1
|
Mendes C, Maia D, Dinis-Oliveira RJ, Remião F, Silva R, Barbosa DJ. Synthetic Cathinones Induce Developmental Arrest, Reduce Reproductive Capacity, and Shorten Lifespan in the C. elegans Model. J Xenobiot 2025; 15:33. [PMID: 39997376 PMCID: PMC11856764 DOI: 10.3390/jox15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Drug abuse presents a significant global health challenge as the illicit drug market progresses from classic drugs to a growing prevalence of New Psychoactive Substances (NPS), particularly synthetic cathinones, which, although illegal, are often falsely marketed as safe and legal alternatives. The rapid increase in the use of these drugs complicates the assessment of their safety and effects on human health. However, they pose unique toxicological concerns that remain largely uncharacterized. This study investigated the toxic effects of three synthetic cathinones, namely, methylone, pentedrone, and 4-methylethcathinone (4-MEC), using the model organism C. elegans. We assessed the impact of these substances on animal survival, development, reproductive behavior, and longevity. Our results showed that short-term exposure (24 h) to concentrations of 5.0 mM or higher significantly reduced animal survival rates, while prolonged exposure (72 h) led to more pronounced toxicity, significantly reducing survival rates at concentrations as low as 1.0 mM. Moreover, sublethal concentrations resulted in developmental arrest. Additionally, pentedrone impaired reproductive capacity, while 4-MEC significantly shortened C. elegans lifespan. These findings highlight the urgent need for further investigation into the implications of synthetic cathinone use on human health through in vivo models as their prevalence in the illicit drug market continues to rise.
Collapse
Affiliation(s)
- Cristina Mendes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.M.); (D.M.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Daniela Maia
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.M.); (D.M.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.M.); (D.M.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.M.); (D.M.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Gampfer TM, Schütz V, Schippers P, Rasheed S, Baumann J, Wagmann L, Pulver B, Westphal F, Flockerzi V, Müller R, Meyer MR. Metabolism and cytotoxicity studies of the two hallucinogens 1cP-LSD and 4-AcO-DET in human liver and zebrafish larvae models using LC-HRMS/MS and a high-content screening assay. J Pharm Biomed Anal 2024; 245:116187. [PMID: 38692215 DOI: 10.1016/j.jpba.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
The continuous emergence of new psychoactive substances (NPS) attracted a great deal of attention within recent years. Lately, the two hallucinogenic NPS 1cP-LSD and 4-AcO-DET have appeared on the global market. Knowledge about their metabolism to identify potential metabolic targets for analysis and their cytotoxic properties is lacking. The aim of this work was thus to study their in vitro and in vivo metabolism in pooled human liver S9 fraction (pHLS9) and in zebrafish larvae (ZL) by means of liquid chromatography-high-resolution tandem mass spectrometry. Monooxygenases involved in the initial metabolic steps were elucidated using recombinant human isozymes. Investigations on their cytotoxicity were performed on the human hepatoma cell line HepG2 using a multiparametric, fluorescence-based high-content screening assay. This included measurement of CYP-enzyme mediated effects by means of the unspecific CYP inhibitor 1-aminbenzotriazole (ABT). Several phase I metabolites of both compounds and two phase II metabolites of 4-AcO-DET were produced in vitro and in vivo. After microinjection of 1cP-LSD into the caudal vein of ZL, three out of seven metabolites formed in pHLS9 were also detected in ZL. Twelve 4-AcO-DET metabolites were identified in ZL after exposure via immersion bath and five of them were found in pHLS9 incubations. Notably, unique metabolites of 4-AcO-DET were only produced by ZL, whereas 1cP-LSD specific metabolites were found both in ZL and in pHLS9. No toxic effects were observed for 1cP-LSD and 4-AcO-DET in HepG2 cells, however, two parameters were altered in incubations containing 4-AcO-DET together with ABT compared with incubations without ABT but in concentrations far above expected in vivo concentration. Further investigations should be done with other hepatic cell lines expressing higher levels of CYP enzymes.
Collapse
Affiliation(s)
- Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| | - Victoria Schütz
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Philip Schippers
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover, Braunschweig, Germany
| | - Jonas Baumann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany; Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Herrmann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover, Braunschweig, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Balloni A, Tini A, Prospero E, Busardò FP, Huestis MA, Lo Faro AF. Exposure to Synthetic Psychoactive Substances: A Potential Cause for Increased Human Hepatotoxicity Markers. Clin Chem 2024; 70:597-628. [PMID: 38427953 DOI: 10.1093/clinchem/hvad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/20/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Approximately 30 million people worldwide consume new psychoactive substances (NPS), creating a serious public health issue due to their toxicity and potency. Drug-induced liver injury is the leading cause of liver disease, responsible for 4% of global deaths each year. CONTENT A systematic literature search revealed 64 case reports, in vitro and in vivo studies on NPS hepatotoxicity. Maximum elevated concentrations of aspartate aminotransferase (136 to 15 632 U/L), alanine transaminase (121.5 to 9162 U/L), total bilirubin (0.7 to 702 mg/dL; 0.04 to 39.03 mmol/L), direct (0.2-15.1 mg/dL; 0.01-0.84 mmol/L) and indirect (5.3 mg/dL; 0.29 mmol/L) bilirubin, alkaline phosphatase (79-260 U/L), and gamma-glutamyltransferase (260 U/L) were observed as biochemical markers of liver damage, with acute and fulminant liver failure the major toxic effects described in the NPS case reports. In vitro laboratory studies and subsequent in vivo NPS exposure studies on rats and mice provide data on potential mechanisms of toxicity. Oxidative stress, plasma membrane stability, and cellular energy changes led to apoptosis and cell death. Experimental studies of human liver microsome incubation with synthetic NPS, with and without specific cytochrome P450 inhibitors, highlighted specific enzyme inhibitions and potential drug-drug interactions leading to hepatotoxicity. SUMMARY Mild to severe hepatotoxic effects following synthetic NPS exposure were described in case reports. In diagnosing the etiology of liver damage, synthetic NPS exposure should be considered as part of the differential diagnosis. Identification of NPS toxicity is important for educating patients on the dangers of NPS consumption and to suggest promising treatments for observed hepatotoxicity.
Collapse
Affiliation(s)
- Aurora Balloni
- Department of Excellence-Biomedical Sciences and Public Health, Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Anastasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Emilia Prospero
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine, and Public Health, Università Politecnica delle Marche, Ancona, Italy
- School of Nursing Science, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Marilyn Ann Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Zhang W, Cao F, Li M, Xu Z, Sun J, Huang Z, Shi P. The involvement of calcium in the toxic effect of 4-methylethcathinone on SH-SY5Y cells. J Appl Toxicol 2024; 44:553-563. [PMID: 37950502 DOI: 10.1002/jat.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Neurotoxicity induced by psychoactive substances is often accompanied by an imbalance of intracellular calcium ions. It is unclear whether calcium ions play a role in the toxicity induced by psychoactive substances. In the present study, we aimed to evaluate the occurrence of calcium dysregulation and its contribution to cytotoxicity in human neurotypic SH-SY5Y cells challenged with a recently developed psychoactive substance 4-methylethcathinone (4-MEC). An increase in the intracellular calcium was detected by inductively coupled plasma atomic emission spectrometry and Fluo-3 AM dye in SH-SY5Y cells after being treated with 4-MEC. The increase of intracellular Ca2+ level mediated G0/G1 cell cycle arrest and ROS/endoplasmic reticulum stress-autophagy signaling pathways to achieve the toxicity of 4-MEC. In particular, N-acetyl-L-cysteine, a classical antioxidant, was found to be a potential treatment for 4-MEC-induced toxicity. Taken together, our results demonstrate that an increase in intracellular calcium content is one of the mechanisms of 4-MEC-induced toxicity. This study provides a molecular basis for the toxicity mechanism and therapeutic intervention of psychoactive substances.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwen Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Fahy KM, Eiken MK, Baumgartner KV, Leung KQ, Anderson SE, Berggren E, Bouzos E, Schmitt LR, Asuri P, Wheeler KE. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS OMEGA 2023; 8:3310-3318. [PMID: 36713725 PMCID: PMC9878656 DOI: 10.1021/acsomega.2c06882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials (ENMs) are synthesized with a diversity of surface chemistries that mediate biochemical interactions and physiological response to the particles. In this work, silver engineered nanomaterials (AgENMs) are used to evaluate the role of surface charge in protein interactions and cellular cytotoxicity. The most abundant protein in blood, human serum albumin (HSA), was interacted with 40 nm AgENMs with a range of surface-charged coatings: positively charged branched polyethyleneimine (bPEI), negatively charged citrate (CIT), and circumneutral poly(ethylene glycol) (PEG). HSA adsorption to AgENMs was monitored by UV-vis spectroscopy and dynamic light scattering, while changes to the protein structure were evaluated with circular dichroism spectroscopy. Binding affinity for citrate-coated AgENMs and HSA is largest among the three AgENM coatings; yet, HSA lost the most secondary structure upon interaction with bPEI-coated AgENMs compared to the other two coatings. HSA increased AgENM oxidative dissolution across all particle types, with the greatest dissolution for citrate-coated AgENMs. Results indicate that surface coating is an important consideration in transformation of both the particle and protein upon interaction. To connect results to cellular outcomes, we also performed cytotoxicity experiments with HepG2 cells across all three AgENM types with and without HSA. Results show that bPEI-coated AgENMs cause the greatest loss of cell viability, both with and without inclusion of HSA with the AgENMs. Thus, surface coatings on AgENMs alter both biophysical interactions with proteins and particle cytotoxicity. Within this study set, positively charged bPEI-coated AgENMs cause the greatest disruption to HSA structure and cell viability.
Collapse
Affiliation(s)
- Kira M. Fahy
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Madeline K. Eiken
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Karl V. Baumgartner
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Kaitlyn Q. Leung
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Sarah E. Anderson
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Erik Berggren
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Evangelia Bouzos
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Lauren R. Schmitt
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Prashanth Asuri
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Korin E. Wheeler
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| |
Collapse
|
6
|
Farràs A, Mitjans M, Maggi F, Caprioli G, Vinardell MP, López V. Exploring wild Aspleniaceae ferns as safety sources of polyphenols: The case of Asplenium trichomanes L. and Ceterach officinarum Willd. Front Nutr 2022; 9:994215. [PMID: 36172521 PMCID: PMC9511145 DOI: 10.3389/fnut.2022.994215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The forest ecosystem is a source of material resources used since ancient times by mankind. Ferns are part of different oriental systems of traditional medicine due to the phytochemical variety of their fronds, which have allowed their traditional use to be validated through ethnopharmacological studies. In Europe, different cultures have used the same fern with a wide variety of applications due to its presence in most European forests. In recent years, studies on the phytocharacterization and biological activity of the fronds of the main European ferns have been published. In this study, the presence of polyphenolic phytochemicals has been evaluated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the fronds of two wild ferns together with in vitro activities in non-tumoral and human tumoral cell lines. The polyphenols were extracted from Asplenium trichomanes L. and Ceterach officinarum Willd. by cold maceration using methanol. The main phytochemicals of polyphenolic origin in the extracts of A. trichomanes and C. officinarum determined by HPLC-MS/MS were the flavonol hyperoside and the phenolic acid chlorogenic acid, respectively. This different polyphenolic nature of both extracts contributes to the divergence of the behavior experienced in the biological activities tested, but none of the extracts showed a cytotoxic or phototoxic profile in the different tested cell lines. However, the cytoprotective values in front of the H2O2 oxidative stress induced in the 3T3 and HaCaT cell lines position these extracts as possible candidates for future health applications.
Collapse
Affiliation(s)
- Adrià Farràs
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
| | - Montserrat Mitjans
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Filippo Maggi
- School of Pharmacy, Università di Camerino, Camerino, Italy
| | | | - María Pilar Vinardell
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
- *Correspondence: Víctor López,
| |
Collapse
|
7
|
Gampfer TM, Wagmann L, Pulver B, Westphal F, Flockerzi V, Meyer MR. A simplified strategy to assess the cytotoxicity of new psychoactive substances in HepG2 cells using a high content screening assay - Exemplified for nine compounds. Toxicology 2022; 476:153258. [PMID: 35842060 DOI: 10.1016/j.tox.2022.153258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
New psychoactive substances (NPS) are an issue of global concern posing a serious threat to the healthcare systems. Consumption of some NPS has been associated with toxic effects on the liver amongst others. However, data concerning their (cyto-)toxicity are usually not available. For a straightforward assessment of their cytotoxic potential, a simplified strategy measuring six different cytotoxicity indicating parameters simultaneously by a high content screening assay (HCSA) was developed. Its applicability was further investigated using nine NPS from heterogeneous chemical classes. HepG2 cells were incubated with NPS for 48 h at a low and high concentration (7.81 and 125 µM), respectively. To study metabolism-mediated effects on their cytotoxicity, cells were additionally incubated with the unspecific cytochrome (CYP) P450 inhibitor 1-aminobenzotriazole. Four fluorescence dyes were used to monitor cell count, nuclear size, and nuclear intensity (all Hoechst33342), mitochondrial membrane potential (TMRM), cytoplasmic calcium levels (CAL-520), and plasma membrane integrity (TOTO-3). Amongst the investigated NPS, ephylone, CUMYL-CBMICA, and dibutylone showed a strong cytotoxic potential, affecting two parameters at 7.81 µM. 5-MeO-MiPT showed moderate effects by impairing one parameter at 7.81 and one at 125 µM. Furthermore, at the high concentration of 5-MeO-MiPT, an effect of metabolism on cytotoxicity was observed. The HCSA confirmed the cytotoxic potential of ephylone and 5-MeO-MiPT, as the investigated concentrations were in the range of their published blood concentrations which induced liver damages after intake. The mitochondrial membrane potential was the parameter with the highest sensitivity and thus considered as suitable "cytobiomarker". In turn, parameters showing a high variability or unexpected effects such as cytosolic calcium levels and plasma membrane integrity might be omitted in the future. Even though 5-MeO-MiPT showed metabolism-based effects, HepG2 are known to have limited metabolic activity compared to cell lines such as HepaRG. Therefore, in further experiments cell lines with higher CYP-expression needs to be included and findings compared. Nevertheless, the simplified HCSA-based strategy allowed to screen NPS from diverse chemical groups for a first assessment of the cytotoxic properties of the parent compound. This information is crucial for a thorough risk assessment of NPS not only for public health authorities.
Collapse
Affiliation(s)
- Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany; Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Herrmann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| |
Collapse
|
8
|
Evaluation of Toxicity and Oxidative Stress of 2-Acetylpyridine-N(4)-orthochlorophenyl Thiosemicarbazone. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4101095. [PMID: 35345833 PMCID: PMC8957429 DOI: 10.1155/2022/4101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
Abstract
Thiosemicarbazones are well known for their broad spectrum of action, including antitumoral and antiparasitic activities. Thiosemicarbazones work as chelating binders, reacting with metal ions. The objective of this work was to investigate the in silico, in vitro, and in vivo toxicity and oxidative stress of 2-acetylpyridine-N(4)-orthochlorophenyl thiosemicarbazone (TSC01). The in silico prediction showed good absorption by biological membranes and no theoretical toxicity. Also, the compound did not show cytotoxicity against Hep-G2 and HT-29 cells. In the acute nonclinical toxicological test, the animals treated with TSC01 showed behavioral changes of stimulus of the central nervous system (CNS) at 300 mg/kg. One hour after administration, a dose of 2000 mg/kg caused depressive signs. All changes disappeared after 24 h, with no deaths, which suggest an estimated LD50 of 5000 mg/kg and GSH 5. The group treated with 2000 mg/kg had an increase of water consumption and weight gain in the second week. The biochemical parameters presented no toxicity relevance, and the analysis of oxidative stress in the liver found an increase of lipid peroxidation and nitric oxide. However, histopathological analysis showed organ integrity was maintained without any changes. In conclusion, the results show the low toxicological potential of thiosemicarbazone derivative, indicating future safe use.
Collapse
|
9
|
Cytotoxic, genotoxic, and oxidative stress-related effects of lysergic acid diethylamide (LSD) and phencyclidine (PCP) in the human neuroblastoma SH-SY5Y cell line. Arh Hig Rada Toksikol 2021; 72:333-342. [PMID: 34985843 PMCID: PMC8785105 DOI: 10.2478/aiht-2021-72-3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Lysergic acid diethylamide (LSD) is a classic hallucinogen, widely abused for decades, while phencyclidine (PCP) has increased in popularity in recent years, especially among the adolescents. Very little is known about the general toxicity of these compounds, especially about their possible neurotoxic effects at the cell level. The aim of this study was to address these gaps by assessing the toxic effects of 24-hour exposure to LSD and PCP in the concentration range of 0.39–100 μmol/L in the human neuroblastoma SH-SY5Y cell line. After cell viability was established, cells treated with concentrations that reduced their viability up to 30 % were further subjected to the alkaline comet assay and biochemical assays that enable estimation of oxidative stress-related effects. Treatment with LSD at 6.25 μmol/L and with PCP at 3.13 μmol/L resulted with 88.06±2.05 and 84.17±3.19 % of viable cells, respectively, and led to a significant increase in primary DNA damage compared to negative control. LSD also caused a significant increase in malondialdehyde level, reactive oxygen species (ROS) production, and glutathione (GSH) level, PCP significantly increased ROS but lowered GSH compared to control. Treatment with LSD significantly increased the activities of all antioxidant enzymes, while PCP treatment significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) but decreased catalase (CAT) activity compared to control. Our findings suggest that LSD has a greater DNA damaging potential and stronger oxidative activity than PCP in SH-SY5Y cells.
Collapse
|
10
|
Cytotoxicity, metabolism, and isozyme mapping of the synthetic cannabinoids JWH-200, A-796260, and 5F-EMB-PINACA studied by means of in vitro systems. Arch Toxicol 2021; 95:3539-3557. [PMID: 34453555 PMCID: PMC8492589 DOI: 10.1007/s00204-021-03148-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Intake of synthetic cannabinoids (SC), one of the largest classes of new psychoactive substances, was reported to be associated with acute liver damage but information about their hepatotoxic potential is limited. The current study aimed to analyze the hepatotoxicity including the metabolism-related impact of JWH-200, A-796260, and 5F-EMB-PINACA in HepG2 cells allowing a tentative assessment of different SC subclasses. A formerly adopted high-content screening assay (HCSA) was optimized using a fully automated epifluorescence microscope. Metabolism-mediated effects in the HCSA were additionally investigated using the broad CYP inhibitor 1-aminobenzotriazole. Furthermore, phase I metabolites and isozymes involved were identified by in vitro assays and liquid chromatography–high-resolution tandem mass spectrometry. A strong cytotoxic potential was observed for the naphthoylindole SC JWH-200 and the tetramethylcyclopropanoylindole compound A-796260, whereas the indazole carboxamide SC 5F-EMB-PINACA showed moderate effects. Numerous metabolites, which can serve as analytical targets in urine screening procedures, were identified in pooled human liver microsomes. Most abundant metabolites of JWH-200 were formed by N-dealkylation, oxidative morpholine cleavage, and oxidative morpholine opening. In case of A-796260, most abundant metabolites included an oxidative morpholine cleavage, oxidative morpholine opening, hydroxylation, and dihydroxylation followed by dehydrogenation. Most abundant 5F-EMB-PINACA metabolites were generated by ester hydrolysis plus additional steps such as oxidative defluorination and hydroxylation. To conclude, the data showed that a hepatotoxicity of the investigated SC cannot be excluded, that metabolism seems to play a minor role in the observed effects, and that the extensive phase I metabolism is mediated by several isozymes making interaction unlikely.
Collapse
|
11
|
Ordak M, Nasierowski T, Muszynska E, Bujalska-Zadrozny M. Psychoactive Substances Taken with Mephedrone and HCV Infection. J Clin Med 2021; 10:jcm10153218. [PMID: 34362002 PMCID: PMC8348849 DOI: 10.3390/jcm10153218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background: In recent years, the observed frequency of hospitalization of patients taking mephedrone with other psychoactive substances has increased. There are no data in the literature on the effect of mephedrone use on liver function in patients, including the frequency of HCV infection. We have analysed the impact of taking mephedrone together with other psychoactive substances on the incidence of HCV infection. We have also analysed the effect of taking mephedrone with heroin, alcohol, and benzodiazepines on liver enzyme levels. Methods: The study included patients taking mephedrone with: alcohol (n = 115), heroin (n = 85) and benzodiazepines (n = 130) hospitalized in 2010–2018. The control group consisted of patients addicted to alcohol (n = 180), heroin (n = 221) and benzodiazepines (n = 152). Clinical data and laboratory findings were collected from medical records. Results: Taking mephedrone together with benzodiazepines is a statistically significant predictor of HCV infection in this group of patients, OR (8.44); 95% CI 5.63–12.64; p < 0.001). A statistically significant interaction of the group with HCV infection was observed, i.e., for the level of alanine transaminase (p < 0.001) and aspartate transaminase (p < 0.001). Increased levels of liver enzymes in each of the studied groups was characteristic in patients with HCV infection (p < 0.001). Taking additional mephedrone by this group of patients did not increase the level of liver enzymes. Conclusion: HCV infection is a statistically significant factor affecting the increase in liver enzymes levels in the group of patients taking mephedrone.
Collapse
Affiliation(s)
- Michal Ordak
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence:
| | - Tadeusz Nasierowski
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Elzbieta Muszynska
- Department of Medical Biology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT), Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
12
|
From street to lab: in vitro hepatotoxicity of buphedrone, butylone and 3,4-DMMC. Arch Toxicol 2021; 95:1443-1462. [PMID: 33550444 DOI: 10.1007/s00204-021-02990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.
Collapse
|
13
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
14
|
Monitoring metabolism of synthetic cannabinoid 4F-MDMB-BINACA via high-resolution mass spectrometry assessed in cultured hepatoma cell line, fungus, liver microsomes and confirmed using urine samples. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00562-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Purpose
A tert-leucinate derivative synthetic cannabinoid, methyl (2S)-2-([1-(4-fluorobutyl)-1H-indazole-3-carbonyl]amino)-3,3-dimethylbutanoate (4F-MDMB-BINACA, 4F-MDMB-BUTINACA or 4F-ADB) is known to adversely impact health. This study aimed to evaluate the suitability of three different modes of monitoring metabolism: HepG2 liver cells, fungus Cunninghamella elegans (C. elegans) and pooled human liver microsomes (HLM) for comparison with human in-vivo metabolism in identifying suitable urinary marker(s) for 4F-MDMB-BINACA intake.
Methods
Tentative structure elucidation of in-vitro metabolites was performed on HepG2, C. elegans and HLM using liquid chromatography–tandem mass spectrometry and high-resolution mass spectrometry analysis. In-vivo metabolites obtained from twenty authentic human urine samples were analysed using liquid chromatography–Orbitrap mass spectrometry.
Results
Incubation with HepG2, C. elegans and HLM yielded nine, twenty-three and seventeen metabolites of 4F-MDMB-BINACA, respectively, formed via ester hydrolysis, hydroxylation, carboxylation, dehydrogenation, oxidative defluorination, carbonylation or reaction combinations. Phase II metabolites of glucosidation and sulfation were also exclusively identified using C. elegans model. Eight in-vivo metabolites tentatively identified were mainly products of ester hydrolysis with or without additional dehydrogenation, N-dealkylation, monohydroxylation and oxidative defluorination with further oxidation to butanoic acid. Metabolites with intact terminal methyl ester moiety, i.e., oxidative defluorination with further oxidation to butanoic acid, were also tentatively identified.
Conclusions
The in-vitro models presented proved useful in the exhaustive metabolism studies. Despite limitations, HepG2 identified the major 4F-MDMB-BINACA ester hydrolysis metabolite, and C. elegans demonstrated the capacity to produce a wide variety of metabolites. Both C. elegans and HLM produced all the in-vivo metabolites. Ester hydrolysis and ester hydrolysis plus dehydrogenation 4F-MDMB-BINACA metabolites were recommended as urinary markers for 4F-MDMB-BINACA intake.
Collapse
|
15
|
Twarog C, Liu K, O'Brien PJ, Dawson KA, Fattal E, Illel B, Brayden DJ. A head-to-head Caco-2 assay comparison of the mechanisms of action of the intestinal permeation enhancers: SNAC and sodium caprate (C 10). Eur J Pharm Biopharm 2020; 152:95-107. [PMID: 32387703 DOI: 10.1016/j.ejpb.2020.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are the two leading intestinal permeation enhancers (PEs) in oral peptide formulations in clinical trials. There is debate over their mechanism of action on intestinal epithelia. The aims were: (i) to compare their effects on the barrier function by measuring transepithelial electrical resistance (TEER), permeability of FITC-4000 (FD4) across Caco-2 monolayers, and on immunohistochemistry of tight junction (TJ)-associated proteins; and (ii) to compare cellular parameters using conventional end-point cytotoxicity assays and quantitative high content analysis (HCA) of multiple sub-lethal parameters in Caco-2 cells. C10 (8.5 mM) reversibly reduced TEER and increased FD4 permeability across monolayers, whereas SNAC had no effects on either parameter except at cytotoxic concentrations. C10 exposure induced reorganization of three TJ proteins, whereas SNAC only affected claudin-5 localization. High concentrations of C10 and SNAC were required to cause end-point toxicology changes in vitro. SNAC was less potent than C10 at inducing lysosomal and nuclear changes and plasma membrane perturbation. In parallel, HCA revealed that both agents displayed detergent-like features that reflect initial membrane fluidization followed by changes in intracellular parameters. In conclusion, FD4 permeability increases in monolayers in response to C10 were in the range of concentrations that altered end-point cytotoxicity and HCA parameters. For SNAC, while HCA parameters were also altered in a similar overall pattern as C10, they did not lead to increased paracellular flux. These assays show that both agents are primarily surfactants, but C10 has additional TJ-opening effects. While these in vitro assays illucidate their epithelial mechanism of action, clinical experience suggests that they over-estimate their toxicology in the dynamic intestinal environment.
Collapse
Affiliation(s)
- Caroline Twarog
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kai Liu
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elias Fattal
- School of Pharmacy, Institut Galien, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Brigitte Illel
- Drug Product Development, Small Molecules Oral Platform, Sanofi Research and Development, Montpellier, France
| | - David J Brayden
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Sodano F, Lazzarato L, Rolando B, Spyrakis F, De Caro C, Magliocca S, Marabello D, Chegaev K, Gazzano E, Riganti C, Calignano A, Russo R, Rimoli MG. Paracetamol-Galactose Conjugate: A Novel Prodrug for an Old Analgesic Drug. Mol Pharm 2019; 16:4181-4189. [PMID: 31465230 DOI: 10.1021/acs.molpharmaceut.9b00508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paracetamol has been one of the most commonly used and prescribed analgesic drugs for more than a hundred years. Despite being generally well tolerated, it can result in high liver toxicity when administered in specific conditions, such as overdose, or in vulnerable individuals. We have synthesized and characterized a paracetamol galactosylated prodrug (PARgal) with the aim of improving both the pharmacodynamic and pharmacological profile of paracetamol. PARgal shows a range of physicochemical properties, solubility, lipophilicity, and chemical stability at differing physiological pH values and in human serum. PARgal could still be preclinically detected 2 h after administration, meaning that it displays reduced hepatic metabolism compared to paracetamol. In overdose conditions, PARgal has not shown any cytotoxic effect in in vitro analyses performed on human liver cells. Furthermore, when tested in an animal pain model, PARgal demonstrated a sustained analgesic effect up to the 12th hour after oral administration. These findings support the use of galactose as a suitable carrier in the development of prodrugs for analgesic treatment.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Drug Science and Technology , University of Turin , 10125 , Turin , Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology , University of Turin , 10125 , Turin , Italy
| | - Barbara Rolando
- Department of Drug Science and Technology , University of Turin , 10125 , Turin , Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology , University of Turin , 10125 , Turin , Italy
| | - Carmen De Caro
- Department of Science of Health, School of Medicine and Surgery , "Magna Graecia" University of Catanzaro , 88100 Catanzaro , Italy.,Department of Pharmacy , "Federico II" University of Naples , 80131 Naples , Italy
| | - Salvatore Magliocca
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , 35131 Padova , Italy
| | - Domenica Marabello
- Department of Chemistry , University of Turin , 10125 Turin , Italy.,Interdepartmental Center for Crystallography (CrisDi) , 10125 Turin , Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology , University of Turin , 10125 , Turin , Italy
| | - Elena Gazzano
- Department of Oncology , University of Turin , 10126 Turin , Italy
| | - Chiara Riganti
- Department of Oncology , University of Turin , 10126 Turin , Italy
| | - Antonio Calignano
- Department of Pharmacy , "Federico II" University of Naples , 80131 Naples , Italy
| | - Roberto Russo
- Department of Pharmacy , "Federico II" University of Naples , 80131 Naples , Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy , "Federico II" University of Naples , 80131 Naples , Italy
| |
Collapse
|