1
|
Füzi B, Malik-Sheriff RS, Manners EJ, Hermjakob H, Ecker GF. KNIME workflow for retrieving causal drug and protein interactions, building networks, and performing topological enrichment analysis demonstrated by a DILI case study. J Cheminform 2022; 14:37. [PMID: 35692045 PMCID: PMC9188852 DOI: 10.1186/s13321-022-00615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/21/2022] [Indexed: 11/28/2022] Open
Abstract
As an alternative to one drug-one target approaches, systems biology methods can provide a deeper insight into the holistic effects of drugs. Network-based approaches are tools of systems biology, that can represent valuable methods for visualizing and analysing drug-protein and protein-protein interactions. In this study, a KNIME workflow is presented which connects drugs to causal target proteins and target proteins to their causal protein interactors. With the collected data, networks can be constructed for visualizing and interpreting the connections. The last part of the workflow provides a topological enrichment test for identifying relevant pathways and processes connected to the submitted data. The workflow is based on openly available databases and their web services. As a case study, compounds of DILIRank were analysed. DILIRank is the benchmark dataset for Drug-Induced Liver Injury by the FDA, where compounds are categorized by their likeliness of causing DILI. The study includes the drugs that are most likely to cause DILI ("mostDILI") and the ones that are not likely to cause DILI ("noDILI"). After selecting the compounds of interest, down- and upregulated proteins connected to the mostDILI group were identified; furthermore, a liver-specific subset of those was created. The downregulated sub-list had considerably more entries, therefore, network and causal interactome were constructed and topological pathway enrichment analysis was performed with this list. The workflow identified proteins such as Prostaglandin G7H synthase 1 and UDP-glucuronosyltransferase 1A9 as key participants in the potential toxic events disclosing the possible mode of action. The topological network analysis resulted in pathways such as recycling of bile acids and salts and glucuronidation, indicating their involvement in DILI. The KNIME pipeline was built to support target and network-based approaches to analyse any sets of drug data and identify their target proteins, mode of actions and processes they are involved in. The fragments of the pipeline can be used separately or can be combined as required.
Collapse
Affiliation(s)
- Barbara Füzi
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Rahuman S Malik-Sheriff
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Tod N, Stalder G, Rauch H, Boehmdorfer S, Haw A, Gerritsmann H, Painer J, Meyer L. Investigation of cardiorespiratory effects of the selective 5-HT4 agonist BIMU-8 in etorphine-immobilised goats (Capra aegagrus hircus) in a randomized, blinded and controlled trial. Vet Rec 2021; 189:e76. [PMID: 33908044 DOI: 10.1002/vetr.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 12/01/2020] [Accepted: 12/24/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Opioid-induced respiratory compromise remains a significant challenge in etorphine-immobilised wildlife. Serotonergic agonists offer a potential avenue for preventing or treating opioid-induced respiratory compromise. We therefore aimed to determine whether the selective 5-hydroxytryptamine receptor 4 (5-HT4) agonist, BIMU-8, reverses opioid-induced respiratory compromise in etorphine-immobilised goats. METHODS Seven healthy adult goats were immobilised with etorphine, then treated with BIMU-8 or sterile water 5 minutes later in a randomised, prospective cross-over study. Cardiorespiratory variables were measured at 1-minute intervals from 4 minutes before etorphine to 15 minutes after its administration. Arterial blood gas analyses were also performed before and after etorphine administration and the respective treatments. RESULTS Intravenous injection of BIMU-8 attenuated etorphine-induced respiratory compromise, as indicated by improvements, compared to baseline and between treatments, in respiratory rate (fR ), peripheral arterial blood oxygen saturation (SpO2 ), partial pressure of arterial oxygen (PaO2 ) and the alveolar-arterial oxygen partial pressure gradient (P(A-a)O2 ). BIMU-8 caused an increase in heart rate and a temporary decrease in arterial blood pressure. Mild movements and slight muscle spasm occurred but BIMU-8 did not reverse immobilisation. CONCLUSION Our results indicate that BIMU-8 may be a potential drug candidate for the treatment, or prevention, of etorphine-induced respiratory compromise in immobilised ungulates.
Collapse
Affiliation(s)
- Nadine Tod
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hanna Rauch
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Boehmdorfer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna Haw
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hanno Gerritsmann
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Leith Meyer
- Centre for Veterinary Wildlife Studies and Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Iqbal SM, Aufy M, Shabbir W, Lemmens-Gruber R. Identification of phosphorylation sites and binding pockets for modulation of Na V 1.5 channel by Fyn tyrosine kinase. FEBS J 2018; 285:2520-2530. [PMID: 29734505 DOI: 10.1111/febs.14496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022]
Abstract
Cardiac sodium channel NaV 1.5 is the predominant form of sodium channels in cardiomyocytes, which exists as a macromolecular complex and interacts with multiple protein partners. Fyn kinase is one of the interacting proteins which colocalize, phosphorylate and modulate the NaV 1.5 channel. To elaborate this interaction we created expression vectors for the N-terminal, intracellular loop, and C-terminal regions of the NaV 1.5 channel, to express in HEK-293 cells. By co-immunoprecipitation and anti-phosphotyrosine blotting, we identified proline-rich binding sites for Fyn kinase in the N-terminal, IC-loopi-ii and C-terminal. After binding, Fyn kinase phosphorylates tyrosine residues present in the N- and C-terminal, which produce a depolarizing shift of 7 mV in fast inactivation. The functional relevance of these binding and phosphorylation sites was further underpinned by creating full length mutants masking these sites sequentially. An activation and inactivation curves were recorded with or without co-expressed Fyn kinase which indicates that phosphorylation of tyrosine residues at positions 68, 87, 112 in the N-terminal and at positions 1811 and 1889 in the C-terminal creates a depolarizing shift in fast inactivation of NaV 1.5 channel.
Collapse
Affiliation(s)
- Shahid Muhammad Iqbal
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,Drugs Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Baburin I, Varkevisser R, Schramm A, Saxena P, Beyl S, Szkokan P, Linder T, Stary-Weinzinger A, van der Heyden MAG, Houtman M, Takanari H, Jonsson M, Beekman JHD, Hamburger M, Vos MA, Hering S. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are I Kr blockers with proarrhythmic effects in vitro and in vivo. Pharmacol Res 2018; 131:150-163. [PMID: 29477480 DOI: 10.1016/j.phrs.2018.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 11/26/2022]
Abstract
Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2±26.3nM and 144.8±35.1nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10μM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12±10% (0.05mg/kg/5min) and 60±26% (0.5mg/kg/5min), and induced Torsade de Pointes arrhythmias (TdP, 0.5mg/kg/5min) in 2 rabbits. In cAVB dogs, 0.33mg/kg/5min DHE increased QT duration by 48±10% (P<0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3μM DHE and hortiamine induced EADs. hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.
Collapse
Affiliation(s)
- Igor Baburin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Rosanne Varkevisser
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Anja Schramm
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Priyanka Saxena
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Stanislav Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Phillip Szkokan
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; ChanPharm GmbH, Leidesdorfgasse 14, Top 6, 1190 Vienna, Austria
| | - Tobias Linder
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Marcel A G van der Heyden
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marien Houtman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Hiroki Takanari
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Malin Jonsson
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Jet H D Beekman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|