1
|
Dedemadi AG, Sevdali E, Georgiadou D, Valanti EK, Neofotistou-Themeli E, Chanis T, Goutakoli P, Thymiakou E, Drakos E, Christopoulou G, Bournazos S, Constantoulakis P, Verginis P, Kardassis D, Stratikos E, Sidiropoulos P, Chroni A. Dantrolene is an HDL-associated paraoxonase-1 activator with immunosuppressive and atheroprotective properties. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159596. [PMID: 39842506 DOI: 10.1016/j.bbalip.2025.159596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Human paraoxonase 1 (PON1), an enzyme bound to high-density lipoprotein (HDL), hydrolyzes oxidized lipids and contributes to HDL atheroprotective functions. Decreased serum paraoxonase and arylesterase activities of PON1 have been reported in patients at increased atherosclerosis risk, such as rheumatoid arthritis patients, and associated with arthritis severity and cardiovascular risk. Agents that can modulate PON1 activity and HDL-mediated effects have not been discovered. Aiming to discover chemical tools that enhance PON1 activity, we screened a library of marketed drugs (956 compounds) to identify small molecules that can increase HDL-associated PON1 activity. Screening was performed by a kinetic absorbance assay using human HDL as a source of PON1, and paraoxon and phenyl acetate as substrates to measure paraoxonase and arylesterase activities, respectively. Screening identified the drug dantrolene as a potential PON1 activator, which was confirmed by enzymatic kinetic assays using recombinant wild-type PON1, as well as the PON1[L55M] variant displaying decreased enzyme activity in humans. Furthermore, we used the collagen-induced arthritis (CIA) mouse model to examine the effect of dantrolene on HDL properties and arthritis in vivo. Administration of dantrolene in CIA mice increased paraoxonase and arylesterase activities of PON1, as well as the antioxidant capacity of HDL, and reduced arthritis severity by inhibition of naïve CD4+ T cell differentiation to effector memory cells and generation of Th1 cells. Collectively, our in vitro and in vivo findings indicate using small molecules to enhance HDL-associated PON1 activity is a tractable approach that could lead to novel therapeutics targeting immune responses and atherosclerosis.
Collapse
Affiliation(s)
- Anastasia-Georgia Dedemadi
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Eirini Sevdali
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Daphne Georgiadou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Eftaxia-Konstantina Valanti
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Elpida Neofotistou-Themeli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Theodoros Chanis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Greece
| | - Elias Drakos
- Department of Pathology, Medical School, University of Crete, Heraklion, Greece
| | | | | | | | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece.
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
2
|
Wang L, Liu J, Gui W, Zhang R, Li X, Fang L, Li H, Pan D, Ye W. Molecular interaction mechanisms on (-)-epigallocatechin-3-gallate improving activities of inhibited acetylcholinesterase by selected organophosphorus pesticides in vitro & vivo. Sci Rep 2024; 14:22296. [PMID: 39333189 PMCID: PMC11436701 DOI: 10.1038/s41598-024-72637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is reported to have benefits for the treatment of Alzheimer's disease by binding with acetylcholinesterase (AChE) to enhance the cholinergic neurotransmission. Organophosphorus pesticides (OPs) inhibited AChE and damaged the nervous system. This study investigated the combined effects of EGCG and OPs on AChE activities in vitro & vivo. The results indicated that EGCG significantly reversed the inhibition of AChE caused by OPs. In vitro, EGCG reactived AChE in three group tubes incubated for 110 min, and in vivo, it increased the relative activities of AChE from less than 20% to over 70% in brain and vertebral of zebrafish during the exposure of 34 h. The study also proposed the molecular interaction mechanisms through the reactive kinetics and computational analyses of density functional theory, molecular docking, and dynamic modeling. These analyses suggested that EGCG occupied the key residues, preventing OPs from binding to the catalytic center of AChE, and interfering with the initial affinity of OPs to the central active site. Hydrogen bonding, conjugation, and steric interactions were identified as playing important roles in the molecular interactions. The work suggests that EGCG antagonized the inhibitions of OPs on AChE activities and potentially offered the neuroprotection against the induced damage.
Collapse
Affiliation(s)
- Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Jian Liu
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenqian Gui
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China.
| | - Xinmei Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Liancheng Fang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenling Ye
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| |
Collapse
|
3
|
Shuliakevich A, Schröder K, Nagengast L, Muz M, Pipal M, Brückner I, Hilscherova K, Brack W, Schiwy S, Hollert H. Morphological and behavioral alterations in zebrafish larvae after exposure to contaminated river sediments collected in different weather conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157922. [PMID: 35961394 DOI: 10.1016/j.scitotenv.2022.157922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Melis Muz
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Marek Pipal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Werner Brack
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabrina Schiwy
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
4
|
Ren Z, Poopal RK, Ramesh M. Synthetic organic chemicals (flame retardants and pesticides) with neurotoxic potential induced behavioral impairment on zebrafish (Danio rerio): a non-invasive approach for neurotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37534-37546. [PMID: 33713268 DOI: 10.1007/s11356-021-13370-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Behavior responses of organisms can be used as a non-invasive method for neurotoxicology studies since it directly links the nervous system's functioning and biochemical activities. Among different behavioral activities, aquatic organisms' swimming behavior (fitness) is the essential factor for health assessment; thus, it is practiced routinely in neurotoxicological studies. Zebrafish (Danio rerio) are excellent models for neurotoxicology studies. Based on the above information, we hypothesized that zebrafish's swimming behavior is a potential biomarker for neurotoxic effect assessment. We exposed zebrafish (length, 3-4 cm; weight, 0.2-0.3 g) to different synthetic organic chemicals (organophosphorus flame retardants (tri-cresyl phosphate and cresyl diphenyl phosphate) and neurotoxic pesticides (cypermethrin and methomyl) for 15 days. For each test chemical, we chose two different concentrations (Treatment-I 5 μL/L and Treatment-II 25 μL/L) to study their eco-toxicity. The swimming strength of zebrafish was quantified using an online monitoring system. The swimming strength of zebrafish decreased under different treatments (Treatment-I (5 μL/L) and -II (25 μL/L)) of target chemicals. The circadian rhythm of zebrafish was predominantly not affected in this study. Higher neurotoxic effect (behavioral impairment) was observed in Treatment-II when compare to Treatment-I of organophosphorus flame retardants and pesticides groups. Responses of zebrafish under organophosphorus flame retardant (tri-cresyl phosphate and cresyl diphenyl phosphate) treatments were identical with pesticide (cypermethrin and methomyl) treatments. Based on the results, we conclude that swimming behavior could be an ideal non-invasive biomarker to assess waterborne contaminants' neurotoxic effect.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Abd El-Rahman HA. Quercetin ameliorates the hepatic apoptosis of foetal rats induced by in utero exposure to fenitrothion via the transcriptional regulation of paraoxonase-1 and apoptosis-related genes. Biomarkers 2021; 26:152-162. [PMID: 33439051 DOI: 10.1080/1354750x.2021.1875505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & PURPOSE Exposure to organophosphorus during different phases of pregnancy induces many adverse impacts on the developing foetuses due to their immature detoxification system. We have estimated the potential amelioration role of quercetin against hepatic injury-induced apoptosis in rat foetuses following gestational exposure to fenitrothion and probable involvement of paraoxonase-1. METHODS Forty pregnant rats were allocated into four groups; the first one kept as control, the second intubated with quercetin (100 mg/kg), the third orally administrated fenitrothion (4.62 mg/kg) and the last group received quercetin two hours before fenitrothion intoxication. RESULTS Fenitrothion significantly elevated the foetal hepatic levels of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide, but it reduced the enzymatic activities of glutathione-S-transferase, superoxide dismutase, catalase, and acetylcholinesterase. Furthermore, fenitrothion provoked many histopathological changes in the foetal liver and markedly up-regulated the mRNA gene expression of p53, caspase-9 along with elevation in the immunoreactivity of Bax and caspase-3, but it down-regulated the expression level of paraoxonase-1. Remarkably, quercetin co-treatment successfully ameliorated the hepatic oxidative injury and apoptosis prompted by fenitrothion. CONCLUSIONS Dietary supplements with quercetin can be used to reduce the risk from organophosphorus exposure probably through paraoxonase-1 up-regulation and enhancement of the cellular antioxidant system.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|