1 and CYP1A2 in absence and presence of their inducer; 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Therefore, C57BL/6 mice were intraperitoneally injected with 12.5 mg/kg MMMTAV, with or without 15 μg/kg TCDD for 6 and 24 h. Moreover, murine Hepa-1c1c7 and human HepG2 cells were treated with MMMTAV (1, 5, and 10 μM), with or without 1 nM TCDD for 6 and 24 h. MMMTAV significantly inhibited TCDD-mediated induction of CYP1A1 mRNA, both in vivo and in vitro. This effect was attributed to decreased transcriptional activation of CYP1A regulatory element. Interestingly, MMMTAV significantly increased TCDD-induced CYP1A1 protein and activity in C57BL/6 mice and Hepa-1c1c7 cells, while both were significantly inhibited by MMMTAV treatment in HepG2 cells. CYP1A2 mRNA, protein and activity induced by TCDD were significantly increased by MMMTAV co-exposure. MMMTAV had no effect on CYP1A1 mRNA stability or protein stability and did not alter their half-lives. At basal level, only CYP1A1 mRNA was significantly decreased in MMMTAV-treated Hepa-1c1c7 cells. Our findings show that MMMTAV exposure potentiates procarcinogen-induced catalytic activity of both CYP1A1 and CYP1A2 in vivo. This effect entails excessive activation of such procarcinogens upon co-exposure, with potentially negative health-related outcomes.
Collapse
|
7
|
In-depth analysis of the interactions of various aryl hydrocarbon receptor ligands from a computational perspective. J Mol Graph Model 2023; 118:108339. [PMID: 36183684 DOI: 10.1016/j.jmgm.2022.108339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that acts as a machinery that controls the expression of many genes, including cytochrome P450 CYP1A1, CYP1A2 and CYP1B1. It plays a principal role in numerous biological and toxicological functions, making it a promising target for developing therapeutic agents. Several novel small molecules targeting the AhR signaling pathway are currently under investigation as antitumor agents. Some have already advanced into clinical trials in patients with various tumors. Activation of AhR by diverse chemicals either endogenous or exogenous is initiated by the binding of these ligands to the PAS-B domain, which modulates AhR functions. There is, however, limited information about how various ligands interact with the PAS-B domain for activating or inhibiting the AhR. To better understand the mode of action of AhR agonists/antagonists. The current work proposes a combination of several computational tools to build dynamical models for the PAS-B domain bound to different ligands in mouse and human. Our findings reveal the essential roles of specific PAS-B residues (e.g., S365, V381& Q383), which mediate the AhR ligand-binding process. Our results also explain how these residues regulate the promiscuity of AhR in accommodating various chemicals in its binding PAS-B ligand-binding pocket.
Collapse
|
8
|
Camacho-Moll ME, Sampayo-Reyes A, Castorena-Torres F, Lozano-Garza G, Alarcón-Galván G, Hernández A, Marcos R, Alcocer-González JM, Tamez-Guerra R, Bermúdez de León M. Selenite Downregulates STAT3 Expression and Provokes Lymphocytosis in the Liver of Chronically Exposed Syrian Golden Hamsters. Molecules 2021; 26:molecules26185614. [PMID: 34577085 PMCID: PMC8465886 DOI: 10.3390/molecules26185614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/01/2022] Open
Abstract
Arsenic is considered a worldwide pollutant that can be present in drinking water. Arsenic exposure is associated with various diseases, including cancer. Antioxidants as selenite and α-tocopherol-succinate have been shown to modulate arsenic toxic effects. Since changes in STAT3 and PSMD10 gene expression have been associated with carcinogenesis, the aim of this study was to evaluate the effect of arsenic exposure and co-treatments with selenite or α-tocopherol-succinate on the expression of these genes, in the livers of chronically exposed Syrian golden hamsters. Animals were divided into six groups: (i) control, (ii) chronically treated with 100 ppm arsenic, (iii) treated with 6 ppm α-tocopherol-succinate (α-TOS), (iv) treated with 8.5 ppm selenite, (v) treated with arsenic + α-TOS, and (vi) treated with arsenic + selenite. Urine samples and livers were collected after 20 weeks of continuous exposure. The urine samples were analyzed for arsenic species by atomic absorption spectrophotometry, and real-time RT-qPCR analysis was performed for gene expression evaluation. A reduction in STAT3 expression was observed in the selenite-treated group. No differences in PSMD10 expression were found among groups. Histopathological analysis revealed hepatic lymphocytosis in selenite-treated animals. As a conclusion, long-term exposure to arsenic does not significantly alter the expression of STAT3 and PSMD10 oncogenes in the livers of hamsters; however, selenite down-regulates STAT3 expression and provokes lymphocytosis.
Collapse
Affiliation(s)
- María Elena Camacho-Moll
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Adriana Sampayo-Reyes
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | | | - Gerardo Lozano-Garza
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
| | - Gabriela Alarcón-Galván
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Juan Manuel Alcocer-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Mario Bermúdez de León
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
- Correspondence: ; Tel.: +52-81-8190-4035
| |
Collapse
|
9
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 PMCID: PMC8728880 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
11
|
Che X, Dai W. Negative regulation of aryl hydrocarbon receptor by its lysine mutations and exposure to nickel. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Qiu L, Li Q, Huang J, Wu Q, Tu K, Wu Y, Zhang X, Qian J, Zhang R, Li G, Sun M, Si L. In vitro effect of mPEG 2k-PCL x micelles on rat liver cytochrome P450 enzymes. Int J Pharm 2018; 552:99-110. [PMID: 30253212 DOI: 10.1016/j.ijpharm.2018.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The present study was aimed to evaluate the effects of amphiphilic copolymer micelles on six major hepatic cytochrome P450 (CYP) isoforms. A series of mPEG2k-PCLx polymeric micelles (mPEG2k-PCL2k, mPEG2k-PCL3.5k, mPEG2k-PCL5k and mPEG2k-PCL10k) ranging from 20 to 100 nm were prepared to investigate the inhibitory or inductive activities by in vitro incubations of rat liver microsomes and primary rat hepatocytes. Inhibition of these polymeric micelles on CYP1A2, CYP2B1, CYP2C6, CYP2C11, CYP2D2 and CYP3A1/2 isoenzymes were observed above their critical micelle concentrations (>10 μg·mL-1) and in a concentration-dependent manner. The mPEG2k-PCL2k micelles showed the strongest inhibition of CYP1A2, followed by CYP2C11. The micelles with lower molecular weight PCL segment exhibited more potent inhibitory potential. Induction on CYP1A2, CYP2B1 and CYP3A1/2 activity (2.1-7.2-fold, 1.5-2.4-fold and 1.3-3.0-fold, respectively) were detected at all tested concentrations (0.1-1000 μg·mL-1 or 0.1-100 μg·mL-1). Accordingly, most of the mRNA levels were upregulated. As demonstrated in ex vivo fluorescence imaging results, the mPEG2k-PCLx micelles mainly accumulated in the liver after intravenous administration. In conclusion, mPEG2k-PCLx micelles can interfere with the normal metabolic function of CYP450s in vitro, indicating polymeric micelles as promising drug nano-carriers might cause micelle-drug interaction and the in vivo interaction deserves further investigation.
Collapse
Affiliation(s)
- Lihui Qiu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Department of Pharmacy, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Qian Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Qi Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Kun Tu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Ya Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Xin Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Junyi Qian
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Ran Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Minghui Sun
- Department of Pharmacy, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China.
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
13
|
Fernandez-Abascal J, Ripullone M, Valeri A, Leone C, Valoti M. β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP⁺ Toxicity in Human Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2018; 19:ijms19113369. [PMID: 30373287 PMCID: PMC6274691 DOI: 10.3390/ijms19113369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 (CYP) isozymes vary their expression depending on the brain area, the cell type, and the presence of drugs. Some isoforms are involved in detoxification and/or toxic activation of xenobiotics in central nervous system. However, their role in brain metabolism and neurodegeneration is still a subject of debate. We have studied the inducibility of CYP isozymes in human neuroblastoma SH-SY5Y cells, treated with β-naphtoflavone (β-NF) or ethanol (EtOH) as inducers, by qRT-PCR, Western blot (WB), and metabolic activity assays. Immunohistochemistry was used to localize the isoforms in mitochondria and/or endoplasmic reticulum (ER). Tetrazolium (MTT) assay was performed to study the role of CYPs during methylphenyl pyridine (MPP+) exposure. EtOH increased mRNA and protein levels of CYP2D6 by 73% and 60% respectively. Both β-NF and EtOH increased CYP2E1 mRNA (4- and 1.4-fold, respectively) and protein levels (64% both). The 7-ethoxycoumarin O-deethylation and dextromethorphan O-demethylation was greater in treatment samples than in controls. Furthermore, both treatments increased by 22% and 18%, respectively, the cell viability in MPP+-treated cells. Finally, CYP2D6 localized at mitochondria and ER. These data indicate that CYP is inducible in SH-SY5Y cells and underline this in vitro system for studying the role of CYPs in neurodegeneration.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Mariantonia Ripullone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Aurora Valeri
- Molecular Horizon srl, Via Montelino 32, Bettona, 06084 Perugia, Italy.
| | - Cosima Leone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
14
|
Ahmad S, Akhter F, Shahab U, Rafi Z, Khan MS, Nabi R, Khan MS, Ahmad K, Ashraf JM. Do all roads lead to the Rome? The glycation perspective! Semin Cancer Biol 2017; 49:9-19. [PMID: 29113952 DOI: 10.1016/j.semcancer.2017.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), β-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.
Collapse
Affiliation(s)
- Saheem Ahmad
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India.
| | - Firoz Akhter
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Pharmacology and Toxicology, Higuchi Biosciences Center, University of Kansas, KS, USA.
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Rabia Nabi
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of South Korea
| | | |
Collapse
|