1
|
Tung GK, Gandhi G. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment. Mol Cell Biochem 2024; 479:199-211. [PMID: 37004640 DOI: 10.1007/s11010-023-04720-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Global estimates exhibit that one million people have end-stage renal disease, a disease-state characterized by irreversible loss of kidney structure and function, thus necessitating renal replacement therapy. The disease-state, oxidative stress, inflammatory responses, as well as the treatment procedure can have damaging effects on the genetic material. Therefore, the present study was carried out to investigate DNA damage (basal and oxidative) using the comet assay in peripheral blood leukocytes of patients (n = 200) with stage V Chronic Kidney Disease (on dialysis and those recommended but yet to initiate dialysis) and compare it to that in controls (n = 210). Basal DNA damage was significantly elevated (1.13x, p ≤ 0.001) in patients (46.23 ± 0.58% DNA in tail) compared to controls (40.85 ± 0.61% DNA in tail). Oxidative DNA damage was also significantly (p ≤ 0.001) higher in patients (9.18 ± 0.49 vs. 2.59 ± 0.19% tail DNA) compared to controls. Twice-a-week dialysis regimen patients had significantly elevated % tail DNA and Damage Index compared to the non-dialyzed and to the once-a-week dialysis group implying dialysis- induced mechanical stress and blood-dialyzer membrane interactions as probable contributors to elevated DNA damage. The present study with a statistically significant power implies higher disease-associated as well as maintenance therapy (hemodialysis)-induced basal and oxidatively damaged DNA, which if not repaired has the potential to initiate carcinogenesis. These findings mark the need for improvement and development of interventional therapies for delaying disease progression and associated co-morbidities so as to improve life expectancy of patients with kidney disease.
Collapse
Affiliation(s)
- Gurleen Kaur Tung
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143001, India.
| | - Gursatej Gandhi
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143001, India
| |
Collapse
|
2
|
Zheng C, Collins A, Brunborg G, van Schooten FJ, Nordengen AL, Shaposhnikov S, Godschalk R. Assay conditions for estimating differences in base excision repair activity with Fpg-modified comet assay. Cell Biol Toxicol 2023; 39:2775-2786. [PMID: 36932276 PMCID: PMC10693524 DOI: 10.1007/s10565-023-09801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
DNA repair is an essential agent in cancer development, progression, prognosis, and response to therapy. We have adapted a cellular repair assay based on the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay to assess DNA repair kinetics. The removal of oxidized nucleobases over time (0-480 min) was analyzed in peripheral blood mononuclear cells (PBMCs) and 8 cell lines. DNA damage was induced by exposure to either Ro19-8022 plus visible light or potassium bromate (KBrO3). The initial amount of damage induced by Ro 19-8022 plus light varied between cell lines, and this was apparently associated with the rate of repair. However, the amount of DNA damage induced by KBrO3 varied less between cell types, so we used this agent to study the kinetics of DNA repair. We found an early phase of ca. 60 min with fast removal of Fpg-sensitive sites, followed by slower removal over the following 7 h. In conclusion, adjusting the initial damage at T0 to an equal level can be achieved by the use of KBrO3, which allows for accurate analysis of subsequent cellular DNA repair kinetics in the first hour after exposure.
Collapse
Affiliation(s)
- Congying Zheng
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, Ullernchassern, Oslo, Norway
| | | | | | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands
| | - Anne Lene Nordengen
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Department of Public Health, Sport and Nutrition, University of Agder, 4604, Kristiansand, Norway
- Department of Nutrition, University of Oslo, 0372, Oslo, Norway
| | - Sergey Shaposhnikov
- Norgenotech AS, 64/66, Ullernchassern, Oslo, Norway
- Oslo Cancer Cluster, 64/66, Ullernchassern, Oslo, Norway
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200, Maastricht, Netherlands.
| |
Collapse
|
3
|
Popov AA, Petruseva IO, Naumenko NV, Lavrik OI. Methods for Assessment of Nucleotide Excision Repair Efficiency. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1844-1856. [PMID: 38105203 DOI: 10.1134/s0006297923110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
Nucleotide excision repair (NER) is responsible for removing a wide variety of bulky adducts from DNA, thus contributing to the maintenance of genome stability. The efficiency with which proteins of the NER system recognize and remove bulky adducts depends on many factors and is of great clinical and diagnostic significance. The review examines current concepts of the NER system molecular basis in eukaryotic cells and analyzes methods for the assessment of the NER-mediated DNA repair efficiency both in vitro and ex vivo.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalya V Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Audebert M, Assmann AS, Azqueta A, Babica P, Benfenati E, Bortoli S, Bouwman P, Braeuning A, Burgdorf T, Coumoul X, Debizet K, Dusinska M, Ertych N, Fahrer J, Fetz V, Le Hégarat L, López de Cerain A, Heusinkveld HJ, Hogeveen K, Jacobs MN, Luijten M, Raitano G, Recoules C, Rundén-Pran E, Saleh M, Sovadinová I, Stampar M, Thibol L, Tomkiewicz C, Vettorazzi A, Van de Water B, El Yamani N, Zegura B, Oelgeschläger M. New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1220998. [PMID: 37492623 PMCID: PMC10364052 DOI: 10.3389/ftox.2023.1220998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Collapse
Affiliation(s)
- Marc Audebert
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Ann-Sophie Assmann
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Pavel Babica
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Emilio Benfenati
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Sylvie Bortoli
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Peter Bouwman
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Albert Braeuning
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tanja Burgdorf
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Xavier Coumoul
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Kloé Debizet
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Maria Dusinska
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Norman Ertych
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | - Verena Fetz
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ludovic Le Hégarat
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Harm J. Heusinkveld
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Kevin Hogeveen
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards, UKHSA: UK Health Security Agency, Chilton, Oxfordshire, United Kingdom
| | - Mirjam Luijten
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Giuseppa Raitano
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Cynthia Recoules
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Mariam Saleh
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Iva Sovadinová
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martina Stampar
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Lea Thibol
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | | | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Bob Van de Water
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Naouale El Yamani
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Michael Oelgeschläger
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
6
|
Lorenzo-López L, Lema-Arranz C, Fernández-Bertólez N, Costa S, Costa C, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Relationship between DNA damage measured by the comet-assay and cognitive function. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503557. [DOI: 10.1016/j.mrgentox.2022.503557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
7
|
Owiti NA, Kaushal S, Martin L, Sly J, Swartz CD, Fowler J, Corrigan JJ, Recio L, Engelward BP. Using the HepaCometChip Assay for Broad-Spectrum DNA Damage Analysis. Curr Protoc 2022; 2:e563. [PMID: 36165707 PMCID: PMC9522315 DOI: 10.1002/cpz1.563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Exposure to DNA damaging agents can lead to mutations that cause cancer. The liver is particularly vulnerable because it contains high levels of Cytochrome P450 enzymes that can convert xenobiotics into DNA reactive metabolites that form potentially carcinogenic bulky DNA adducts. As such, current requirements for preclinical testing include in vivo testing for DNA damage in the liver, which often requires many animals. Given that efforts are underway in many countries to reduce or eliminate the use of animals in research, there is a critical need for fast and robust in vitro tests to discern whether xenobiotics or potential pharmaceutical agents can damage the hepatocyte genome. One possible approach is to leverage the alkaline comet assay, which is used to assess genotoxicity based on the ability of damaged DNA to become free to migrate toward the anode during electrophoresis. The comet assay, however, has several limitations. The assay is (i) slow and (ii) vulnerable to experimental noise, (iii) it is difficult to detect bulky DNA adducts since they do not directly affect DNA migration, and (iv) cell types typically used do not have robust metabolic capacity. To address some of these concerns, we have developed the "HepaCometChip" (a.k.a. the HepaRG CometChip), wherein metabolically competent cells are incorporated into a higher throughput CometChip platform. Repair trapping is used to increase sensitivity for bulky lesions: undetectable bulky lesions are converted into repair intermediates (specifically, single-strand breaks) that can be detected with the assay. Here, we describe a protocol for performing the HepaCometChip assay that includes handling and dosing of HepaRG cells and performing the CometChip assay. With its higher throughput, ability to capture metabolic activation, and sensitivity to bulky lesions, the HepaCometChip offers a potential alternative to the use of animals for genotoxicity testing. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: HepaRG cell culturing and dosing Basic Protocol 2: CometChip assay.
Collapse
Affiliation(s)
- Norah A. Owiti
- Department of Biological EngineeringMassachusetts Institute of Technology (MIT)CambridgeMassachusetts
| | - Simran Kaushal
- Department of Biological EngineeringMassachusetts Institute of Technology (MIT)CambridgeMassachusetts
| | - Lincoln Martin
- Integrated Laboratory Systems, Inc. (ILS)Research Triangle ParkNorth Carolina
| | - Jamie Sly
- Integrated Laboratory Systems, Inc. (ILS)Research Triangle ParkNorth Carolina
| | - Carol D. Swartz
- Integrated Laboratory Systems, Inc. (ILS)Research Triangle ParkNorth Carolina
| | - Jasmine Fowler
- Integrated Laboratory Systems, Inc. (ILS)Research Triangle ParkNorth Carolina
| | - Joshua J. Corrigan
- Department of Biological EngineeringMassachusetts Institute of Technology (MIT)CambridgeMassachusetts
| | - Les Recio
- Integrated Laboratory Systems, Inc. (ILS)Research Triangle ParkNorth Carolina
| | - Bevin P. Engelward
- Department of Biological EngineeringMassachusetts Institute of Technology (MIT)CambridgeMassachusetts
| |
Collapse
|
8
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
9
|
Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 2021; 16:4265-4298. [PMID: 34363069 PMCID: PMC9272811 DOI: 10.1038/s41596-021-00577-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed 'fluorescence multiplex host cell reactivation' (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.
Collapse
Affiliation(s)
- C G Piett
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - T J Pecen
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - D J Laverty
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Z D Nagel
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Muruzabal D, Sanz-Serrano J, Sauvaigo S, Treillard B, Olsen AK, López de Cerain A, Vettorazzi A, Azqueta A. Validation of the in vitro comet assay for DNA cross-links and altered bases detection. Arch Toxicol 2021; 95:2825-2838. [PMID: 34196753 PMCID: PMC8298235 DOI: 10.1007/s00204-021-03102-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
Mechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.
Collapse
Affiliation(s)
- Damián Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain
| | - Sylvie Sauvaigo
- LXRepair, Biopolis, 5 Avenue du Grand Sablon, 38700, La Tronche, France
| | | | - Ann-Karin Olsen
- Section of Molecular Toxicology, Department of Environmental Health, Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
11
|
Sanz-Serrano J, Vettorazzi A, Muruzabal D, López de Cerain A, Azqueta A. In vitro genotoxicity assessment of functional ingredients: DHA, rutin and α-tocopherol. Food Chem Toxicol 2021; 153:112237. [PMID: 33894296 DOI: 10.1016/j.fct.2021.112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
The in vitro genotoxicity of three compounds widely used as functional ingredients, docosahexaenoic acid (DHA), rutin and α-tocopherol, was assessed. A miniaturized version of the Ames test in Salmonella typhimurium TA97a, TA98, TA100, TA102, and TA1535 strains (following the principles of OECD 471), and the in vitro micronucleus test in TK6 cells (OECD 487) were performed. This strategy is recommended by the European Food Safety Authority for the in vitro genotoxicity assessment of food and feed. In addition, this approach was complemented with the in vitro standard and enzyme-modified comet assay (S9-/S9+) using hOGG1, EndoIII and hAAG in order to assess potential premutagenic lesions in TK6 cells. Rutin showed an equivocal response in the in vitro micronucleus test and also was a potent Salmonella typhimurium revertant inductor in the Ames test. DHA showed equivocal results in the in vitro micronucleus test. In this regard, DHA and rutin seemed to interact with the DNA at a chromosomal level, but rutin is also capable of producing frameshift mutations. No genotoxicity was observed in cells treated with α-tocopherol. This article complements the evidence already available about the genotoxicity of these compounds. However, more studies are needed in order to elucidate the consequences of their use as functional ingredients in human health.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- Universidad de Navarra, School of Pharmacy and Nutrition, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain
| | - Ariane Vettorazzi
- Universidad de Navarra, School of Pharmacy and Nutrition, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008, Pamplona, Spain
| | - Damian Muruzabal
- Universidad de Navarra, School of Pharmacy and Nutrition, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain
| | - Adela López de Cerain
- Universidad de Navarra, School of Pharmacy and Nutrition, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008, Pamplona, Spain.
| | - Amaya Azqueta
- Universidad de Navarra, School of Pharmacy and Nutrition, Department of Pharmacology and Toxicology, Irunlarrea 1, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008, Pamplona, Spain
| |
Collapse
|
12
|
Sanz-Serrano J, Vettorazzi A, Muruzabal D, Azqueta A, López de Cerain A. In Vitro Genotoxicity Assessment of Functional Ingredients: Betaine, Choline, and Taurine. Foods 2021; 10:339. [PMID: 33562510 PMCID: PMC7915792 DOI: 10.3390/foods10020339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
This article focuses on a complete in vitro genotoxicity assessment of three nutrients widely used as functional ingredients in the European market: betaine, choline, and taurine. The European Food Safety Authority (EFSA) tiered approach for food additives in concordance with the safety assessment of chemicals in food developed by Food and Agriculture Organization/World Health Organization (FAO/WHO) was followed; the miniaturized Ames test in Salmonella typhimurium TA97a, TA98, TA100, TA102, and TA1535 strains (following the principles of Organization for Economic Co-operation and Development (OECD) 471), and the micronucleus test (OECD 487) in TK6 cells were performed. In addition, the in vitro standard and enzyme-modified (human 8-oxoguanine DNA glycosylase 1 (hOGG), endonuclease III (EndoIII), human alkyladenine DNA glycosylase (hAAG)) comet assay (S9-/S9+) was conducted in order to assess the potential premutagenic lesions in TK6 cells. None of the compounds produced any signs of genotoxicity in any of the conditions tested. This article increases the limited evidence available and complements the EFSA recommendations for the in vitro genotoxicity testing of nutrients.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (A.V.); (D.M.); (A.L.d.C.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
13
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
14
|
Gajski G, Langie S, Zhanataev A. Recent applications of the Comet Assay: A report from the International Comet Assay Workshop 2019. Toxicol Lett 2020; 333:1-3. [PMID: 32721575 DOI: 10.1016/j.toxlet.2020.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The International Comet Assay Workshops (ICAW) are a series of scientific conferences dealing with different aspects of the comet assay. The assay itself is a simple method for the detection of DNA strand breaks at the cellular level and can be applied to any cell type derived from different organs and tissues of eukaryotic organisms. Additionally, the comet assay is widely applied in human biomonitoring, ecotoxicology, genotoxicity testing of chemicals, but also in basic research studying the mechanisms of DNA damage and repair. The 2019 ICAW edition gathered about 80 participants with over 30 lecturers, 27 poster presentations and 2 open discussion sessions presenting the latest advances in technical developments as well as applications of the comet assay in genetic toxicology, and environmental and human biomonitoring. This report summarises the important issues that were raised and discussed during the sessions as well as a short synopsis of the papers selected for inclusion in this special issue. Based on the topics presented at the workshop, the assay with its new modifications and applications has a bright future and will for sure stay one of the most popular methods in genetic toxicology and beyond in the years to come.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sabine Langie
- Hasselt University, Centre for Environmental Sciences, Hasselt, Belgium; Maastricht University, School for Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, Maastricht, the Netherlands.
| | - Aliy Zhanataev
- Zakusov Research Institute of Pharmacology, Laboratory of Pharmacology and Mutagenesis, Moscow, Russia.
| |
Collapse
|