1
|
Mohamed DS, Shaban NS, Labib MM, Shehata O. Sesame oil ameliorates valproic acid-induced hepatotoxicity in mice: integrated in vivo-in silico study. J Biomol Struct Dyn 2023; 41:8485-8505. [PMID: 36271831 DOI: 10.1080/07391102.2022.2135593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Sesame oil (SO) has been exhibited to have anti-inflammatory and antioxidant influences. The goal of this experiment was to look into SO's hepato-protective properties and underlying processes in valproic acid (VPA)-induced hepatotoxicity. Molecular docking was carried out to clarify the functional and structural underlying mechanism of SO ameliorative effect. Mice were given 8 mL/kg/day of SO (orally) and 100 mg/kg/day of VPA (i.p.) for 21 days. The results revealed that VPA caused a considerable increase in hepatic malondialdehyde levels while decreasing the activity of glutathione peroxidase (GPx) enzyme. There was also a significant rise in serum levels of interleukins 1β and 6 (IL-1β and IL-6) and a significant decrease in hepatic (PXR) gene expression level. SO co-administration with VPA significantly normalized the antioxidant and anti-inflammatory status and upregulated the gene expression level of PXR. In silico docking analysis results confirmed these results. This study concluded that supplementation of SO attenuated VPA-induced oxidative stress and inflammation. Hence, it was recommended as a dietary supplement for protection against VPA-induced hepatotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Doaa Shaaban Mohamed
- Department of Biochemistry and Chemistry of nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Nema S Shaban
- Department of pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai M Labib
- Department of bioinformatics and computer networks, Agriculture Genetic Engineering Research Institute (AGERI), Cairo, Egypt
| | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Zhang T, Rao Q, Dai M, Wu ZE, Zhao Q, Li F. Tripterygium wilfordii protects against an animal model of autoimmune hepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116365. [PMID: 36907478 DOI: 10.1016/j.jep.2023.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii tablets (TWT) is widely used to treat autoimmune diseases such as rheumatoid arthritis. Celastrol, one main active ingredient in TWT, has been shown to produce a variety of beneficial effects, including anti-inflammatory, anti-obesity, anti-cancer, and immunomodulatory. However, whether TWT could protect against Concanavalin A (Con A)-induced hepatitis remains unclear. THE AIM OF THE STUDY This study aims to investigate the protective effect of TWT against Con A-induced hepatitis and elucidate the underlying mechanism. MATERIALS AND METHODS Metabolomic analysis, pathological analysis, biochemical analysis, qPCR and Western blot analysis and the Pxr-null mice were used in this study. RESULTS The results indicated that TWT and its active ingredient celastrol could protect against Con A-induced acute hepatitis. Plasma metabolomics analysis revealed that metabolic perturbations related to bile acid and fatty acid metabolism induced by Con A were reversed by celastrol. The level of itaconate in the liver was increased by celastrol and speculated as an active endogenous compound mediating the protective effect of celastrol. Administration of 4-octanyl itaconate (4-OI) as a cell-permeable itaconate mimicker was found to attenuate Con A-induced liver injury through activation of the pregnane X receptor (PXR) and enhancement of the transcription factor EB (TFEB)-mediated autophagy. CONCLUSIONS Celastrol increased itaconate and 4-OI promoted activation of TFEB-mediated lysosomal autophagy to protect against Con A-induced liver injury in a PXR-dependent manner. Our study reported a protective effect of celastrol against Con A-induced AIH via an increased production of itaconate and upregulation of TFEB. The results highlighted that PXR and TFEB-mediated lysosomal autophagic pathway may offer promising therapeutic target for the treatment of autoimmune hepatitis.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianru Rao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Manyun Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhanxuan E Wu
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kodama S, Matsumoto S, Takamura Y, Fujihara M, Watanabe M, Ono A, Kakuta H. Structural characterization of 1,3-bis-tert-butyl monocyclic benzene derivatives with agonistic activity towards retinoid X receptor alpha. Toxicol Lett 2022; 373:76-83. [PMID: 36368620 DOI: 10.1016/j.toxlet.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Retinoid X receptor alpha (RXRα) plays pivotal roles in multiple biological processes, but limited information is available on the structural features of chemicals that show low affinity for RXRα, but nevertheless cause significant activation, though these may represent a human health hazard. We recently discovered that several industrial chemicals having 1,3-bis-tert-butylbenzene as a common chemical structure exhibit agonistic activity towards rat RXRα. In this study, we explored the structure-activity relationship of 1,3-bis-tert-butyl monocyclic benzene derivatives for RXRα activation by means of in vitro and in silico analyses. The results indicate that a bulky substituent at the 5-position is favorable for agonistic activity towards human RXRα. Since 1,3-bis-tert-butyl monocyclic benzene derivatives with bulky hydrophobic moieties differ structurally from known RXRα ligands such as 9-cis-retinoic acid and bexarotene, our findings may be helpful for the development of structural alerts in the safety evaluation of industrial chemicals for RXRα-based toxicity to living organisms.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Shuzo Matsumoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Yoshinari K, Shizu R. Distinct Roles of the Sister Nuclear Receptors PXR and CAR in Liver Cancer Development. Drug Metab Dispos 2022; 50:1019-1026. [PMID: 35184041 DOI: 10.1124/dmd.121.000481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/08/2022] [Indexed: 02/13/2025] Open
Abstract
Pregnane X receptor (PXR) and constitutively active receptor/constitutive androstane receptor (CAR) are xenobiotic-responsible transcription factors belonging to the same nuclear receptor gene subfamily and highly expressed in the liver. These receptors are activated by a variety of chemicals and play pivotal roles in many liver functions, including xenobiotic metabolism and disposition. Phenobarbital, an enzyme inducer and liver tumor promoter, activates both rodent and human CAR but causes liver tumors only in rodents. Although the precise mechanism for phenobarbital/CAR-mediated liver tumor formation remains to be established, intracellular pathways, including the Hippo pathway/Yes-associated protein-TEA-domain family members system and β-catenin signaling, seem to be involved. In contrast to CAR, previous findings by our group suggest that PXR activation does not promote hepatocyte proliferation but it enhances the proliferation induced by various stimuli. Moreover, and surprisingly, PXR may have antitumor effects in both rodents and humans by targeting inflammatory cytokine signals, angiogenesis and epithelial-mesenchymal transition. In this review, we summarize the current knowledge on the associations of PXR and CAR with hepatocyte proliferation and liver tumorigenesis and their molecular mechanisms and species differences. SIGNIFICANCE STATEMENT: Pregnane X receptor and constitutively active receptor/constitutive androstane receptor have very similar functions in the gene regulation associated with xenobiotic disposition, as suggested by their identification as xenosensors for enzyme induction. In contrast, recent reports clearly suggest that these receptors play distinct roles in the control of hepatocyte proliferation and liver cancer development. Understanding these differences at the molecular level may help us evaluate the human safety of chemical compounds and develop novel drugs targeting liver cancers.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
5
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
6
|
Wu S, Lu H, Wang W, Song L, Liu M, Cao Y, Qi X, Sun J, Gong L. Prevention of D-GalN/LPS-induced ALI by 18β-glycyrrhetinic acid through PXR-mediated inhibition of autophagy degradation. Cell Death Dis 2021; 12:480. [PMID: 33986260 PMCID: PMC8119493 DOI: 10.1038/s41419-021-03768-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Acute liver injury (ALI) has multiple causes and results in liver dysfunction. Severe or persistent liver injury eventually leads to liver failure and even death. Pregnane X receptor (PXR)-null mice present more severe liver damage and lower rates of autophagy. 18β-glycyrrhetinic acid (GA) has been proposed as a promising hepatoprotective agent. We hypothesized that GA significantly alleivates D-GalN/LPS-induced ALI, which involved in PXR-mediated autophagy and lysosome biogenesis. We found that GA can significantly decrease hepatocyte apoptosis and increase the hepatic autophagy marker LC3-B. Ad-mCherry-GFP-LC3 tandem fluorescence, RNA-seq and real-time PCR indicated that GA may stabilize autophagosomes and lysosomes and inhibit autophagosome-lysosome fusion. Simultaneously, GA markedly activates PXR, even reversing the D-GalN/LPS-induced reduction of PXR and its downstream genes. In contrast, GA has a weak protective effect in pharmacological inhibition of PXR and PXR-null mice, which significantly affected apoptosis- and autophagy-related genes. PXR knockout interferes with the stability of autophagosomes and lysosomes, preventing GA reducing the expression of lysosomal genes such as Cst B and TPP1, and suppressing autophagy flow. Therefore, we believe that GA increases autophagy by inhibiting autophagosome-lysosome fusion and blocked autophagy flux via activation of PXR. In conclusion, our results show that GA activates PXR to regulate autophagy and lysosome biogenesis, represented by inhibiting autophagosome-lysosome fusion and stabilization of lysosome. These results identify a new mechanism by which GA-dependent PXR activation reduces D-GalN/LPS-induced acute liver injury.
Collapse
Affiliation(s)
- Shouyan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Henglei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Pharmacology, Fudan University, Shanghai, 201203, China
| | - Luyao Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Branch, the Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
7
|
Okamura M, Shizu R, Abe T, Kodama S, Hosaka T, Sasaki T, Yoshinari K. PXR Functionally Interacts with NF-κB and AP-1 to Downregulate the Inflammation-Induced Expression of Chemokine CXCL2 in Mice. Cells 2020; 9:cells9102296. [PMID: 33076328 PMCID: PMC7602528 DOI: 10.3390/cells9102296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a liver-enriched xenobiotic-responsive transcription factor. Although recent studies suggest that PXR shows anti-inflammatory effects by suppressing nuclear factor kappa B (NF-κB), the detailed mechanism remains unclear. In this study, we aimed to elucidate this mechanism. Mice were treated intraperitoneally with the PXR agonist pregnenolone 16α-carbonitrile (PCN) and/or carbon tetrachloride (CCl4). Liver injury was evaluated, and hepatic mRNA levels were determined via quantitative reverse transcription polymerase chain reaction. Reporter assays with wild-type and mutated mouse Cxcl2 promoter-containing reporter plasmids were conducted in 293T cells. Results showed that the hepatic expression of inflammation-related genes was upregulated in CCl4-treated mice, and PCN treatment repressed the induced expression of chemokine-encoding Ccl2 and Cxcl2 among the genes investigated. Consistently, PCN treatment suppressed the increased plasma transaminase activity and neutrophil infiltration in the liver. In reporter assays, tumor necrosis factor-α-induced Cxcl2 expression was suppressed by PXR. Although an NF-κB inhibitor or the mutation of an NF-κB-binding motif partly reduced PXR-dependent suppression, the mutation of both NF-κB and activator protein 1 (AP-1) sites abolished it. Consistently, AP-1-dependent gene transcription was suppressed by PXR with a construct containing AP-1 binding motifs. In conclusion, the present results suggest that PXR exerts anti-inflammatory effects by suppressing both NF-κB- and AP-1-dependent chemokine expression in mouse liver.
Collapse
Affiliation(s)
- Maya Okamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taiki Abe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
8
|
Yoshinari K. Role of Nuclear Receptors PXR and CAR in Xenobiotic-Induced Hepatocyte Proliferation and Chemical Carcinogenesis. Biol Pharm Bull 2020; 42:1243-1252. [PMID: 31366862 DOI: 10.1248/bpb.b19-00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear receptors pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR) are xenobiotic-responsible transcriptional factors that belong to the same subfamily and are expressed abundantly in the liver. They play crucial roles in various liver functions including xenobiotic disposition and energy metabolism. CAR is also involved in xenobiotic-induced hepatocyte proliferation and hepatocarcinogenesis in rodents. However, there are some open questions on the association between chemical carcinogenesis and these nuclear receptors. These include the molecular mechanism for CAR-mediated hepatocyte proliferation and hepatocarcinogenesis. Another important question is whether PXR is associated with hepatocyte proliferation. We have recently reported a novel and unique function of PXR associated with murine hepatocyte proliferation: PXR activation alone does not induce hepatocyte proliferation but accelerates hepatocyte proliferation induced by various types of stimuli including CAR- or peroxisome proliferator-activated receptor alpha activating compounds, liver injury, and growth factors. We have also reported a role of yes-associated protein (YAP), a transcriptional cofactor controlling organ size and cell growth under the Hippo pathway, in CAR-mediated hepatocyte proliferation in mice. In this review, I will introduce our recent results as well as related studies on the roles of PXR and CAR in xenobiotic-induced hepatocyte proliferation and their molecular mechanisms.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|