1
|
Guo J, Zhao F, Yue Z, Lei Z. Acetylcholinesterase-free colorimetric sensing platform for carbosulfan detection based on hollow PDA/MnO 2 nanozyme. Food Chem 2025; 465:142075. [PMID: 39571438 DOI: 10.1016/j.foodchem.2024.142075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Rapid and accurate detection of carbosulfan residues in vegetables is important for ensuring food safety. Herein, based on the unique hydrolysis behavior of carbosulfan, a nanozyme-based colorimetric sensing platform was proposed for detection of carbosulfan. Hollow polydopamine/MnO2 nanoparticles (H-PDA/MnO2 NPs) with excellent oxidase-like activity were synthesized, which can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidative product (oxTMB). Under acidic conditions, carbosulfan can be decomposed and produce reductive sulfide species (-SH), which are capable to disintegrate MnO2 NPs, resulting in decreased oxidase-like activity of H-PDA/MnO2 NPs. Based on the inhibitory effect on oxidase activity of H-PDA/MnO2 NPs, an acetylcholinesterase-free colorimetric assay was proposed for detection of carbosulfan with low limit of detection of 0.63 ng mL-1. Integrating test swabs with smartphone, a portable colorimetric sensor was constructed, showing great potential for on-site detection. To demonstrate the feasibility of this method, carbosulfan in real vegetable samples were determined.
Collapse
Affiliation(s)
- Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhenhui Yue
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
2
|
Zhong Y, Yang J, Wu W, Chen H, Li S, Zhang Z, Rong S, Wang H. Dual colorimetric platforms for direct detection of glyphosate based on Os-Rh nanozyme with peroxidase-like activity. Anal Chim Acta 2024; 1326:343150. [PMID: 39260918 DOI: 10.1016/j.aca.2024.343150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND To minimize the impact of pesticide residues in food on human health, it is necessary to enhance their detection. Recently, many nanozyme-based colorimetric methods for pesticides detection have been developed, however, they often required the assistance of natural enzymes, which made the process and result of methods susceptible to the stability and activity of natural enzymes. To overcome these drawbacks, methods for direct detection of pesticides using nanozymes have been developed, and there are few studies in this field currently. Thus, it is of great research and practical significance to develop more nanozymes-based colorimetric methods for direct detection of pesticides. RESULTS Dual colorimetric platforms based on Os-Rh nanozyme with excellent peroxidase-like activity were constructed for directly detection of glyphosate in this work. Results showed that glyphosate was able to sensitively and selectively inhibit the peroxidase-like activity of Os-Rh nanozyme through hindering the decomposition of H2O2 by Os-Rh nanozyme to produce HO∙. Based on this, the dual colorimetric platforms achieved highly sensitive detection for glyphosate over a wide linear concentration range (50-1000 μg L-1 in solution platform and 200-1000 μg L-1 in paper platform), with the detection limits of 28.37 μg L-1 in solution platform and 400 μg L-1 (naked-eye detection limit)/123.25 μg L-1 (gray scale detection limit) in paper platform, respectively. Moreover, the dual colorimetric platforms possessed satisfactory reliability and accuracy for practical applications, and has been successfully applied to the detection of real samples with the spiked recoveries of 92.78-102.75 % and RSD of 1.17-3.88 %. SIGNIFICANCE The dual colorimetric platforms for glyphosate direct detection based on Os-Rh nanozyme developed in this work not only owned considerable practical application potential, but also could provide more inspirations and ideas for the rational design and development of colorimetric sensing methods for the rapid detection of pesticides based on nanozymes.
Collapse
Affiliation(s)
- Yingying Zhong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Junsong Yang
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Wanying Wu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Haoyang Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Shuwei Li
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Ziying Zhang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Shicheng Rong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China.
| |
Collapse
|
3
|
Kranawetvogl T, Siegert M, Steinritz D, Thiermann H, John H. The phosphylated butyrylcholinesterase-derived tetrapeptide GlyGluSerAla proves exposure to organophosphorus agents with enantioselectivity. Arch Toxicol 2024; 98:791-806. [PMID: 38267661 DOI: 10.1007/s00204-023-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.
Collapse
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
4
|
Kranawetvogl T, Kranawetvogl A, Scheidegger L, Wille T, Steinritz D, Worek F, Thiermann H, John H. Evidence of nerve agent VX exposure in rat plasma by detection of albumin-adducts in vitro and in vivo. Arch Toxicol 2023; 97:1873-1885. [PMID: 37264164 PMCID: PMC10256656 DOI: 10.1007/s00204-023-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
VX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.
Collapse
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Lisa Scheidegger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| |
Collapse
|
5
|
Lockridge O, Schopfer LM. Review: Organophosphorus toxicants, in addition to inhibiting acetylcholinesterase activity, make covalent adducts on multiple proteins and promote protein crosslinking into high molecular weight aggregates. Chem Biol Interact 2023; 376:110460. [PMID: 36963650 PMCID: PMC10100150 DOI: 10.1016/j.cbi.2023.110460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The acute effects of exposure to organophosphorus toxicants are explained by inhibition of acetylcholinesterase activity. However, the mechanisms that explain long term illness associated with organophosphorus exposure are still under investigation. We find that organophosphorus nerve agents and organophosphorus pesticides make covalent adducts not only on the serine from acetylcholinesterase, but also on tyrosine, lysine, glutamate, serine and threonine from a variety of proteins. Almost any protein can be modified by a high dose of organophosphorus toxicant. A low dose of 10 μM chlorpyrifos oxon added to the serum-free culture medium of human neuroblastoma SH-SY5Y cells resulted in tyrosine adducts on 48 proteins immunopurified from the cell lysate. We identified the adducted proteins by mass spectrometry after immunopurifying modified proteins with a rabbit anti-diethoxyphospho-tyrosine monoclonal antibody which biased this study for tyrosine adducts. In cultured cells, the primary organophosphate targets are abundant proteins. Organophosphate-modified proteins may disrupt physiological processes. In separate experiments we identified organophosphate adducts on lysine. Organophosphylation activates the lysine for protein crosslinking. The activated lysine reacts with glutamic acid or aspartic acid protein side chains to form an isopeptide bond between proteins, resulting in high molecular weight crosslinked proteins. Crosslinked proteins form insoluble aggregates that may lead to neurogenerative disease.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Sepahi S, Gerayli S, Delirrad M, Taghavizadeh Yazdi ME, Zare-Zardini H, Bushehri B, Ghorani-Azam A. Biochemical responses as early and reliable biomarkers of organophosphate and carbamate pesticides intoxication: A systematic literature review. J Biochem Mol Toxicol 2023; 37:e23285. [PMID: 36524544 DOI: 10.1002/jbt.23285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Inhibition of cholinesterase (ChE) activity has been long considered as the main diagnostic method of organophosphate (OP) and carbamate pesticides poisoning; however, it has been shown that ChE activity may also be altered due to exposure to other non-organophosphorus toxicants and variety of different medical conditions. Hence, to avoid misdiagnosis, we aimed to systematically review available documents to look for additional biomarkers of OP and carbamate poisoning. The electronic databases in addition to Google scholar were searched for eligible articles on March 2022 using "organophosphate," "carbamate," and "biomarker" including all their similar terms. After collecting the relevant documents, the data were extracted and described qualitatively. In total, data of 66 articles from 51 human and 15 animal studies were extracted. Findings demonstrated that enzymes such as β-glucuronidase, neuropathy target esterase, amylase, and lipase, in addition to hematological indicators such as CBC, CRP, lactate dehydrogenase, and CPK have high sensitivity and accuracy in the diagnosis of OP poisoning. Findings suggest that using various markers for diagnosis of OP intoxication is helpful for appropriate management, and early identifying the patients at risk of death. The suggested biomarkers also help to avoid misdiagnosis of OP poisoning with other similar conditions.
Collapse
Affiliation(s)
- Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Gerayli
- Division of Inflammation and inflammatory Diseases, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Delirrad
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Forensic Medicine and Toxicology, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Sciences, Farhangian University, Isfahan, Iran
| | - Behzad Bushehri
- Department of Forensic Medicine and Toxicology, Urmia University of Medical Sciences, Urmia, Iran
| | - Adel Ghorani-Azam
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Forensic Medicine and Toxicology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
John H, Lindl T, Reuter H, Schmeißer W, Schrader M, Thiermann H. Phosphonylated tyrosine and lysine residues as biomarkers of local exposure of human hair to the organophosphorus nerve agents sarin and VX. Drug Test Anal 2023. [PMID: 36787649 DOI: 10.1002/dta.3459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
We herein present for the first time a micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS) procedure to detect phosphonylated tyrosine (Tyr) and lysine (Lys) residues obtained from human hair exposed to organophosphorus nerve agents (OPNA). In general, toxic OPNA react with endogenous blood proteins causing the formation of adducts representing well-known targets for biomedical analysis to prove exposure. In contrast, no protein-derived biomarker has been introduced so far to document local exposure of hair. Accordingly, we developed and characterized a μLC-ESI MS/HR MS method for the analysis of scalp hair exposed to OPNA in vitro. Type I and Type II keratin from hair was dissolved during lysis, precipitated and subjected to pronase-catalyzed hydrolysis yielding single adducted Lys and in a much higher amount Tyr residues. Exposure to sarin caused the adduction of an isopropyl methylphosphonic acid moiety and exposure to VX yielded adducts of ethyl methylphosphonic acid, well suited as biomarkers of exposure. These were of appropriate stability in the autosampler for 24 h. The biomarker yield obtained from hair of six individuals as well as from hair of six different parts of the body of one individual (armpit, beard, leg, arm, scalp, and pubic) differed reasonably indicating the variable individual protein composition and structure of hair. Exposed hair stored at ambient temperature for 9 weeks with contact to air and daylight showed stability of all adducts and therefore their suitability for verification of exposure.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Tamara Lindl
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Henrik Reuter
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
8
|
Zellner T, Rabe C, von der Wellen-Pawlowski J, Hansen D, John H, Worek F, Eyer F. A case report of severe pirimiphos-methyl intoxication: Clinical findings and cholinesterase status. Front Pharmacol 2022; 13:1102160. [PMID: 36618943 PMCID: PMC9816423 DOI: 10.3389/fphar.2022.1102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
A 63-year-old male was admitted to a district hospital after ingesting ethanol and pirimiphos-methyl (PM) with suicidal intentions. History included alcoholic cirrhosis with alcoholism, adiposity, diabetes with cerebral microangiopathy, chronic renal insufficiency, heparin-induced thrombocytopenia, and status post necrotizing fasciitis. Emergency medical service reported an alert patient without signs of cholinergic crisis; activated charcoal and atropine were administered. Upon hospital arrival, he received fluid resuscitation, activated charcoal, and atropine. He was transferred to a toxicology unit the next day. On admission, he had no cholinergic signs (dry mucous membranes, warm skin, and mydriatic pupils) requiring small atropine doses (0.5 mg per hour). Four hours after admission, he developed bradycardia and respiratory distress, necessitating intubation. He received atropine by continuous infusion for 7 days (248 mg total) and obidoxime (bolus and continuous infusion). PM, pirimiphos-methyl-oxon (PMO), and phosphorylated tyrosine (Tyr) adducts derived from human serum albumin were analyzed in vivo. Cholinesterase status (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), inhibitory activity of patient plasma and reactivatability, and phosphorylated BChE-derived nonapeptides) was measured in vivo. Obidoxime and atropine were monitored. PM and PMO were detectable, PM with maximum concentration ∼24 h post admission (p.a.) and PMO at ∼18 h p.a. Tyr adducts were detectable. AChE in vivo was suppressed on admission, increased continuously after starting obidoxime, and reached maximum activity after ∼30 h. AChE in vivo and reactivatability remained at the same level until the end of monitoring. BChE was already suppressed on admission; termination of the antidote treatment was possible after BChE had recovered to 1/5th of its normal value and extubation was possible after BChE had recovered to 2/5th. While a substantial part of BChE was already aged on admission, aging continued peaking at ∼24 h p.a. After initiating obidoxime treatment, plasma levels increased until obidoxime plasma levels reached a steady state. On admission, plasma atropine level was low; it increased with the start of the continuous infusion. Afterward, the level dropped to a steady state. The clinical course was characterized by bouts of pneumonia, necessitating re-intubation and prolonged ventilation, sepsis, delirium, and a peripheral neuropathy. After psychiatric evaluation, the patient was discharged to a neurological rehabilitation facility after 77 days of hospital care.
Collapse
Affiliation(s)
- Tobias Zellner
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany,*Correspondence: Tobias Zellner,
| | - Christian Rabe
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Dagmar Hansen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Florian Eyer
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Song G, Zhang J, Huang H, Wang X, He X, Luo Y, Li JC, Huang K, Cheng N. Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chem 2022; 387:132896. [PMID: 35421648 DOI: 10.1016/j.foodchem.2022.132896] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/13/2022] [Accepted: 04/03/2022] [Indexed: 12/27/2022]
Abstract
Rapid detection of pesticide residues based on enzyme mimics has recently attracted much interest. However, most nanozymes have low activity. Herein, a "single-atom Ce-N-C nanozyme" (SACe-N-C nanozyme) was rationally devised and verified to mimic peroxidase (POD-like) with superior activity. Based on its high POD-like activities and cascaded catalytic reactions with acetylcholinesterase (AChE), we constructed a bioactive paper for the detection of pesticide residues, which offered a portable approach to monitor fruits and vegetables within 30 min. More importantly, a 3D printed platform was integrated on the basis of SACe-N-C bioactive paper to achieve on-site portable testing of omethoate, methamidophos, carbofuran, and carbosulfan, showing limits of detection (LODs) of 55.83, 71.51, 81.81, and 74.98 ng/mL, respectively. The recovery rates were 84.09-104.68%. This study provided new insight into the design of novel single-atom nanozymes for cascaded catalytic detection and other rapid detection applications with high efficiency and low cost.
Collapse
Affiliation(s)
- Guangchun Song
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huixian Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus, Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650000, China.
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
John H, Hörmann P, Schrader M, Thiermann H. Alkylated glutamic acid and histidine derived from protein-adducts indicate exposure to sulfur mustard in avian serum. Drug Test Anal 2022; 14:1140-1148. [PMID: 35137544 DOI: 10.1002/dta.3236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
Sulfur mustard (SM, bis(2-chloroethyl)-sulfide) is a banned chemical warfare agent deployed in the violent conflict in the Middle East poisoning humans and animals. For legal reasons bioanalytical methods are mandatory proving exposure to SM. Reaction products (adducts) of SM with endogenous proteins e.g., serum albumin (SA) are valuable long-lived targets for analysis. Whereas nearly all methods known so far focus on human proteins, we address for the first time neat chicken SA and avian serum from chicken, duck and ostrich. After proteolysis, protein precipitation, evaporation of the supernatant and re-dissolution analysis was performed by micro liquid chromatography-electrospray ionization tandem-mass spectrometry in the selected reaction monitoring mode, μLC-ESI MS/MS (SRM), for detection of the hydroxyethylthioethyl product ion [HETE]+ at m/z 105.0. After in vitro incubation with SM and pronase-catalyzed proteolysis the alkylated amino acids Glu(-HETE) and His(-HETE) were detected. Both borne the SM-characteristic HETE-moiety bound to their side chain. The 8-fold deuterated SM analogue (d8-SM) was also applied to support adduct identification. Proteolysis conditions were optimized with respect to pH (8.0), temperature (50°C) and time to maximize the yield of Glu(-HETE) (30 min) and His(-HETE) (180 min). Amino acid adducts were stable in the autosampler for at least 24 h. Protein-adducts were stable in serum at -30°C for at least 33 d and for three freeze-and-thaw cycles. At the body temperature of chicken (+40°C) Glu(-HETE) was degraded in serum (period of half-change 3 d) whereas His(-HETE) remained stable. The presented method broadens the toolbox of procedures to document poisoning with SM.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Philipp Hörmann
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences
| | - Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
11
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
12
|
John H, Richter A, Siegert M, Eyer F, Thiermann H. Evidence of exposure to organophosphorus toxicants by detection of the propionylated butyrylcholinesterase-derived nonapeptide-adduct as a novel biomarker. Forensic Sci Int 2021; 323:110818. [PMID: 33990018 DOI: 10.1016/j.forsciint.2021.110818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organophosphorus (OP) nerve agents represent a class of highly toxic chemical warfare agents banned by the Chemical Weapons Convention. Nevertheless, in the past few years they have been used repeatedly for warfare, assassination and attempted murder. In addition, the chemically related OP pesticides were frequently used for suicide and may be deployed for terroristic attacks. Therefore, sensitive and selective bioanalytical methods are indispensable to investigate biological specimens as pieces of evidence to prove poisoning. OP agents form long-lived covalent reaction products (adducts) with endogenous proteins like human serum albumin (HSA) and butyrylcholinesterase (BChE). The adducted nonapeptide (NP) obtained by proteolysis of the BChE-adduct is one of the most sensitive and important biomarkers. We herein present a novel class of NP-adducts propionylated at its N-terminal phenylalanine residue (F195). The biomarker derivative is produced by addition of propionic anhydride to the NP-adduct inducing its quantitative conversion in aqueous buffer within 5 min at room temperature. Afterwards the mixture is directly analyzed by micro-liquid chromatography-electrospray ionization tandem-mass spectrometry (µLC-ESI MS/MS). The sensitivity of the method is comparable to that of the non-derivatized NP-adduct. These characteristics make the method highly beneficial for forensic analysis especially in cases in which the OP agent does not form adducts with HSA that are typically targeted as a second biomarker of exposure. This novel procedure was successfully applied to nerve agent-spiked samples sent by the Organisation for the Prohibition of Chemical Weapons (OPCW) as well as to plasma samples of real cases of pesticide poisoning.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Florian Eyer
- Department of Clinical Toxicology, TUM School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
13
|
John H, Thiermann H. Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. J Mass Spectrom Adv Clin Lab 2021; 19:20-31. [PMID: 34820662 PMCID: PMC8601002 DOI: 10.1016/j.jmsacl.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence of poisoning with organophosphorus (OP) nerve agents requires biomedical verification. OP nerve agents undergo common biotransformation pathways producing valuable biomarkers. Internationally accepted methods target remaining poison, hydrolysis products and protein-adducts. Mass spectrometry-based methods provide optimum selectivity and sensitivity for identification. Methods, strategies, current proceedings, quality criteria and real cases of poisoning are presented.
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.
Collapse
|
14
|
Pan J, Liu S, Jia H, Yang J, Qin M, Zhou T, Chen Z, Jia X, Guo T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Understanding the bioconjugation reaction of phenthoate with human serum albumin: New insights from experimental and computational approaches. Toxicol Lett 2019; 314:124-132. [DOI: 10.1016/j.toxlet.2019.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
|
16
|
Verification of soman-related nerve agents via detection of phosphonylated adducts from rabbit albumin in vitro and in vivo. Arch Toxicol 2019; 93:1853-1863. [DOI: 10.1007/s00204-019-02485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
|
17
|
Fu F, Sun F, Lu X, Song T, Ding J, Gao R, Wang H, Pei C. A Novel Potential Biomarker on Y263 Site in Human Serum Albumin Poisoned by Six Nerve Agents. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:168-175. [DOI: 10.1016/j.jchromb.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
|