1
|
Dong Y, Shu S, Yu X, Chen X, Li Q, Shen X, Yu Y. Benzyl butyl phthalate promotes ferroptosis in Sertoli cells via disrupting ceruloplasmin-mediated iron balance. Toxicology 2025; 512:154078. [PMID: 39921026 DOI: 10.1016/j.tox.2025.154078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Widespread environmental contamination with benzyl butyl phthalate (BBP) has raised concerns due to its high potential for bioaccumulation and male reproductive toxicity. However, the mechanisms underlying BBP-induced male reproductive damage remain unclear. As the adjacent Sertoli cell-formed blood-testis barrier (BTB) creates a privileged niche for spermatogenesis and may serve as the first target of reproductive toxicants, we mainly focused on the detrimental effect of BBP on Sertoli cells and the BTB in this study. C57BL/6 mice were administered BBP via oral gavage at doses ranging from 0 to 400 mg/kg/day for 60 consecutive days. A comprehensive investigation was performed to estimate testicular BBP levels, sperm parameters, histological alterations, functional permeability of the Sertoli cell-based BTB, and ferroptosis in mice. Isolated Sertoli cells were further used to explore and validate the role of ferroptosis in BBP-induced BTB disruption. The results showed that permeation of BBP into the testis induced reduction in sperm quantity and quality, accompanied by fractured BTB ultrastructure, compromised permeable 'fence' functions of BTB, decreased expressions of tight junction proteins (TJP1 and OCLN) and paracellular transepithelial electrical resistance (TER) of Sertoli cells. Moreover, BBP exposure significantly increased intracellular iron content, promoted lipid peroxidation, and activated ferroptosis in the testis of mice and primary Sertoli cells, which was involved in BBP-induced disruption of BTB integrity and function as confirmed by the ferroptosis inhibitors. In mechanism, BBP specifically downregulated the intracellular iron exporter ceruloplasmin (CP) level to inhibit Fe2+ export and the oxidization of Fe2+ into less toxic Fe3+, thus exacerbating ferroptosis in Sertoli cells. Overexpression of CP significantly suppressed ferroptosis and alleviated BBP-induced BTB disruption. These findings reveal the role of CP-mediated iron homeostasis in regulating Sertoli cell ferroptosis and BTB function, providing new insights into the mechanisms of BBP-related reproductive toxicity.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiangyu Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xinting Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
3
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
4
|
Alhasnani MA, Loeb S, Hall SJ, Caruolo Z, Simmonds F, Solano AE, Spade DJ. Interaction between mono-(2-ethylhexyl) phthalate and retinoic acid alters Sertoli cell development during fetal mouse testis cord morphogenesis. Curr Res Toxicol 2022; 3:100087. [PMID: 36189433 PMCID: PMC9520016 DOI: 10.1016/j.crtox.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Phthalic acid esters (phthalates) are a class of industrial chemicals that cause developmental and reproductive toxicity, but there are significant gaps in knowledge of phthalate toxicity mechanisms. There is evidence that phthalates disrupt retinoic acid signaling in the fetal testis, potentially disrupting control of spatial and temporal patterns of testis development. Our goal was to determine how a phthalate would interact with retinoic acid signaling during fetal mouse testis development. We hypothesized that mono-(2-ethylhexyl) phthalate (MEHP) would exacerbate the adverse effect of all-trans retinoic acid (ATRA) on seminiferous cord development in the mouse fetal testis. To test this hypothesis, gestational day (GD) 14 C57BL/6 mouse testes were isolated and cultured on media containing MEHP, ATRA, or a combination of both compounds. Cultured testes were collected for global transcriptome analysis after one day in culture and for histology and immunofluorescent analysis of Sertoli cell differentiation after three days in culture. ATRA disrupted seminiferous cord morphogenesis and induced aberrant FOXL2 expression. MEHP alone had no significant effect on cord development, but combined exposure to MEHP and ATRA increased the number of FOXL2-positive cells, reduced seminiferous cord number, and increased testosterone levels, beyond the effect of ATRA alone. In RNA-seq analysis, ATRA treatment and MEHP treatment resulted in differential expression of genes 510 and 134 genes, respectively, including 70 common differentially expressed genes (DEGs) between the two treatments, including genes with known roles in fetal testis development. MEHP DEGs included RAR target genes, genes involved in angiogenesis, and developmental patterning genes, including members of the homeobox superfamily. These results support the hypothesis that MEHP modulates retinoic acid signaling in the mouse fetal testis and provide insight into potential mechanisms by which phthalates disrupt seminiferous cord morphogenesis.
Collapse
Key Words
- ATRA, All-trans retinoic acid. CAS # 302-79-4
- DMSO, dimethyl sulfoxide
- Fetal testis development
- GD, gestational day
- GO, Gene Ontology
- IPA, Ingenuity Pathway Analysis
- ITCN, Image-based Tool for Counting Nuclei
- MEHP, mono-(2-ethylheyxl) phthalate. CAS # 4376-20-9
- MNGs, multinucleated germ cells
- PVC, polyvinyl chloride
- Phthalate toxicity
- Retinoic acid
- Sertoli cell
- TDS, testicular dysgenesis syndrome
Collapse
Affiliation(s)
- Maha A. Alhasnani
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Skylar Loeb
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Zachary Caruolo
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Faith Simmonds
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Amanda E. Solano
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| |
Collapse
|
5
|
Batool S, Batool S, Shameem S, Batool T, Batool S. Effects of dibutyl phthalate and di (2-ethylhexyl) phthalate on hepatic structure and function of adult male mice. Toxicol Ind Health 2022; 38:470-480. [PMID: 35700117 DOI: 10.1177/07482337221108578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of the present research was to determine if dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) alone and combined exposure induced pathological alterations in laboratory reared albino mice. Adult male mice were equally divided (n = 10) into Control, corn oil (CO), DBP, DEHP, and DBP+DEHP treated groups. Dibutyl phthalate (250 mg/kg), DEHP (300 mg/kg), and DBP+DEHP (250+300 mg/kg), respectively, were administered by oral gavage mixed in corn oil (0.2 mL) for 28 days. All animals were sacrificed following 28 days of treatment and blood was collected for serum lipid profiles and liver function tests. Liver samples were also collected for observation of histological changes. Microphotographs of hematoxylin and eosin-stained sections were used for computer-based micrometry. CO, DBP, DEHP, and DBP+DEHP treatment resulted in a significant increase in the mean body and liver weights as compared with the Control group. Histological examination of the livers with DBP and/or DEHP treatment showed marked alterations leading to hepatic hypertrophy. In the treated groups, a significant increase in the mean number of mononucleated, binucleated cells, and oval cells per unit area was noticed with disorganized trabecular arrangement as compared with the Control group. Treatment with DBP and/or DEHP resulted in large regeneration zones in the liver and an increased relative nucleo-cytoplasmic index of mononuclear shepatocytes when compared with the Control group. All treatments caused a significant increases in the liver enzymes and proteins as well as altered serum cholesterol, triglycerides, LDL, and VLDL levels. The histopathological and serological findings confirmed the toxic potentials to hepatic tissue of DBP and DEHP either given alone or in combination.
Collapse
Affiliation(s)
- Saira Batool
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Sajida Batool
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Sitara Shameem
- Department of Zoology, 66971University of Sargodha, Sargodha. Pakistan
| | - Tahira Batool
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Saima Batool
- Institute for Advanced Study, 47890Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Lin L, Xu Q, Chen Q, Chen H, Ying Y, Li Z, Zhang S, Ma F, Yu Y, Ge RS. Triadimefon increases fetal Leydig cell proliferation but inhibits its differentiation of male fetuses after gestational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112942. [PMID: 34737156 DOI: 10.1016/j.ecoenv.2021.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Triadimefon is a broad-spectrum fungicide widely applied in the agriculture. It is believed to be an endocrine disruptor. Whether triadimefon can inhibit the development of fetal Leydig cells and the underlying mechanisms are unknown. Thirty-two female pregnant Sprague-Dawley rats were randomly assigned into four groups and were dosed via gavage of triadimefon (0, 25, 50, and 100 mg/kg/day) for 9 days from gestational day (GD) 12-20. Triadimefon significantly reduced serum testosterone level in male fetuses at 100 mg/kg. The double immunofluorescence staining of proliferating cell nuclear antigen (PCNA) and cytochrome P450 cholesterol side-chain cleavage (a biomarker for fetal Leydig cells) was used to measure PCNA-labeling in fetal Leydig cells. It markedly increased fetal Leydig cell number primarily via increasing single cell population and elevated the PCNA-labeling of fetal Leydig cells in male fetuses at 100 mg/kg while it induced abnormal aggregation of fetal Leydig cells. The expression levels of fetal Leydig cell genes, Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3 and Nr5a1, were determined to explore its effects on fetal Leydig cell development. We found that triadimefon markedly down-regulated the expression of Leydig cell genes, Hsd17b3, Insl3, and Nr5a1 as low as 25 mg/kg and Scarb1 and Cyp11a1 at 100 mg/kg. It did not affect Sertoli cell number but markedly down-regulated the expression of Sertoli cell gene Amh at 50 and 100 mg/kg. Triadimefon significantly down-regulated the expression of antioxidant genes Sod1, Gpx1, and Cat at 25-100 mg/kg, suggesting that it can induce oxidative stress in fetal testis, and it reduced the phosphorylation of ERK1/2 and AKT2 at 100 mg/kg, indicating that it can inhibit the development of fetal Leydig cells. In conclusion, gestational exposure to triadimefon inhibits the development of fetal Leydig cells in male fetuses by inhibiting its differentiation.
Collapse
Affiliation(s)
- Liben Lin
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qiang Xu
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Quanxu Chen
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Haiqiong Chen
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yingfen Ying
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zengqiang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Song Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Feifei Ma
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yige Yu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Gray LE, Lambright CS, Conley JM, Evans N, Furr JR, Hannas BR, Wilson VS, Sampson H, Foster PMD. Genomic and Hormonal Biomarkers of Phthalate-Induced Male Rat Reproductive Developmental Toxicity Part II: A Targeted RT-qPCR Array Approach That Defines a Unique Adverse Outcome Pathway. Toxicol Sci 2021; 182:195-214. [PMID: 33983380 DOI: 10.1093/toxsci/kfab053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, we demonstrated that exposure to some diortho-phthalate esters during sexual differentiation disrupts male reproductive development by reducing fetal rat testis testosterone production (T Prod) and gene expression in a dose-related manner. The objectives of the current project were to expand the number of test compounds that might reduce fetal T Prod, including phthalates, phthalate alternatives, pesticides, and drugs, and to compare reductions in T Prod with altered testis mRNA expression. We found that PEs that disrupt T Prod also reduced expression of a unique "cluster" of mRNAs for about 35 genes related to sterol transport, testosterone and insulin-like hormone 3 hormone syntheses, and lipoprotein signaling and cholesterol synthesis. However, phthalates had little or no effect on mRNA expression of genes in peroxisome proliferator-activated receptor (PPAR) pathways in the fetal liver, whereas the 3 PPAR agonists induced the expression of mRNA for multiple fetal liver PPAR pathway genes without reducing testis T Prod. In summary, phthalates that disrupt T Prod act via a novel adverse outcome pathway including down regulation of mRNA for genes involved in fetal endocrine function and cholesterol synthesis and metabolism. This profile was not displayed by PEs that did not reduce T Prod, PPAR agonists or the other chemicals. Reductions in fetal testis gene expression and T Prod in utero can be used to establish relative potency factors that can be used quantitatively to predict the doses of individual PEs and mixtures of phthalates that produce adverse reproductive tract effects in male offspring.
Collapse
Affiliation(s)
- Leon Earl Gray
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Christy S Lambright
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Justin M Conley
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Nicola Evans
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | | | - Bethany R Hannas
- Corteva, Agriscience, Haskell R&D Center, Newark, Delaware 19711, USA
| | - Vickie S Wilson
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | - Hunter Sampson
- Reproductive and Developmental Toxicology Branch, PHITD, CPHEA, ORD, US Environmental Protection Agency, North Carolina 27711, USA
| | | |
Collapse
|
9
|
Li C, Zou C, Yan H, Li Z, Li Y, Pan P, Ma F, Yu Y, Wang Y, Wen Z, Ge RS. Perfluorotridecanoic acid inhibits fetal Leydig cell differentiation after in utero exposure in rats via increasing oxidative stress and autophagy. ENVIRONMENTAL TOXICOLOGY 2021; 36:1206-1216. [PMID: 33683001 DOI: 10.1002/tox.23119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 05/23/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain perfluoroalkyl substance, and its effect on the differentiation of fetal Leydig cells remains unclear. The objective of this study is to explore the effect of in utero PFTrDA exposure on the differentiation of fetal Leydig cells and investigate its underlying mechanisms. Pregnant Sprague-Dawley female rats were daily administered by gavage of PFTrDA at doses of 0, 1, 5, and 10 mg/kg from gestational day 14 to 21. PFTrDA had no effect on the body weight of dams, but significantly reduced the body weight and anogenital distance of male pups at birth at a dose of 10 mg/kg. PFTrDA significantly decreased serum testosterone levels as low as 1 mg/kg. PFTrDA did not affect fetal Leydig cell number, but promoted abnormal aggregation of fetal Leydig cells at doses of 5 and 10 mg/kg. PFTrDA down-regulated the expression of Insl3, Lhcgr, Scarb1, Star, Hsd3b1, Cyp17a1, Nr5a1, and Dhh as well as their proteins. PFTrDA lowered the levels of antioxidants (SOD1, CAT, and GPX1), induced autophagy as shown by increased levels of LC3II and beclin1, and reduced the phosphorylation of mTOR. In conclusion, PFTrDA inhibits the differentiation of fetal Leydig cells in male pups after in utero exposure mainly through increasing oxidative stress and inducing autophagy.
Collapse
Affiliation(s)
- Changchang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Bell S, Zsom A, Conley J, Spade D. Automated identification of multinucleated germ cells with U-Net. PLoS One 2020; 15:e0229967. [PMID: 32645012 PMCID: PMC7347116 DOI: 10.1371/journal.pone.0229967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
Phthalic acid esters (phthalates) are male reproductive toxicants, which exert their most potent toxicity during fetal development. In the fetal rat, exposure to phthalates reduces testosterone biosynthesis, alters the development of seminiferous cords and other male reproductive tissues, and induces the formation of abnormal multinucleated germ cells (MNGs). Identification of MNGs is a time-intensive process, and it requires specialized training to identify MNGs in histological sections. As a result, MNGs are not routinely quantified in phthalate toxicity experiments. In order to speed up and standardize this process, we have developed an improved method for automated detection of MNGs. Using hand-labeled histological section images with human-identified MNGs, we trained a convolutional neural network with a U-Net architecture to identify MNGs on unlabeled images. With unseen hand-labeled images not used in model training, we assessed the performance of the model, using five different configurations of the data. On average, the model reached near human accuracy, and in the best model, it exceeded it. The use of automated image analysis will allow data on this histopathological endpoint to be more readily collected for analysis of phthalate toxicity. Our trained model application code is available for download at github.com/brown-ccv/mngcount.
Collapse
Affiliation(s)
- Samuel Bell
- Brown University, Providence, RI, United States of America
- Planetary Science Institute, Tucson, AZ, United States of America
- * E-mail:
| | - Andras Zsom
- Brown University, Providence, RI, United States of America
| | - Justin Conley
- U.S. Environmental Protection Agency/ORD/CPHEA/PHITD/RDTB, Research Triangle Park, NC, United States of America
| | - Daniel Spade
- Brown University, Providence, RI, United States of America
| |
Collapse
|
11
|
Di Lorenzo M, Winge SB, Svingen T, De Falco M, Boberg J. Intrauterine exposure to diethylhexyl phthalate disrupts gap junctions in the fetal rat testis. Curr Res Toxicol 2020; 1:5-11. [PMID: 34345832 PMCID: PMC8320622 DOI: 10.1016/j.crtox.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Fetal exposure to certain phthalate esters can disrupt testis development in rodents and lead to male reproductive disorders, but with a causal link less certain in humans. Di(2-ethylhexyl) phthalate (DEHP) is one of the most common phthalates found in the environment and in rodents it is known to induce serious testis toxicity, as well as male reproductive disorders including cryptorchidism, hypospadias, impaired spermatogenesis and reduced fertility. In this study, we show that perinatal DEHP exposure disrupts gap junction localization in fetal and postnatal rat testis and correlate these findings to morphological changes. The protein Connexin 43 (CX43), normally expressed strongly in testicular gap junctions, was markedly downregulated in Leydig cells of DEHP-exposed fetal testes. In the postnatal testes, CX43 expression was recovered in the DEHP-exposed animals, even though Leydig cell clusters and malformed cords with intratubular Leydig cells were still present. DEHP disrupts gap junction localization in fetal and postnatal rat testis. DEHP exposure reduces Cx43-positive gap junctions in Leydig cell clusters in fetal rat testis. Leydig cell gap junctions recover in postnatal testis after early life DEHP exposure.
Collapse
Affiliation(s)
| | - Sofia Boeg Winge
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
12
|
Wang T, Zhang R, Li D, Su P, Yang Y. Application of magnetized MOF-74 to phthalate esters extraction from Chinese liquor. J Sep Sci 2019; 42:1600-1609. [PMID: 30734482 DOI: 10.1002/jssc.201801244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
Abstract
In this study, magnetized MOF-74 (Ni) was prepared using an ultrasound-assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid-phase extraction method coupled with high-performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53-200 μg/L for diphenyl phthalate, 2.03-200 μg/L for butyl benzyl phthalate, 7.02-200 μg/L for diamyl phthalate, and 6.03-200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46-2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4-104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid-phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid-phase extraction is a simple, time-saving, efficient, and low-cost method.
Collapse
Affiliation(s)
- Tiefeng Wang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Ruiqi Zhang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Di Li
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Ping Su
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yi Yang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|