1
|
Wang S, Liu Z, Li R, Wang L, Wu Y, Zhang W, Yu Y. Acetaldehyde dehydrogenase 2 attenuates lipopolysaccharide -induced endothelial barrier damage by inhibiting mitochondrial fission in sepsis-associated encephalopathy. Eur J Pharmacol 2025; 997:177468. [PMID: 40054720 DOI: 10.1016/j.ejphar.2025.177468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis, and acetaldehyde dehydrogenase 2 (ALDH2) has been identified as a protective factor for endothelial cells against oxidative stress. In this study, we aimed to investigate the therapeutic potential of ALDH2 and its impact on mitochondrial dynamics using both mouse and brain microvascular endothelial cells (BMECs) injury models induced by lipopolysaccharide (LPS). Our findings demonstrated that ALDH2 attenuated LPS-induced brain endothelial barrier damage, as evidenced by reduced brain water content and Evans blue dye in mice, decreased transepithelial electrical resistance (TEER), and increased fluorescein isothiocyanate-dextran (FITC-Dextran) leakage in bEnd.3 cells. Furthermore, ALDH2 reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD) and catalase (CAT). ALDH2 also decreased 4-HNE content and restored mitochondrial membrane potential and ATP production, promoting a balanced mitochondrial fission and fusion. Notably, our use of the mitochondrial fission inhibitor Mdivi-1 confirmed that ALDH2 alleviated mitochondrial damage by inhibiting dynamin-related protein 1 (Drp1). Consequently, our findings suggest that the effects of ALDH2 on LPS-induced blood-brain barrier (BBB) damage and oxidative stress may alleviate SAE by inhibiting Drp1 to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Zhongyi Liu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Rong Li
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Liya Wang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Yue Wu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical University, Bengbu 233000, China
| | - Weiping Zhang
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| | - Ying Yu
- Department of Physiology, School of Basic Medicine, Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
2
|
Xiao Z, Zhang X, Li G, Sun L, Li J, Jing Z, Qiu Q, He G, Gao C, Sun X. Tibial fracture surgery in elderly mice caused postoperative neurocognitive disorder via SOX2OT lncRNA in the hippocampus. Mol Brain 2023; 16:36. [PMID: 37098623 PMCID: PMC10131420 DOI: 10.1186/s13041-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Increasing evidence indicates the major role of mitochondrial function in neurodegenerative disease. However, it is unclear whether mitochondrial dynamics directly affect postoperative neurocognitive disorder (PND). This study aimed to analyze the underlying mechanisms of mitochondrial dynamics in the pathogenesis of PND. Tibial fracture surgery was performed in elderly mice to generate a PND model in vivo. Cognitive behavior was evaluated 3 days post-surgery using novel object recognition and fear conditioning. A gradual increase in the SOX2OT mRNA level and decrease in the SOX2 mRNA level were noted, with impaired cognitive function, in the mice 3 days after tibial surgery compared with mice in the sham group. To evaluate the role of SOX2OT in PND, SOX2OT knockdown was performed in vitro and in vivo using lentivirus transfection in HT22 cells and via brain stereotactic injection of lentivirus, respectively. SOX2OT knockdown reduced apoptosis, inhibited oxidative stress, suppressed mitochondrial hyperdivision, attenuated surgery-induced cognitive dysfunction, and promoted downstream SOX2 expression in elderly mice. Furthermore, Sox2 alleviated mitochondrial functional damage by inhibiting the transcription of mitochondrial division protein Drp1. Our study findings indicate that SOX2OT knockout alleviates surgery-induced mitochondrial fission and cognitive function defects by upregulating the expression of Sox2 in mice, resulting in the inhibition of drp1 transcription. Therefore, regulation of the SOX2/Drp1 pathway may be a potential mechanism for the treatment of patients with PND.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Anesthesiology, The 986th Air Force Hospital, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiajing Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710032, Shaanxi, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ziwei Jing
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qingya Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guangxiang He
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
4
|
Bourouti KE, Konstantaros C, Gaitanaki C, Aggeli IK. Severe Hyperosmotic Stress Issues an ER Stress-Mediated “Death Sentence” in H9c2 Cells, with p38-MAPK and Autophagy “Coming to the Rescue”. Biomedicines 2022; 10:biomedicines10061421. [PMID: 35740442 PMCID: PMC9219732 DOI: 10.3390/biomedicines10061421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases.
Collapse
|
5
|
Mattar P, Toledo-Valenzuela L, Hernández-Cáceres MP, Peña-Oyarzún D, Morselli E, Perez-Leighton C. Integrating the effects of sucrose intake on the brain and white adipose tissue: Could autophagy be a possible link? Obesity (Silver Spring) 2022; 30:1143-1155. [PMID: 35578809 DOI: 10.1002/oby.23411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Excess dietary sucrose is associated with obesity and metabolic diseases. This relationship is driven by the malfunction of several cell types and tissues critical for the regulation of energy balance, including hypothalamic neurons and white adipose tissue (WAT). However, the mechanisms behind these effects of dietary sucrose are still unclear and might be independent of increased adiposity. Accumulating evidence has indicated that dysregulation of autophagy, a fundamental process for maintenance of cellular homeostasis, alters energy metabolism in hypothalamic neurons and WAT, but whether autophagy could mediate the detrimental effects of dietary sucrose on hypothalamic neurons and WAT that contribute to weight gain is a matter of debate. In this review, we examine the hypothesis that dysregulated autophagy in hypothalamic neurons and WAT is an adiposity-independent effect of sucrose that contributes to increased body weight gain. We propose that excess dietary sucrose leads to autophagy unbalance in hypothalamic neurons and WAT, which increases caloric intake and body weight, favoring the emergence of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua, School of Medicine, Faculty of Medicine, San Felipe Campus, University of Valparaiso, Valparaíso, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Zeng G, Lian C, Li W, An H, Han Y, Fang D, Zheng Q. Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis, oxidative stress, and inflammatory response via enhancing Nrf2/ARE activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1018-1031. [PMID: 34995000 DOI: 10.1002/tox.23461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Family with sequence similarity 129, member B (FAM129B) has been identified as a novel cytoprotective protein that facilitates the survival of detrimentally stimulated cells. However, whether FAM129B is involved in regulating cardiomyocyte survival after myocardial ischemia-reperfusion injury is unknown. The goal of this work was to evaluate the potential role of FAM129B in regulating hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. We demonstrated that exposure to H/R markedly downregulated the expression of FAM129B in cardiomyocytes. Functional experiments revealed that the upregulation of FAM129B improved H/R-exposed cardiomyocyte viability, and ameliorated H/R-induced cardiomyocyte apoptosis, the generation of reactive oxygen species (ROS), and pro-inflammatory cytokine release. The upregulation of FAM129B significantly increased the nuclear expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), and reinforced Nrf2/antioxidant response element (ARE) activation in H/R-exposed cardiomyocytes. Moreover, FAM129B modulates Nrf2/ARE signaling in a Kelchlike ECH-associated protein 1-dependent manner. Notably, the inhibition of Nrf2 significantly blocked FAM129B-overexpression-induced cardioprotective effects in H/R-exposed cardiomyocytes. In summary, the findings of our work demonstrate that the upregulation of FAM129B ameliorates H/R-induced cardiomyocyte injury via enhancing Nrf2/ARE activation. Thus, our study indicates that FAM129B may play a role in myocardial ischemia-reperfusion injury and has the potential to be used as a cardioprotective target.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Cheng Lian
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Wei Li
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Huixian An
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Yang Han
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Dong Fang
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
7
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Wang L, Sun M, Cao Y, Ma L, Shen Y, Velikanova AA, Li X, Sun C, Zhao Y. miR-34a regulates lipid metabolism by targeting SIRT1 in non-alcoholic fatty liver disease with iron overload. Arch Biochem Biophys 2020; 695:108642. [PMID: 33098868 DOI: 10.1016/j.abb.2020.108642] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Micro-ribonucleic acids (miRNAs) have been implicated in the regulation of non-alcoholic fatty liver disease (NAFLD), a leading cause of chronic liver disease worldwide. The mechanisms by which miR-34a influences NAFLD through the Sirtuin 1 (SIRT1)-related pathway were investigated herein. METHODS Male C57BL/6 mice were injected with a miR-34a lentivirus vector inhibitor or control. HepG2 cells were transfected with a miR-34a mimic, inhibitor, SIRT1 small interfering RNA (siRNA), SIRT1 plasmid, and a negative oligonucleotide control to evaluate their role in oleic acid (OA) and excess iron-induced NAFLD. The accumulation of lipids in the mice liver and HepG2 cells was analyzed by triglyceride (TG) detection and hematoxylin and eosin (HE) staining. Additionally, the indexes of oxidative stress related to lipid metabolism were evaluated by western blotting and real-time PCR (qRT-PCR). The levels of intracellular reactive oxygen species (ROS) and mitochondrial membrane potentials were measured by flow cytometry and laser confocal microscopy, respectively. Finally, the dual luciferase reporter assay was conducted to further confirm whether SIRT1 was a direct target of miR-34a. RESULTS Overexpression of miR-34a resulted in increased triglyceride accumulation as well as in decreased mitochondrial membrane potential and SIRT1 levels. Silencing of miR-34a increased SIRT1 expression and alleviated triglyceride accumulation in the presence of OA and iron. Additionally, miR-34a directly inhibited SIRT1 by binding to the 3'-untranslated region, as determined via the luciferase reporter assay. CONCLUSIONS Our results support the existence of a link between the liver cell mitochondria and miR-34a/SIRT1 signaling. Potential endogenous modulators of NAFLD pathogenesis may ultimately provide new tools for therapeutic intervention.
Collapse
Affiliation(s)
- Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Mengyun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yue Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Lingyu Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Arina Alekseevna Velikanova
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China.
| |
Collapse
|
9
|
Protective effects of Clostridium butyricum against oxidative stress induced by food processing and lipid-derived aldehydes in Caco-2 cells. Appl Microbiol Biotechnol 2020; 104:9343-9361. [PMID: 32965561 DOI: 10.1007/s00253-020-10896-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
The human body is almost always facing the oxidative stress caused by foodborne aldehydes such as glyoxal (GO) and methylglyoxal (MGO), 4-hydroxyhexenal (HHE), and 4-hydroxynonenal (HNE). When these aldehydes build up, they can cause a range of harm. However, a probiotic, Clostridium butyricum, can increase nuclear factor erythroid-2 related factor 2 (Nrf2) and may have the potential to relieve oxidative stress. If C. butyricum is indeed resistant to aldehydes, the advantages (accessibility, convenience, and safety) will be of great significance compared with drugs. Unfortunately, whether C. butyricum can play a role in alleviating toxic effects of foodborne aldehydes in the intestine (the first line of defense against food-derived toxin) was unclear. To investigate these, we measured the viability, ROS, autophagy, and inflammatory cytokine expression of Caco-2 which were co-cultured with C. butyricum and stimulated by the four aldehydes via Nrf2 pathway (Staphylococcus aureus and Enterococcus faecium as controls). Then, we explored the link among C. butyricum, NLRP6, and Nrf2 signaling pathways when facing the stimuli. In the present study, we demonstrated that Clostridium butyricum relieved the oxidative stress induced by the aldehydes in Caco-2. Most interestingly, we found a "complementary" relationship between NLRP6 and Nrf2 in C. butyricum treatment under aldehyde stress. Our research not only makes a contribution to the popularization of C. butyricum as a probiotic-rich food instead of medicines but also sheds new light on the application of subsequent microecological formulation of C. butyricum. KEY POINTS: • The adverse effects are caused in a dose-dependent manner by foodborne aldehydes. • Clostridium butyricum can significantly ameliorate oxidative stress. • There is a "complementary" relationship between the NLRP6 and Nrf2 signaling pathways. • Using Clostridium butyricum foods to alleviate oxidative stress shows great prospects.
Collapse
|
10
|
Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells. Aging (Albany NY) 2020; 11:3909-3918. [PMID: 31209184 PMCID: PMC6628993 DOI: 10.18632/aging.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.
Collapse
|
11
|
Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, Reiter RJ, Wang X, Zhou H, Ren J. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther 2020; 5:119. [PMID: 32703954 PMCID: PMC7378833 DOI: 10.1038/s41392-020-0171-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Ample clinical evidence suggests a high incidence of cardiovascular events in Alzheimer's disease (AD), although neither precise etiology nor effective treatment is available. This study was designed to evaluate cardiac function in AD patients and APP/PS1 mutant mice, along with circulating levels of melatonin, mitochondrial aldehyde dehydrogenase (ALDH2) and autophagy. AD patients and APP/PS1 mice displayed cognitive and myocardial deficits, low levels of circulating melatonin, ALDH2 activity, and autophagy, ultrastructural, geometric (cardiac atrophy and interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies, mitochondrial injury, cytosolic mtDNA buildup, apoptosis, and suppressed autophagy and mitophagy. APP/PS1 mutation downregulated cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) levels and TBK1 phosphorylation, while promoting Aβ accumulation. Treatment with melatonin overtly ameliorated unfavorable APP/PS1-induced changes in cardiac geometry and function, apoptosis, mitochondrial integrity, cytosolic mtDNA accumulation (using both immunocytochemistry and qPCR), mitophagy, and cGAS-STING-TBK1 signaling, although these benefits were absent in APP/PS1/ALDH2-/- mice. In vitro evidence indicated that melatonin attenuated APP/PS1-induced suppression of mitophagy and cardiomyocyte function, and the effect was negated by the nonselective melatonin receptor blocker luzindole, inhibitors or RNA interference of cGAS, STING, TBK1, and autophagy. Our data collectively established a correlation among cardiac dysfunction, low levels of melatonin, ALDH2 activity, and autophagy in AD patients, with compelling support in APP/PS1 mice, in which melatonin rescued myopathic changes by promoting cGAS-STING-TBK1 signaling and mitophagy via an ALDH2-dependent mechanism.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi'an, 710032, China
| | - Bruce Culver
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
The association of rs2233679 in the PIN1 gene promoter with the risk of Coronary Artery Disease in Chinese female individuals. J Stroke Cerebrovasc Dis 2020; 29:104935. [PMID: 32689581 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/10/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDS Vascular atherosclerosis leads to various cardiovascular and cerebrovascular diseases. Nitric oxide (NO) promotes vasodilatation and prevents Coronary Artery Disease (CAD). Pin1 suppresses NO production by down-regulating the activity of endothelial nitric oxide synthase (eNOS). Whether the genetic polymorphisms of the PIN1 gene (encoding Pin1) are implicated in CAD deserves investigations in human beings. METHODS A total of 210 CAD patients and control individuals (all females) were enrolled, and their genotypes of rs2233679 (-667C/T, a key SNP in the promoter of PIN1 gene) were sequenced. T-test, chi-square test, odds ratio (OR) and 95% confidence interval (95% CI) were calculated to evaluate Hardy-Weinberg equilibrium, varied genetic distribution and relative CAD risk. RESULTS The differences in age, BMI, triglyceride, total cholesterol, low-density and high density cholesterol between the CAD and control groups were not significant (all P>0.05), and Hardy-Weinberg equilibrium was observed in the two groups (both P>0.05). The frequency of -667T allele in the CAD group was higher than that in the control group. The genotype -667TT elicited a higher hazardous risk of CAD compared to the genotype -667CC (OR=1.85, 95% CI: 0.75-4.53) as well as the genotypes CC+CT (OR=1.97, 95% CI: 0.86-4.49). CONCLUSIONS We firstly show that the allele -667T in the PIN1 promoter may elicit a higher CAD-risk than -667C, and the -667TT genotype of PIN1 may be a new genetic biomarker for increased incidence of CAD. These novel observations put forward a new understanding of the PIN1-CAD genetic relationship in humans, potentially contributing to both cardiovascular and cerebrovascular disorders.
Collapse
|
13
|
Hu L, Ding M, Tang D, Gao E, Li C, Wang K, Qi B, Qiu J, Zhao H, Chang P, Fu F, Li Y. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Am J Cancer Res 2019; 9:3687-3706. [PMID: 31281507 PMCID: PMC6587356 DOI: 10.7150/thno.33684] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. Methods: Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. Conclusion: Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM.
Collapse
|
14
|
Sui C, Liu D, Hu Y, Zhang L. MicroRNA-708-5p affects proliferation and invasion of osteosarcoma cells by targeting URGCP. Exp Ther Med 2019; 17:2235-2241. [PMID: 30783484 PMCID: PMC6364217 DOI: 10.3892/etm.2019.7171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma is an aggressive cancer of the skeletal system which remains a challenge for the current therapeutic strategies due to unclear etiology and molecular mechanisms of pathogenesis. The current study aimed to determine the expression levels, role and molecular mechanism of microRNA-708-5p (miR-708-5p) in the development of osteosarcoma. The expression level of miR-708-5p was detected using reverse transcription-quantitative polymerase chain reaction. miR-708-5p was overexpressed in SaOS-2 cells using miR-708-5p mimics. Cell viability, apoptosis, migration and invasion were determined using Cell Counting kit-8 assay, flow cytometry, wound healing and transwell assays, respectively. The results indicated that miR-708-5p was significantly downregulated in osteosarcoma tissues and cells, and its overexpression significantly inhibited cell viability, invasion and migration and induced apoptosis of SaOS-2 cells. Furthermore, the present results indicated that miR-708-5p directly targeted the 3'-untranslated region of up-regulator of cell proliferation (URGCP) and negatively regulated its expression in SaOS-2 cells. Taken together, the current study suggested that miR-708-5p may inhibit the growth and invasion of osteosarcoma cells via regulating the URGCP/NF-κB signaling pathway. Further research on these molecules in osteosarcoma may provide novel insights into the target therapy for this disease.
Collapse
Affiliation(s)
- Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Debao Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linlin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
15
|
Podany A, Rauchut J, Wu T, Kawasawa YI, Wright J, Lamendella R, Soybel DI, Kelleher SL. Excess Dietary Zinc Intake in Neonatal Mice Causes Oxidative Stress and Alters Intestinal Host-Microbe Interactions. Mol Nutr Food Res 2018; 63:e1800947. [PMID: 30513548 DOI: 10.1002/mnfr.201800947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/23/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Greater than 68% of young infants are exposed to dietary zinc (Zn) levels that are higher than the Tolerable Upper Intake Limit. However, the consequences of excess dietary Zn during early life on intestinal function and host-microbe interactions are unknown. METHODS AND RESULTS Neonatal mice are gavaged with 100 Zn µg d-1 from postnatal day (PN) 2 through PN10 and indices of intestinal function and host-microbe interactions are compared to unsupplemented mice. Excess dietary Zn causes oxidative stress, increases goblet cell number and mucus production, and are associated with increased intestinal permeability and systemic inflammation. Over 900 genes are differentially expressed; 413 genes display a fold-change >1.60. The Gene Ontology Biological processes most significantly affected include biological adhesion, the immune system, metabolic processes, and response to stimulus. Key genes most highly and significantly upregulated include ALDH2, MT1, TMEM6, CDK20, and COX62b, while CALU, ST3GAL4, CRTC2, SLC28A2, and COMMA1 are downregulated. These changes are associated with a microbiome enriched in pathogenic taxa including Pseudomonadales and Campylobacter, and greater expression of bacterial stress response genes. CONCLUSION Excess dietary Zn may have unforeseen influences on epithelial signaling pathways, barrier function, and luminal ecology in the intestine that may have long-term consequences on intestinal health.
Collapse
Affiliation(s)
- Abigail Podany
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Jessica Rauchut
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State Hershey College of Medicine, Hershey, PA
| | - Justin Wright
- Department of Biology, Juniata College, Huntingdon, PA
| | | | - David I Soybel
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Shannon L Kelleher
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA.,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA.,Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA
| |
Collapse
|
16
|
Tan Y, Gong Y, Dong M, Pei Z, Ren J. Role of autophagy in inherited metabolic and endocrine myopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1865:48-55. [PMID: 30343140 DOI: 10.1016/j.bbadis.2018.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The prevalence of cardiometabolic disease has reached an exponential rate of rise over the last decades owing to high fat/high caloric diet intake and satiety life style. Although the presence of dyslipidemia, insulin resistance, hypertension and obesity mainly contributes to the increased incidence of cardiometabolic diseases, population-based, clinical and genetic studies have revealed a rather important role for inherited myopathies and endocrine disorders in the ever-rising metabolic anomalies. Inherited metabolic and endocrine diseases such as glycogen storage and lysosomal disorders have greatly contributed to the overall prevalence of cardiometabolic diseases. Recent evidence has demonstrated an essential role for proteotoxicity due to autophagy failure and/or dysregulation in the onset of inherited metabolic and endocrine disorders. Given the key role for autophagy in the degradation and removal of long-lived or injured proteins and organelles for the maintenance of cellular and organismal homeostasis, this mini-review will discuss the potential contribution of autophagy dysregulation in the pathogenesis of inherited myopathies and endocrine disorders, which greatly contribute to an overall rise in prevalence of cardiometabolic disorders. Molecular, clinical, and epidemiological aspects will be covered as well as the potential link between autophagy and metabolic anomalies thus target therapy may be engaged for these comorbidities.
Collapse
Affiliation(s)
- Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yan Gong
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|