1
|
Zhu Y, Liu F, Liu L, Wang J, Gao F, Ye L, Wu H, Zhou C, Lin G, Zhao X, Li P. Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. J Zhejiang Univ Sci B 2024; 26:76-91. [PMID: 39815612 PMCID: PMC11735908 DOI: 10.1631/jzus.b2300896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/17/2024] [Indexed: 10/22/2024]
Abstract
Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.
Collapse
Affiliation(s)
- Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinfu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lan Ye
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Honglei Wu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guimei Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Zeidler-Erdely PC, Kodali V, Falcone LM, Mercer R, Leonard SS, Stefaniak AB, Grose L, Salmen R, Trainor-DeArmitt T, Battelli LA, McKinney W, Stone S, Meighan TG, Betler E, Friend S, Hobbie KR, Service S, Kashon M, Antonini JM, Erdely A. Absence of lung tumor promotion with reduced tumor size in mice after inhalation of copper welding fumes. Carcinogenesis 2024; 45:630-641. [PMID: 39046922 DOI: 10.1093/carcin/bgae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increases lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for 9 weeks (low deposition-LD and high deposition-HD) and then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume-induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose-response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo, the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with HD exposure, less overall lung lesions/tumors.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lauryn M Falcone
- Department of Dermatology, University of Pittsburgh Medical Center, 3708 Fifth Avenue Suite 500.68, Pittsburgh, PA 15213, United States
| | - Robert Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Stephen S Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lindsay Grose
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Taylor Trainor-DeArmitt
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Samuel Stone
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Ella Betler
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Kristen R Hobbie
- Pathology Department, Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, United States
| | - Samantha Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV 26508, United States
| |
Collapse
|
3
|
Lu H, Wise SS, Speer RM, Croom-Perez TJ, Toyoda JH, Meaza I, Williams A, Wise JP, Kouokam JC, Young Wise J, Hoyle GW, Zhu C, Ali AM, Wise JP. Acute particulate hexavalent chromium exposure induces DNA double-strand breaks and activates homologous recombination repair in rat lung tissue. Toxicol Sci 2024; 201:1-13. [PMID: 38867691 PMCID: PMC11347773 DOI: 10.1093/toxsci/kfae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double-strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability. Cell culture studies show acute Cr(VI) exposure causes DNA double-strand breaks and increases homologous recombination repair activity. However, the ability of Cr(VI)-induced DNA breaks and repair impact has only been reported in cell culture studies. Therefore, we investigated whether acute Cr(VI) exposure could induce breaks and homologous recombination repair in rat lungs. Male and female Wistar rats were acutely exposed to either zinc chromate particles in a saline solution or saline alone by oropharyngeal aspiration. This exposure route resulted in increased Cr levels in each lobe of the lung. We found Cr(VI) induced DNA double-strand breaks in a concentration-dependent manner, with females being more susceptible than males, and induced homologous recombination repair at similar levels in both sexes. Thus, these data show this driving mechanism discovered in cell culture indeed translates to lung tissue in vivo.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Aggie Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - John Pierce Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Pediatric Research Institute, University of Louisville, Louisville, KY 40292, United States
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jamie Young Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, United States
| | - Cairong Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Abdul-Mehdi Ali
- Earth and Planetary Sciences Department, The University of New Mexico, Albuquerque, NM 87131, United States
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
4
|
Islam S, Sarkar O, Mukherjee S, Kamila S, Bhowmik AD, Chattopadhyay A. Chronic low-dose chromium VI exposure induces oxidative stress and apoptosis with altered expressions of DNA repair genes and promoter hypermethylation in the liver of Swiss albino mice. J Appl Toxicol 2024; 44:1014-1027. [PMID: 38523572 DOI: 10.1002/jat.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
5
|
Wang PS, Liu Z, Sweef O, Saeed AF, Kluz T, Costa M, Shroyer KR, Kondo K, Wang Z, Yang C. Hexavalent chromium exposure activates the non-canonical nuclear factor kappa B pathway to promote immune checkpoint protein programmed death-ligand 1 expression and lung carcinogenesis. Cancer Lett 2024; 589:216827. [PMID: 38527692 PMCID: PMC11375691 DOI: 10.1016/j.canlet.2024.216827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide; however, the mechanism of lung carcinogenesis has not been clearly defined. Chronic exposure to hexavalent chromium [Cr(VI)], a common environmental and occupational pollutant, causes lung cancer, representing an important lung cancer etiology factor. The mechanism of how chronic Cr(VI) exposure causes lung cancer remains largely unknown. By using cell culture and mouse models and bioinformatics analyses of human lung cancer gene expression profiles, this study investigated the mechanism of Cr(VI)-induced lung carcinogenesis. A new mouse model of Cr(VI)-induced lung carcinogenesis was developed as evidenced by the findings showing that a 16-week Cr(VI) exposure (CaCrO4, 100 μg per mouse once per week) via oropharyngeal aspiration induced lung adenocarcinomas in male and female A/J mice, whereas none of the sham-exposed control mice had lung tumors. Mechanistic studies revealed that chronic Cr(VI) exposure activated the non-canonical NFκB pathway through the long non-coding RNA (lncRNA) ABHD11-AS1/deubiquitinase USP15-mediated tumor necrosis factor receptor-associated factor 3 (TRAF3) down-regulation. The non-canonical NFκB pathway activation increased the interleukin 6 (IL-6)/Janus kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling. The activation of the IL-6/Jak signaling axis by Cr(VI) exposure not only promoted inflammation but also stabilized the immune checkpoint molecule programmed death-ligand 1 (PD-L1) protein in the lungs, reducing T lymphocyte infiltration to the lungs. Given the well-recognized critical role of PD-L1 in inhibiting anti-tumor immunity, these findings suggested that the lncRNA ABHD11-AS1-mediated non-canonical NFκB pathway activation and PD-L1 up-regulation may play important roles in Cr(VI)-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Abdullah Farhan Saeed
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas Kluz
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Kenneth R Shroyer
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8509, Japan
| | - Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Wang PS, Liu Z, Sweef O, Xie J, Chen J, Zhu H, Zeidler-Erdely PC, Yang C, Wang Z. Long noncoding RNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote lung carcinogenesis. ENVIRONMENT INTERNATIONAL 2024; 185:108494. [PMID: 38364571 PMCID: PMC11375692 DOI: 10.1016/j.envint.2024.108494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer in humans, however, the mechanism of Cr(VI) carcinogenesis has not been well understood. Lung cancer is the leading cause of cancer-related death, although the mechanisms of how lung cancer develops and progresses have been poorly understood. While long non-coding RNAs (lncRNAs) are found abnormally expressed in cancer, how dysregulated lncRNAs contribute to carcinogenesis remains largely unknown. The goal of this study is to investigate the mechanism of Cr(VI)-induced lung carcinogenesis focusing on the role of the lncRNA ABHD11 antisense RNA 1 (tail to tail) (ABHD11-AS1). It was found that the lncRNA ABHD11-AS1 expression levels are up-regulated in chronic Cr(VI) exposure-transformed human bronchial epithelial cells, chronically Cr(VI)-exposed mouse lung tissues, and human lung cancer cells as well. Bioinformatics analysis revealed that ABHD11-AS1 levels are up-regulated in lung adenocarcinomas (LUADs) tissues and associated with worse overall survival of LUAD patients but not in lung squamous cell carcinomas. It was further determined that up-regulation of ABHD11-AS1 expression plays an important role in chronic Cr(VI) exposure-induced cell malignant transformation and tumorigenesis, and the stemness of human lung cancer cells. Mechanistically, it was found that ABHD11-AS1 directly binds SART3 (spliceosome associated factor 3, U4/U6 recycling protein). The interaction of ABHD11-AS1 with SART3 promotes USP15 (ubiquitin specific peptidase 15) nuclear localization. Nuclear localized USP15 interacts with pre-mRNA processing factor 19 (PRPF19) to increase CD44 RNA alternative splicing activating β-catenin and enhancing cancer stemness. Together, these findings indicate that lncRNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote cell malignant transformation and lung carcinogenesis.
Collapse
Affiliation(s)
- Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jie Xie
- Department of Toxicology and Cancer Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Haining Zhu
- Department of Biochemistry and Molecular Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Li X, Abdel-Moneim AME, Hua J, Zhao L, Hu Z, Pang X, Wang S, Chen Z, Yang B. Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro). Biol Trace Elem Res 2023; 201:1913-1934. [PMID: 35653032 DOI: 10.1007/s12011-022-03294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Chromium exposure has adverse impacts on human health and the environment, whereas chromate-induced hepatotoxicity's detailed mechanism is still unclear. Therefore, the purpose of the current study was to reveal the crucial signaling pathways and genes linked to sodium chromate-induced hepatotoxicity. GSE19662, a gene expression microarray, was obtained from Gene Expression Omnibus (GEO). Six primary rat hepatocyte (PRH) samples from GSE19662 include sodium chromate-treated (n = 3) and the control PRH samples (n = 3). A total of 2,525 differentially expressed genes (DEGs) were obtained, especially 962, and 1,563 genes were up- and downregulated in sodium chromate-treated PRHs compared to the control. Gene ontology (GO) enrichment analysis suggested that those DEGs were involved in multiple biological processes, including the response to toxic substances, the positive regulation of apoptotic process, lipid and cholesterol metabolic process, and others. Signaling pathway enrichment analysis indicated that the DEGs were mainly enriched in MAPK, PI3K-Akt, PPAR, AMPK, cellular senescence, hepatitis B, fatty acid biosynthesis, etc. Moreover, many genes, including CYP2E1, CYP1A2, CYP2C13, CDK1, NDC80, and CCNB1, might contribute to sodium chromate-induced hepatotoxicity. Taken together, this study enhances our knowledge of the potential molecular mechanisms of sodium chromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Jinling Hua
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Lei Zhao
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xunsheng Pang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihao Chen
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
8
|
Islam S, Kamila S, Chattopadhyay A. Toxic and carcinogenic effects of hexavalent chromium in mammalian cells in vivo and in vitro: a recent update. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:282-315. [PMID: 36728911 DOI: 10.1080/26896583.2022.2158675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chromium VI (Cr (VI)) can cross cell membranes readily and causes the formation of Cr-DNA adducts, genomic damages, elevation of reactive oxygen species (ROS) and alteration of survival signaling pathways, as evidenced by the modulation in p53 signaling pathway. Mammals, including humans are exposed to Cr, including Cr (VI), frequently through inhalation, drinking water, and food. Several studies demonstrated that Cr (VI) induces cellular death through apoptosis and autophagy, genotoxicity, functional alteration of mitochondria, endocrine and reproductive impairments. In the present review, studies on deleterious effects of Cr (VI) exposure to mammalian cells (in vivo and in vitro) have been documented. Special attention is paid to the underlying molecular mechanism of Cr (VI) toxicity.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
9
|
Wise SS, Lu H, Speer RM, Wise JP, Young J, Toyoda JH, Meaza I, Croom-Perez TJ, Kouokam JC, Specht A, Liu KJ, Hoyle GW, Wise JP. Chromium distribution in an oropharyngeal aspiration model for hexavalent chromium in rats. Toxicol Appl Pharmacol 2022; 457:116294. [PMID: 36283442 PMCID: PMC10121970 DOI: 10.1016/j.taap.2022.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America; Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States of America
| | - John Pierce Wise
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, United States of America
| | - Jamie Young
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America
| | - Aaron Specht
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States of America
| | - Gary W Hoyle
- Department of Environmental and Occupational Health, School of Public Health and Information Sciences University of Louisville, Louisville, KY, United States of America
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, 500 S. Preston St, HSC55A Rm 1422, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
10
|
Wang Z, Uddin MB, Xie J, Tao H, Zeidler-Erdely PC, Kondo K, Yang C. Chronic Hexavalent Chromium Exposure Upregulates the RNA Methyltransferase METTL3 Expression to Promote Cell Transformation, Cancer Stem Cell-Like Property, and Tumorigenesis. Toxicol Sci 2022; 187:51-61. [PMID: 35201342 PMCID: PMC9216043 DOI: 10.1093/toxsci/kfac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental carcinogen causing lung cancer in humans. This study investigates the mechanism of Cr(VI) carcinogenesis focusing on the role of the epitranscriptomic dysregulation. The epitranscriptomic effect of Cr(VI) was determined in Cr(VI)-transformed human bronchial epithelial cells, chromate-exposed mouse and human lungs. The epitranscriptomic effect and its role in Cr(VI)-induced cell transformation, cancer stem cell (CSC)-like property, and tumorigenesis were determined by microarray analysis, soft agar colony formation, suspension spheroid formation, and mouse xenograft tumorigenesis assays. It was found that chronic Cr(VI) exposure causes epitranscriptomic dysregulations as evidenced by the increased levels of total RNA N6-methyladenosine (m6A) modification and the RNA m6A methyltransferase like-3 (METTL3) in Cr(VI)-transformed cells and chromate exposure-caused mouse and human lung tumors. Knockdown of METTL3 expression in Cr(VI)-transformed cells significantly reduces their m6A levels and transformed phenotypes and tumorigenicity in mice. Moreover, knockdown of METTL3 expression in parental nontransformed cells significantly reduces the capability of chronic Cr(VI) exposure to induce cell transformation and CSC-like property. Together, this study reveals that chronic Cr(VI) exposure is capable of altering cellular epitranscriptome by increasing the m6A RNA modification via upregulating the RNA methyltransferase METTL3 expression, which plays an important role in Cr(VI)-induced cell transformation, CSC-like property, and tumorigenesis.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Mohammad Burhan Uddin
- Center for Environmental and Systems Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Jie Xie
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Hua Tao
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26508, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| |
Collapse
|