1
|
Lin P, Gao J, Xu Y, Schauer JJ, Wang J, He W, Nie L. Enhanced commercial cooking inventories from the city scale through normalized emission factor dataset and big data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120320. [PMID: 36191795 DOI: 10.1016/j.envpol.2022.120320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Cooking emission inventories always have poor spatial resolutions when applying with traditional methods, making their impacts on ambient air and human health remain obscure. In this study, we created a systematic dataset of cooking emission factors (CEFs) and applied it with a new data source, cooking-related point of interest (POI) data, to build up highly spatial resolved cooking emission inventories from the city scale. Averaged CEFs of six particulate and gaseous species (PM, OC, EC, NMHC, OVOCs, VOCs) were 5.92 ± 6.28, 4.10 ± 5.50, 0.05 ± 0.05, 22.54 ± 20.48, 1.56 ± 1.44, and 7.94 ± 6.27 g/h normalized in every cook stove, respectively. A three-field CEF index containing activity and emission factor species was created to identify and further build a connection with cooking-related POI data. A total of 95,034 cooking point sources were extracted from Beijing, as a study city. In downtown areas, four POI types were overlapped in the central part of the city and radiated into eight distinct directions from south to north. Estimated PM/VOC emissions caused by cooking activities in Beijing were 4.81/9.85 t per day. A 3D emission map showed an extremely unbalanced emission density in the Beijing region. Emission hotspots were seen in Central Business District (CBD), Sanlitun, and Wangjing in Chaoyang District and Willow and Zhongguancun in Haidian District. PM/VOC emissions could be as high as 16.6/42.0 kg/d in the searching radius of 2 km. For PM, the total emissions were 417.4, 389.0, 466.9, and 443.0 t between Q1 and Q4 2019 in Beijing, respectively. The proposed methodology is transferrable to other Chinese cities for deriving enhanced commercial cooking inventories and potentially highlighting the further importance of cooking emissions on air quality and human health.
Collapse
Affiliation(s)
- Pengchuan Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanqing He
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Lei Nie
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| |
Collapse
|
2
|
Jeong CH, Yousif M, Evans GJ. Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118417. [PMID: 34743966 PMCID: PMC8747944 DOI: 10.1016/j.envpol.2021.118417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM2.5 and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM2.5 only decreased by 4% relative to the baselines. Major chemical components of PM2.5, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM2.5 sources were assessed using hourly chemical composition measurements of PM2.5. Major regional and secondary PM2.5 sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.
Collapse
Affiliation(s)
- Cheol-Heon Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| | - Meguel Yousif
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Lin P, He W, Nie L, Schauer JJ, Wang Y, Yang S, Zhang Y. Comparison of PM 2.5 emission rates and source profiles for traditional Chinese cooking styles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21239-21252. [PMID: 31115821 DOI: 10.1007/s11356-019-05193-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The number of restaurants is increasing rapidly in recent years, especially in urban cities with dense populations. Particulate matter emitted from commercial and residential cooking is a significant contributor to both indoor and outdoor aerosols. The PM2.5 emission rates and source profiles are impacted by many factors (cooking method, food type, oil type, fuel type, additives, cooking styles, cooking temperature, source surface area, pan, and ventilation) discussed in previous studies. To determine which cooking activities are most influential on PM2.5 emissions and work towards cleaner cooking, an experiment design based on multi-factor and level orthogonal tests was conducted in a laboratory that is specifically designed to resemble a professional restaurant kitchen. In this cooking test, four main parameters (the proportion of meat in ingredients, flavor, cooking technique, oil type) were chosen and five levels for each parameter were selected to build up 25 experimental dishes. Concentrations of PM2.5 emission rates, organic carbon/elemental carbon (OC/EC), water-soluble ions, elements, and main organic species (PAHs, n-alkanes, alkanoic acids, fatty acids, dicarboxylic acids, polysaccharides, and sterols) were investigated across 25 cooking tests. The statistical significance of the data was analyzed by analysis of variance (ANOVA) with ranges calculated to determine the influence orders of the 4 parameters. The PM2.5 emission rates of 25 experimental dishes ranged from 0.1 to 9.2 g/kg of ingredients. OC, EC, water-soluble ions (WSI), and elements accounted for 10.49-94.85%, 0-1.74%, 10.09-40.03%, and 0.04-3.93% of the total PM2.5, respectively. Fatty acids, dicarboxylic acids, n-alkanes, alkanoic acids, and sterols were the most abundant organic species and accounted for 2.32-93.04%, 0.84-60.36%, 0-45.05%, and 0-25.42% of total PM2.5, respectively. There was no significant difference between the 4 parameters on PM2.5 emission rates, while a significant difference was found in WSI, elements, n-alkanes, and dicarboxylic acids according to ANOVA. Cooking technique was found to be the most influential factor for PM2.5 source profiles, followed by the proportion of meat in ingredients and oil type which resulted in significant difference of 183.19, 185.14, and 115.08 g/kg of total PM2.5 for dicarboxylic acids, n-alkanes, and WSI, respectively. Strong correlations were found among PM2.5 and OC (r = 0.854), OC and sterols (r = 0.919), PAHs and n-alkanes (r = 0.850), alkanoic acids and fatty acids (r = 0.877), and many other species of PM2.5.
Collapse
Affiliation(s)
- Pengchuan Lin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanqing He
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Lei Nie
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - Yuqin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Gysel N, Dixit P, Schmitz DA, Engling G, Cho AK, Cocker DR, Karavalakis G. Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1429-1436. [PMID: 29758895 DOI: 10.1016/j.scitotenv.2018.03.318] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/10/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
We assessed the chemical properties and oxidative stress of particulate matter (PM) emissions from underfired charbroiled meat operations with and without the use of aftertreatment control technologies. Cooking emissions concentrations showed a strong dependence on the control technology utilized, with all emission rates showing decreases with the control technologies compared to the baseline testing. The organic acids profile was dominated by the saturated nonanoic, myristic, palmitic, and stearic acids, and the unsaturated oleic, elaidic, and palmitoleic acids. Cholesterol was also found in relatively high concentrations. Lower and medium-weight polycyclic aromatic hydrocarbons (PAHs) were the dominant species for all cooking experiments. Heavier PAHs were also detected in high concentrations, especially in the particle-phase. For the nitrated PAH emissions (nitro-PAHs), low molecular weight compounds dominated the cooking emissions. Under the present experimental conditions, the heterocyclic aromatic amines (HAAs) showed very low concentrations, which suggests these species are rarely formed in meat cooking PM. The most efficient control technology for reducing the majority of the toxic pollutants was the electrostatic precipitator, which resulted in total emissions reductions on the order of 95%, 79%, 90%, 96%, 90%, and 94%, respectively, for particle-phase PAHs, gas-phase PAHs, particle-phase nitro-PAHs, gas-phase nitro-PAHs, particle-phase HAAs, and gas-phase HAAs compared to the baseline testing. Our experiment showed that cooking aerosol contained higher levels of prooxidants in the particle-phase and the corresponding vapors contained higher levels of electrophiles. Overall, the use of control technologies reduced the redox and electrophilic activities of cooking PM.
Collapse
Affiliation(s)
- Nicholas Gysel
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Poornima Dixit
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Debra A Schmitz
- Departments of Molecular and Medical Pharmacology/Environmental Health Sciences, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Guenter Engling
- Desert Research Institute (DRI), 2215 Raggio Pkwy, Reno, NV 89512, USA
| | - Arthur K Cho
- Departments of Molecular and Medical Pharmacology/Environmental Health Sciences, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA
| | - David R Cocker
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Gysel N, Welch WA, Chen CL, Dixit P, Cocker DR, Karavalakis G. Particulate matter emissions and gaseous air toxic pollutants from commercial meat cooking operations. J Environ Sci (China) 2018; 65:162-170. [PMID: 29548387 DOI: 10.1016/j.jes.2017.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/08/2023]
Abstract
This study assessed the effectiveness of three novel control technologies for particulate matter (PM) and volatile organic compound (VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside's commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District (SCAQMD) Method 5.1, as well as a dilution tunnel-based PM method showed statistically significantly reductions for each control technology when compared to baseline testing (i.e., without a catalyst). Overall, particle number emissions decreased with the use of control technologies, with the exception of control technology 2 (CT2), which is a grease removal technology based on boundary layer momentum transfer (BLMT) theory. Particle size distributions were unimodal with CT2 resulting in higher particle number populations at lower particle diameters. Organic carbon was the dominant PM component (>99%) for all experiments. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds and showed reductions with the application of the control technologies. Some reductions in mono-aromatic VOCs were also observed with CT2 and the electrostatic precipitator (ESP) CT3 compared to the baseline testing.
Collapse
Affiliation(s)
- Nicholas Gysel
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA
| | - William A Welch
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA
| | - Chia-Li Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA
| | - Poornima Dixit
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA
| | - David R Cocker
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA
| | - Georgios Karavalakis
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Environmental Research and Technology, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
6
|
Leal BES, Prado MR, Grzybowski A, Tiboni M, Koop HS, Scremin LB, Sakuma AC, Takamatsu AA, Santos AFD, Cavalcanti VF, Fontana JD. Potential prebiotic oligosaccharides from aqueous thermopressurized phosphoric acid hydrolysates of microalgae used in treatment of gaseous steakhouse waste. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Saquib Q, Siddiqui MA, Ahmed J, Al-Salim A, Ansari SM, Faisal M, Al-Khedhairy AA, Musarrat J, AlWathnani HA, Alatar AA, Al-Arifi SA. Hazards of low dose flame-retardants (BDE-47 and BDE-32): Influence on transcriptome regulation and cell death in human liver cells. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:37-49. [PMID: 26808241 DOI: 10.1016/j.jhazmat.2016.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/21/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
We have evaluated the in vitro low dose hepatotoxic effects of two flame-retardants (BDE-47 and BDE-32) in HepG2 cells. Both congeners declined the viability of cells in MTT and NRU cell viability assays. Higher level of intracellular reactive oxygen species (ROS) and dysfunction of mitochondrial membrane potential (ΔΨm) were observed in the treated cells. Comet assay data confirmed the DNA damaging potential of both congeners. BDE-47 exposure results in the appearance of subG1 apoptotic peak (30.1%) at 100 nM, while BDE-32 arrested the cells in G2/M phase. Among the set of 84 genes, BDE-47 induces downregulation of majority of mRNA transcripts, whilst BDE-32 showed differential expression of transcripts in HepG2. The ultrastructural analysis revealed mitochondrial swelling and degeneration of cristae in BDE-47 and BDE-32 treated cells. Overall our data demonstrated the hepatotoxic potential of both congeners via alteration of vital cellular pathways.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Ahmed
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Salim
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; Baba Ghulam Shah Badshah University, Rajouri 185131, Jammu and Kashmir, India
| | - Hend A AlWathnani
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud A Al-Arifi
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|