1
|
Han S, Xie G, Wang Y. Association between estrogen and kidney function: population based evidence and mutual bidirectional Mendelian randomization study. Clin Exp Nephrol 2025; 29:753-764. [PMID: 39826006 DOI: 10.1007/s10157-024-02623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND Previous studies have suggested a potential role of estrogen in the pathophysiology of chronic kidney disease (CKD); however, the association and causality between estrogen and kidney function remain unclear. METHODS The cross-sectional correlation between serum estradiol concentration and estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR) was analyzed using data from the National Health and Nutrition Examination Survey 2013-2016. Causality was tested using mutual bidirectional Mendelian randomization (MR) approaches based on six large-scale GWAS studies. Weighted generalized multivariate linear regression was employed to estimate the association between estradiol and eGFR and ACR, and a restricted cubic spline analysis was utilized to investigate potential nonlinear relationships. RESULTS A total of 8932 participants were included. Serum estradiol concentration was positively associated with eGFR after adjusting for potential covariates (β, 0.76; 95% CI 0.24 to 1.27) and with ACR (β, 5.99; 95% CI 1.62 to 10.36). A nonlinear positive association was found between estradiol and eGFR, while an inverse "V"-shaped relationship was seen with ACR. Sensitivity analyses confirmed the stability of the relationship between estradiol and eGFR but indicated a less robust association with ACR. Stratified analysis showed that the association between estradiol and eGFR was particularly significant in populations with CKD and hypertension. All forward MR analyses demonstrated a positive causal relationship between estradiol and eGFR, but no causality was found between estradiol and ACR. No reverse causal association was observed. CONCLUSIONS Serum estradiol concentration was causally associated with eGFR. Further longitudinal research is needed to validate these findings.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangliang Xie
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang Z, Li X, Liu X, Yang Y, Yan Y, Cui D, Meng C, Ali MI, Zhang J, Yao Z, Long Y, Yang R. Mechanistic insights into the anti-fibrotic effects of estrogen via the PI3K-Akt pathway in frozen shoulder. J Steroid Biochem Mol Biol 2025; 249:106701. [PMID: 39947440 DOI: 10.1016/j.jsbmb.2025.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The development of frozen shoulder (FS) is primarily characterized by pathological fibrosis, yet clinical treatment options remain limited. Recent studies have identified estrogen depletion during perimenopause as a significant contributor to the onset of FS and fibrosis. This study investigates the role of estradiol (E2) and the estrogen-related receptor (GPER) in fibrotic processes associated with FS to elucidate the underlying mechanisms. The functional relationship between E2, GPER, and FS progression was examined using a rat immobilization model and synovial-derived fibroblasts (SFs) from FS patients. E2's effects on GPER expression, fibroblast activation, and tissue fibrosis were evaluated through Western blotting, immunofluorescence staining, collagen contraction assays, wound healing assays, and histological staining. RNA sequencing identified signaling pathways and key regulators involved in E2 treatment. Both E2 and the GPER activator G1 exhibited antifibrotic effects, improving shoulder mobility, reducing extracellular matrix (ECM) deposition in the periarticular capsule, and decreasing the expression of fibrosis-related genes, including fibronectin, α-SMA, and COL3. In contrast, the GPER inhibitor G15 reversed these effects, suggesting that E2 mediates its antifibrotic action through GPER activation. Mechanistically, KEGG pathway analysis revealed that E2 suppresses the PI3K/AKT signaling pathway by inhibiting PI3K and AKT phosphorylation, thereby preventing fibroblast activation and reversing FS-associated fibrosis. These findings provide mechanistic insights into the previously unrecognized role of GPER in FS progression and may open new avenues for research to optimize future clinical therapies.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinhao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoshan Liu
- Pediatric Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yitao Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dedong Cui
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chenyang Meng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Maslah Idiris Ali
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zeyu Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Jiang W, He Z, Yao R, Xiao W, Chen Z, Zeng X, Zheng M, Wang J, Li J, Jiang Y. Eucommiae cortex extract alleviates renal fibrosis in CKD mice induced by adenine through the TGF-β1/Smad signaling pathway. J Nat Med 2025; 79:170-179. [PMID: 39443397 DOI: 10.1007/s11418-024-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Research into the potential therapeutic benefits of herbal remedies for treating chronic kidney disease (CKD), a condition marked by renal fibrosis and persistent inflammation, has become popular. Eucommiae cortex (EC) is a vital herb for strengthening bones and muscles and tonifying the kidneys and liver. In the study, C57 BL/6 mice were given a diet containing 0.2% adenine to create a CKD model. The findings demonstrated that exogenous EC supplementation successfully decreased the levels of creatinine and urea nitrogen, down-regulated the TGF-β1/Smad signaling pathway's expression levels of TGF-β1, α-SMA, Smad3, and phospho-Smad3, and prevented renal fibrosis. Consequently, it was determined that EC might have a nephroprotective impact.
Collapse
Affiliation(s)
- Wenyi Jiang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhengyou He
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| | - Ruijiao Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wenyan Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhiyang Chen
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Xia Zeng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Miao Zheng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Jing Wang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Jia Li
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Yong Jiang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Qi M, Hu X, Zhu W, Ren Y, Dai C. Study on effects and relevant mechanisms of Mudan granules on renal fibrosis in streptozotocin-induced diabetes rats. Ren Fail 2024; 46:2310733. [PMID: 38357745 PMCID: PMC10877650 DOI: 10.1080/0886022x.2024.2310733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS The effects and relevant mechanisms of Mudan granules in the renal fibrosis of diabetic rats were explored through in vivo experiments, which provided a scientific basis for expanding their clinical indications. METHODS Male SD rats were given a single intraperitoneal injection of STZ (65 mg/kg) to induce diabetes rat models. After treatment with Mudan granules, the general condition of rats was recorded. Blood glucose, blood lipids, and renal function-related indicators were detected, renal tissue morphological changes and fibrosis-related indicators were observed, and the expression of pathway-related proteins were examined. RESULTS The general condition of diabetes rats was improved after the treatment of Mudan granules, the 24-h urinary protein and urinary albumin to creatinine ratio were reduced, and the renal function and lipid results were modified. The tissue damage to the rat kidney has been repaired. Expression of TGF-β1/Smad-related pathway proteins was suppressed in kidney tissues, and the fibrosis factor CO-IV, FN, and LN were reduced in serum. CONCLUSION Mudan granules may inhibit of TGF-β1/Smad pathway, inhibit the production of ECM, reduce the levels of fibrosis factors CO-IV, FN, and LN, to have a protective effect on kidney in diabetes rats.
Collapse
Affiliation(s)
- Mushuang Qi
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
5
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Wu H, Xu F, Huang X, Li X, Yu P, Zhang L, Yang X, Kong J, Zhen C, Wang X. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154959. [PMID: 37478684 DOI: 10.1016/j.phymed.2023.154959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Type 2 diabetic nephropathy is a common diabetic complication and the main cause of death in patients with diabetes. Research has aimed to find an ideal drug with minimal side effects for treating this disease. Banana peel has been shown to be anti-diabetic, with lupenone isolated from banana peel exhibiting antidiabetic and anti-inflammatory activities; However, the effects of lupenone on type 2 diabetic nephropathy are largely unknown. PURPOSE This study aimed to investigate the ameliorative effect of lupenone on type 2 diabetic nephropathy, and its mechanism from both anti-inflammatory and anti-fibrotic perspectives. METHODS Spontaneous type 2 diabetic nephropathy db/db mouse models were given three levels of lupenone (24 or 12 or 6 mg/kg/d) via intragastric administration for six weeks, and irbesartan treatment was used for the positive control group. We explored the effects and mechanism of lupenone action using enzyme-linked immunosorbent assay, automatic biochemical analyzer, hematoxylin-eosin and Masson staining, real time-PCR, and western blotting. Concurrently, a high-sugar and high-fat diet combined with a low-dose streptozotocin-induced type 2 diabetic nephropathy rat model was used for confirmatory research. RESULTS Lupenone administration maintained the fasting blood glucose; reduced glycosylated hemoglobin, insulin, and 24 h proteinuria levels; and markedly regulated changes in biochemical indicators associated with kidney injury in serum and urine (including 24 h proteinuria, micro-albumin, N-acetyl-β-d-glucosaminidase, α1-micro-globulin, creatinine, urea nitrogen, uric acid, total protein, and albumin) of type 2 diabetic nephropathy mice and rats. Hematoxylin-eosin and Masson staining as well as molecular biology tests revealed that inflammation and fibrosis are the two key processes affected by lupenone treatment. Lupenone protected type 2 diabetic nephropathy kidneys by regulating the NF-κB-mediated inflammatory response and TGF-β1/Smad/CTGF pathway-associated fibrosis. CONCLUSION Lupenone has potential as an innovative drug for preventing and treating diabetic nephropathy. Additionally, it has great value for the utilization of banana peel resources.
Collapse
Affiliation(s)
- Hongmei Wu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Feng Xu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xulong Huang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaofen Li
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Piao Yu
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Lingling Zhang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiaosong Yang
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Juan Kong
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Cheng Zhen
- School of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025 Guizhou, PR China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025 Guizhou, PR China.
| |
Collapse
|
7
|
Gao XY, Jin Y, Zhao J, Zhang YL, Wang HW, Zhou BH. Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03519-6. [PMID: 36538210 DOI: 10.1007/s12011-022-03519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
To investigate fluoride (F)-induced intestine barrier damage and the role of estrogen deficiency in this progress, a rat model of estrogen deficiency was established through bilateral surgical removal of ovaries. The F exposure model was then continued by adding sodium fluoride (0, 25, 50, and 100 mg/L, calculated on a fluorine ion basis) to drinking water for 90 days. Afterward, intestinal mucosal structure, barrier function, and inflammatory cytokines were evaluated. The results showed that excessive F decreased the developmental parameters (crypt depth) of the cecum and rectum and inhibited the proliferation capacity of the intestinal epithelia, which are more obvious in the state of estrogen deficiency. The distribution of goblet cells and glycoproteins in the intestinal mucosa decreased with the increase in F concentration, and estrogen deficiency led to a further decline, especially in the rectum. Using the immunofluorescence method, the study showed that excessive F caused interleukin-17A (IL-17A) significantly decrease in the cecum and increase in the rectum. Meanwhile, F treatment remarkably upregulated the expression of intestinal IL-1β, IL-23, and IL-22, while the level of IL-6 was downregulated. In addition, estrogen deficiency increased IL-1β, IL-6, IL-23, and IL-22, but decreased IL-17A expression in the cecum and rectum. Collectively, F exposure damaged intestinal morphological structure, inhibited epithelial cell proliferation and mucus barrier function, and resulted in the disturbance of T helper (Th) 17 cell-related cytokines expression. Estrogen deficiency may further aggravate F-induced damage to the cecum and rectum.
Collapse
Affiliation(s)
- Xiao-Ying Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|