1
|
Zhou Y, Zhong Y, Lauschke VM. Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2025; 21:563-577. [PMID: 39893552 DOI: 10.1080/17425255.2025.2461484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Hepatotoxicity typically occurs only in a subset of individuals after prolonged exposure and constitutes a major risk factor for the termination of drug development projects. AREAS COVERED We provide an overview of available human liver models for DILI research and discuss how they have been used to aid in early risk assessments and to mitigate the risk of project closures due to DILI in clinical stages. We summarize the different data that can be provided by such models and illustrate how these diverse data types can be interfaced with machine learning strategies to improve predictions of liver safety liabilities. EXPERT OPINION Advanced human liver models closely mimic human liver phenotypes and functions for many weeks, allowing for the recapitulation of hepatotoxicity events in vitro. Integration of the biochemical, histological, and toxicogenomic output data from these models with physicochemical compound properties using different machine learning architectures holds promise to enhance preclinical DILI predictions. However, to realize this aim, it is important to benchmark the available liver models on test sets of DILI positive and negative compounds and to carefully annotate and share the resulting data.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Cadena Sandoval M, Haeusler RA. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:203-213. [PMID: 39757322 PMCID: PMC12053743 DOI: 10.1038/s41574-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Wang Z, Ye S, van der Laan LJ, Schneeberger K, Masereeuw R, Spee B. Chemically Defined Organoid Culture System for Cholangiocyte Differentiation. Adv Healthc Mater 2024; 13:e2401511. [PMID: 39044566 PMCID: PMC11616262 DOI: 10.1002/adhm.202401511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cholangiocyte organoids provide a powerful platform for applications ranging from in vitro modeling to tissue engineering for regenerative medicine. However, their expansion and differentiation are typically conducted in animal-derived hydrogels, which impede the full maturation of organoids into functional cholangiocytes. In addition, these hydrogels are poorly defined and complex, limiting the clinical applicability of organoids. In this study, a novel medium composition combined with synthetic polyisocyanopeptide (PIC) hydrogels to enhance the maturation of intrahepatic cholangiocyte organoids (ICOs) into functional cholangiocytes is utilized. ICOs cultured in the presence of sodium butyrate and valproic acid, a histone deacetylase inhibitor, and a Notch signaling activator, respectively, in PIC hydrogel exhibit a more mature phenotype, as evidenced by increased expression of key cholangiocyte markers, crucial for biliary function. Notably, mature cholangiocyte organoids in PIC hydrogel display apical-out polarity, in contrast to the traditional basal-out polarization of ICOs cultured in Matrigel. Moreover, these mature cholangiocyte organoids effectively model the biliary pro-fibrotic response induced by transforming growth factor beta. Taken together, an animal-free, chemically defined culture system that promotes the ICOs into mature cholangiocytes with apical-out polarity, facilitating regenerative medicine applications and in vitro studies that require access to the apical membrane, is developed.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of PharmacologyUtrecht Institute for Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Shicheng Ye
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Luc J.W. van der Laan
- Department of SurgeryErasmus MC Transplant InstituteUniversity Medical Center RotterdamDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Kerstin Schneeberger
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Bart Spee
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
5
|
Alijagic A, Sinisalu L, Duberg D, Kotlyar O, Scherbak N, Engwall M, Orešič M, Hyötyläinen T. Metabolic and phenotypic changes induced by PFAS exposure in two human hepatocyte cell models. ENVIRONMENT INTERNATIONAL 2024; 190:108820. [PMID: 38906088 DOI: 10.1016/j.envint.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Daniel Duberg
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuulia Hyötyläinen
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
6
|
Wang Z, Xing C, van der Laan LJW, Verstegen MMA, Spee B, Masereeuw R. Cholangiocyte organoids to study drug-induced injury. Stem Cell Res Ther 2024; 15:78. [PMID: 38475870 DOI: 10.1186/s13287-024-03692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Drug induced bile duct injury is a frequently observed clinical problem leading to a wide range of pathological features. During the past decades, several agents have been identified with various postulated mechanisms of bile duct damage, however, mostly still poorly understood. METHODS Here, we investigated the mechanisms of chlorpromazine (CPZ) induced bile duct injury using advanced in vitro cholangiocyte cultures. Intrahepatic cholangiocyte organoids (ICOs) were driven into mature cholangiocyte like cells (CLCs), which were exposed to CPZ under cholestatic or non-cholestatic conditions through the addition of a bile acid cocktail. RESULTS CPZ caused loss of monolayer integrity by reducing expression levels of tight junction protein 1 (TJP1), E-cadherin 1 (CDH1) and lysyl oxidase homolog 2 (LOXL2). Loss of zonula occuludens-1 (ZO-1) and E-cadherin was confirmed by immunostaining after exposure to CPZ and rhodamine-123 leakage further confirmed disruption of the cholangiocyte barrier function. Furthermore, oxidative stress seemed to play a major role in the early damage response by CPZ. The drug also decreased expression of three main basolateral bile acid transporters, ABCC3 (ATP binding cassette subfamily C member 3), SLC51A/B (solute carrier family 51 subunit alpha/beta) and multidrug resistance transporter ABCB1 (ATP binding cassette subfamily B member 1), thereby contributing to bile acid accumulation. CPZ did not induce an inflammatory response by itself, but addition of TNFα revealed a synergistic effect. CONCLUSION These results show that ICOs present a model to identify toxic drugs affecting the bile ducts while providing mechanistic insights into hepatotoxicity.
Collapse
Affiliation(s)
- Zhenguo Wang
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chen Xing
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Faculty of Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Bouwmeester MC, Tao Y, Proença S, van Steenbeek FG, Samsom RA, Nijmeijer SM, Sinnige T, van der Laan LJW, Legler J, Schneeberger K, Kramer NI, Spee B. Drug Metabolism of Hepatocyte-like Organoids and Their Applicability in In Vitro Toxicity Testing. Molecules 2023; 28:molecules28020621. [PMID: 36677681 PMCID: PMC9867526 DOI: 10.3390/molecules28020621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Emerging advances in the field of in vitro toxicity testing attempt to meet the need for reliable human-based safety assessment in drug development. Intrahepatic cholangiocyte organoids (ICOs) are described as a donor-derived in vitro model for disease modelling and regenerative medicine. Here, we explored the potential of hepatocyte-like ICOs (HL-ICOs) in in vitro toxicity testing by exploring the expression and activity of genes involved in drug metabolism, a key determinant in drug-induced toxicity, and the exposure of HL-ICOs to well-known hepatotoxicants. The current state of drug metabolism in HL-ICOs showed levels comparable to those of PHHs and HepaRGs for CYP3A4; however, other enzymes, such as CYP2B6 and CYP2D6, were expressed at lower levels. Additionally, EC50 values were determined in HL-ICOs for acetaminophen (24.0−26.8 mM), diclofenac (475.5−>500 µM), perhexiline (9.7−>31.5 µM), troglitazone (23.1−90.8 µM), and valproic acid (>10 mM). Exposure to the hepatotoxicants showed EC50s in HL-ICOs comparable to those in PHHs and HepaRGs; however, for acetaminophen exposure, HL-ICOs were less sensitive. Further elucidation of enzyme and transporter activity in drug metabolism in HL-ICOs and exposure to a more extensive compound set are needed to accurately define the potential of HL-ICOs in in vitro toxicity testing.
Collapse
Affiliation(s)
- Manon C. Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Yu Tao
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Susana Proença
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sandra M. Nijmeijer
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Le Vée M, Moreau A, Jouan E, Denizot C, Parmentier Y, Fardel O. Inhibition of canalicular and sinusoidal taurocholate efflux by cholestatic drugs in human hepatoma HepaRG cells. Biopharm Drug Dispos 2022; 43:265-271. [PMID: 36195987 PMCID: PMC10092305 DOI: 10.1002/bdd.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
HepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport, and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity. For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were reincubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed us to objectivize and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free reincubation period of HepaRG cells, that is, the efflux period, indicated that a 20 min-efflux period allowed reaching biliary and sinusoidal excretion indexes for TC around 80% and 60%, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide, or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the noncholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting drug-induced liver toxicity (DILI) due to the inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | - Elodie Jouan
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | | | - Olivier Fardel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
9
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|