1
|
Meng Y, Jia Y, He Z, Li J, Yuan L. Aryl Hydrocarbon Receptor-Dependent miRNA-382-5p Mediates the Classical Pyroptosis Induced by Foodborne Benzo(a)pyrene through Targeting IκB in Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40368843 DOI: 10.1021/acs.jafc.5c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Benzo(a)pyrene (BaP), a carcinogen prevalent in high-temperature processed foods, activates the aryl hydrocarbon receptor (AhR) and induces liver pyroptotic injury. MicroRNAs regulate mRNA expression and are involved in BaP toxicity. In this study, we investigated the essential role of microRNA in BaP-induced pyroptosis. In vivo, BaP induces liver pyroptotic injury by activating AhR, which may be attributed to AhR's influence on microRNA expression. The miRNA-382-5p/Akt and miRNA-382-5p/IκB pairs were predicted to post-transcriptionally regulate pyroptosis. In vitro, miRNA-382-5p activates the classical NF-κB/NLRP3/Caspase-1 pyroptosis signaling pathway by targeting and inhibiting the IκB gene. Furthermore, AhR activation by BaP could promote the high expression of miRNA-382-5p, thereby upregulating the NF-κB/NLRP3/Caspase-1 pyroptosis signaling pathway. In summary, we established that the AhR-mediated miR-382-5p/NF-κB/NLRP3/Caspase-1 axis is a key driver of BaP-induced pyroptosis in hepatocytes and elucidated the underlying mechanisms. These findings provide a valuable theoretical basis for considering miRNA-382-5p as a potential target for preventing BaP toxicity.
Collapse
Affiliation(s)
- Yao Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Yingyu Jia
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Ziyan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Jianke Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| |
Collapse
|
2
|
Xu S, Liu ZL, Zhang TW, Li B, Cao YC, Wang XN, Jiao W. Self-control study of multi-omics in identification of microenvironment characteristics in calcium oxalate kidney stones. BMC Nephrol 2025; 26:104. [PMID: 40016672 PMCID: PMC11869433 DOI: 10.1186/s12882-025-04026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Perform proteomic and metabolomic analysis on bilateral renal pelvis urine of patients with unilateral calcium oxalate kidney stones to identify the specific urinary microenvironment associated with stone formation. METHODS Using cystoscopy-guided insertion of ureteral catheters, bilateral renal pelvis urine samples are collected. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is employed to identify differential proteins and metabolites in the urine microenvironment. Differentially expressed proteins and differential metabolites are further analyzed for their biological functions and potential metabolic pathways through Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Reactome pathway analysis and Biomolecular Interaction Network Database protein-protein interaction (PPI) network analysis. RESULTS In the urine from the stone-affected side, 36 differential proteins were significantly upregulated, 4 differential proteins were downregulated, and 10 differential metabolites were significantly upregulated. Functional and pathway analyses indicate that the differentially expressed proteins are primarily involved in inflammatory pathways and complement and coagulation cascades, while the differential metabolites are mainly associated with oxidative stress. CONCLUSION The proteomic and metabolomic profiles of the urinary microenvironment in stone-affected kidneys provide a more precise reflection of the pathophysiological mechanisms involved in stone formation and development.
Collapse
Affiliation(s)
- Shang Xu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China
| | - Zhi-Long Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China
| | - Tian-Wei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China
| | - Bin Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China
| | - Yuan-Chao Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China
| | - Xin-Ning Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China.
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, China.
| |
Collapse
|
3
|
Shadboorestan A, Baluchi D, Safa O, Nikpoor AR, Mokhtarinejad M, Omidi M. Unraveling the Mechanisms of AhR-Notch Interplay in Mediating Arsenic Trioxide Cytotoxicity in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines. Biol Trace Elem Res 2025:10.1007/s12011-025-04543-y. [PMID: 39994113 DOI: 10.1007/s12011-025-04543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Arsenic trioxide (ATO) induces oxidative stress and apoptotic cell death in cancer cells; however, the underlying mechanisms and its effects on other signaling pathways, particularly in breast cancer, remain inadequately understood. The aryl hydrocarbon receptor (AhR) is expressed in breast cancer cells and linked to disease progression, while Notch signaling enhances migratory properties in these cells. The simultaneous use of the AhR agonist (FICZ), AhR antagonist (CH223191), and Notch antagonist (DAPT) was intended to investigate how the modulation of these pathways affects the response of breast cancer cells (MDA-MB-231 and MCF-7 cell) to ATO. We measured cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and cell migration. Results show that ATO significantly reduces cell viability in a dose- and time-dependent manner, decreasing MMP and increasing ROS levels. Notably, co-exposure to ATO and CH223191 for 24 h enhanced cell viability, increased MMP, and diminished ROS compared to ATO alone. Also, the ATO + CH223191 + DAPT combination exhibited higher MMP and lower ROS levels than the ATO + FICZ + DAPT combination, indicating AhR inhibition's critical role in MMP regulation. Although ATO reduced migration compared to controls, adding DAPT or FICZ significantly increased migration percentages. Interestingly, co-exposure to CH223191 did not exhibit this effect and modulated the migratory effects of DAPT + ATO and FICZ + ATO combinations. In conclusion, these findings suggest that AhR stimulation via FICZ may enhance ATO's therapeutic effects, while simultaneous exposure to ATO, FICZ, and DAPT may lead to additive effects, reducing MMP and increasing ROS levels.
Collapse
Affiliation(s)
- Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Darya Baluchi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahnoosh Mokhtarinejad
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Zhou X, He S, He J, Xiong Y, Hu Z, Xian H, Guo G, Tan S, Ouyang D, Liu R, Gao Z, Zhu X, Abulimiti A, Zheng S, Hu D. HUC-MSC-derived exosomes repaired the damage induced by hydroquinone to 16HBE cells via miR-221/PTEN pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117120. [PMID: 39357375 DOI: 10.1016/j.ecoenv.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mesenchymal stem cell - originated exosomes (MSC-exo) are promising non-cellular treatment agents for various diseases. The present study aimed to explore whether human umbilical cord MSC - originated exosomes (HUC-MSC-exo) have the function of protecting human cells (16HBE) against the damage caused by HQ and the related mechanism. HUC-MSC-exo was isolated with differential gradient ultracentrifugation method and characterized by using transmission electron microscope (TEM). 16HBE cells were used as the tool cells and co-cultured with HUC-MSC-exo. Confocal laser scanning microscope was employed to confirm the ingestion of HUC-MSC-exo by 16HBE. Cell proliferation, migration, oxidative stress, DNA and chromosome damages of 16HBE were analyzed under HQ stress, and the role of miR-221/PTEN axis was investigated. Our data showed that under HQ stress, different groups of cells exhibited significantly decreased proliferation and migration abilities, and significant oxidative stress, DNA and chromosome damage effects. HUC-MSC-exo could alleviate the cytotoxic, oxidative stress and genotoxic damage effects of HQ on 16HBE cells. Mechanistically, HQ exposure up-regulated the level of miR-221 and down-regulated PTEN, while HUC-MSC-exo could significantly reduce the level of miR-221 and promote PTEN expression, which was involved in alleviating the toxic effects of HQ on 16HBE cells. Our data indicates that HUC-MSC-exo can alleviate the oxidative stress, cytotoxic and genotoxic effects of HQ on 16HBE cells via miR-221/PTEN pathway, and it may be a promising agent for protecting against the toxicity of HQ.
Collapse
Affiliation(s)
- Xiaotao Zhou
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Guoqiang Guo
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Public Health Service Centre of Baoan District, Shenzhen City 518000, PR China
| | - Suqin Tan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Xiaoqi Zhu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Abudumijiti Abulimiti
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Sujin Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
5
|
Wang J, Wu Z, Zhu M, Zhao Y, Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front Immunol 2024; 15:1378990. [PMID: 39011036 PMCID: PMC11246884 DOI: 10.3389/fimmu.2024.1378990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Pyroptosis, a form of caspase-1-dependent cell death, also known as inflammation-dependent death, plays a crucial role in diseases such as stroke, heart disease, or tumors. Since its elucidation, pyroptosis has attracted widespread attention from various sectors. Reactive oxygen species (ROS) can regulate numerous cellular signaling pathways. Through further research on ROS and pyroptosis, the level of ROS has been revealed to be pivotal for the occurrence of pyroptosis, establishing a close relationship between the two. This review primarily focuses on the molecular mechanisms of ROS and pyroptosis in tumors and inflammatory diseases, exploring key proteins that may serve as drug targets linking ROS and pyroptosis and emerging fields targeting pyroptosis. Additionally, the potential future development of compounds and proteins that influence ROS-regulated cell pyroptosis is anticipated, aiming to provide insights for the development of anti-tumor and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Ziyong Wu
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Min Zhu
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, Henan, China
| | - Yang Zhao
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Jingwen Xie
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, China
- Department of Health, Chongqing Industry & Trade Polytechnic, Chongqing, China
| |
Collapse
|
6
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [DOI: pmid: 38718731 doi: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
8
|
Ning Q, Jian T, Cui S, Shi L, Jian X, He X, Zhang X, Li X. Tim-3 facilitates immune escape in benzene-induced acute myeloid leukemia mouse model by promoting macrophage M2 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115532. [PMID: 37806131 DOI: 10.1016/j.ecoenv.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Benzene poisoning can cause acute myeloid leukemia (AML) through a variety of passways. Tim-3 has gained prominence as a potential candidate in mediating immunosuppression in tumor microenvironments. The macrophage polarization is also related to immune escape. Herein, we reported that Tim-3 and macrophage M2 polarization play a vital role in benzene-induced AML. First, the benzene-induced AML C3H/He mouse model was constructed by subcutaneously injecting 250 mg/kg of benzene. After six months, macrophage phenotype, cytokines, and Tim-3 expression levels were investigated. Flow cytometry assay revealed that the T-cell inhibitory receptor Tim-3 was significantly upregulated in both bone marrow and spleen of the benzene-induced AML mouse model. Elisa's results displayed a decreased serum level of IL-12 while increased TGF-β1. Mechanistically, changes in cytokine secretion promote the growth of M2-type macrophages in the bone marrow and spleen, as determined by immunofluorescence assay. The increased levels of PI3K, AKT, and mTOR in the benzene-exposure group further proved the crucial role of Tim-3 in regulating the functional status of macrophages in the AML microenvironment. These results demonstrate that Tim-3 and macrophage polarization may play a vital role during the immune escape of the benzene-induced AML. This study provides a new potential intervention site for immune checkpoint-based AML therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Ning
- Department of Occupational Diseases, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250002, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaopeng He
- Department of Thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxing Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangxin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|