1
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
2
|
Sparks NRL, Walker LM, Sera SR, Madrid JV, Hanna M, Dominguez EC, zur Nieden NI. Sidestream Smoke Extracts from Harm-Reduction and Conventional Camel Cigarettes Inhibit Osteogenic Differentiation via Oxidative Stress and Differential Activation of intrinsic Apoptotic Pathways. Antioxidants (Basel) 2022; 11:2474. [PMID: 36552682 PMCID: PMC9774253 DOI: 10.3390/antiox11122474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies suggest cigarette smoking as a probable environmental factor for a variety of congenital anomalies, including low bone mass, increased fracture risk and poor skeletal health. Human and animal in vitro models have confirmed hypomineralization of differentiating cell lines with sidestream smoke being more harmful to developing cells than mainstream smoke. Furthermore, first reports are emerging to suggest a differential impact of conventional versus harm-reduction tobacco products on bone tissue as it develops in the embryo or in vitro. To gather first insight into the molecular mechanism of such differences, we assessed the effect of sidestream smoke solutions from Camel (conventional) and Camel Blue (harm-reduction) cigarettes using a human embryonic stem cell osteogenic differentiation model. Sidestream smoke from the conventional Camel cigarettes concentration-dependently inhibited in vitro calcification triggered by high levels of mitochondrially generated oxidative stress, loss of mitochondrial membrane potential, and reduced ATP production. Camel sidestream smoke also induced DNA damage and caspase 9-dependent apoptosis. Camel Blue-exposed cells, in contrast, invoked only intermediate levels of reactive oxygen species insufficient to activate caspase 3/7. Despite the absence of apoptotic gene activation, damage to the mitochondrial phenotype was still noted concomitant with activation of an anti-inflammatory gene signature and inhibited mineralization. Collectively, the presented findings in differentiating pluripotent stem cells imply that embryos may exhibit low bone mineral density if exposed to environmental smoke during development.
Collapse
Affiliation(s)
- Nicole R. L. Sparks
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Lauren M. Walker
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Steven R. Sera
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Joseph V. Madrid
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Michael Hanna
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Edward C. Dominguez
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Nicole I. zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Martinez IK, Bhanu B, Zur Nieden NI. Video-based calcification assay: A novel method for kinetic analysis of osteogenesis in live cultures. MethodsX 2021; 8:101265. [PMID: 34434787 PMCID: PMC8374304 DOI: 10.1016/j.mex.2021.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods of quantifying osteoblast calcification in culture require the use of calcium sensitive dyes, such as Arsenazo III or Alizarin Red S, which have been successfully used for decades to assess osteogenesis. Because these dyes elicit a colorimetric change when reacted with a cell lysate and are cytotoxic to live cells, they forfeit the ability to trace calcification longitudinally over time. Here, we demonstrate that image analysis and quantification of calcification can be performed from a series of time-lapse images acquired from videos. This method capitalizes on the unique facet of the mineralized extracellular matrix to appear black when viewed with phase contrast optics. This appearance of calcified areas had been previously documented to be characteristic to the formation of bone nodules in vitro. Due to this distinguishable appearance, extracting the information corresponding to calcification through segmentation allowed us to threshold only the pixels that comprise the mineralized areas in the image. Ultimately, this method can be used to quantify calcification yield, rates and kinetics facilitating the analyses of bone-supportive properties of growth factors and morphogens as well as of adverse effects elicited by toxicants. It may also be used on images that were acquired manually.The method is less error-prone than absorption-based assays since it takes longitudinal measurements from the same cultures It is cost effective as it foregoes the use of calcium-sensitive dyes It is automatable and amenable to high-throughput and thus allows the concurrent quantification of multiple parameters of differentiation
Collapse
Affiliation(s)
- Ivann Kc Martinez
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, 92521, USA.,IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Bir Bhanu
- IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA.,Center for Research in Intelligent Systems, Bourns College of Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, 92521, USA.,IGERT Graduate Program in Video Bioinformatics and Cell, Molecular Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA.,Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
An Evaluation of Human Induced Pluripotent Stem Cells to Test for Cardiac Developmental Toxicity. Int J Mol Sci 2021; 22:ijms22158114. [PMID: 34360880 PMCID: PMC8347148 DOI: 10.3390/ijms22158114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
To prevent congenital defects arising from maternal exposure, safety regulations require pre-market developmental toxicity screens for industrial chemicals and pharmaceuticals. Traditional embryotoxicity approaches depend heavily on the use of low-throughput animal models which may not adequately predict human risk. The validated embryonic stem cell test (EST) developed in murine embryonic stem cells addressed the former problem over 15 years ago. Here, we present a proof-of-concept study to address the latter challenge by updating all three endpoints of the classic mouse EST with endpoints derived from human induced pluripotent stem cells (hiPSCs) and human fibroblasts. Exposure of hiPSCs to selected test chemicals inhibited differentiation at lower concentrations than observed in the mouse EST. The hiPSC-EST also discerned adverse developmental outcomes driven by novel environmental toxicants. Evaluation of the early cardiac gene TBX5 yielded similar toxicity patterns as the full-length hiPSC-EST. Together, these findings support the further development of hiPSCs and early molecular endpoints as a biologically relevant embryotoxicity screening approach for individual chemicals and mixtures.
Collapse
|
6
|
Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z, Chen D, Du L. Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol 2020; 96:231-240. [PMID: 32745510 DOI: 10.1016/j.reprotox.2020.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological investigations have found that air fine particulate matter (PM) exposure not only causes respiratory and cardiovascular diseases in adults and children, but also affects embryonic development during pregnancy, leading to poor pregnancy outcomes. However, its exact molecular mechanism is still unclear. In this study, human embryonic stem cells (hESCs) were treated with PM at different concentrations then the morphology and proliferation capacity were measured. The mRNA and protein expression of NANOG and OCT4 were detected using quantitative PCR, immunofluorescence, western blotting, and flow cytometry. Reactive oxygen species (ROS) generation and AKT/ERK activation were also measured. Meanwhile, changes in ROS, the expression of NANOG, OCT4, and the AKT/ERK pathways were measured in the hESCs with or without pretreatment of ROS scavenger N-acetylcysteine (NAC) prior to PM exposure. After PM exposure, the proliferation capacity and expression of OCT4 and NANOG at the mRNA and protein levels were downregulated. The ROS level in the hESCs increased after PM exposure, but this increase in ROS was attenuated by pretreatment with NAC. Further analysis showed that the levels of phosphorylated AKT and ERK increased after PM exposure. After pretreatment with NAC, the phosphorylation levels of AKT and ERK, which are crucial for regulating the proliferation, pluripotency, and differentiation of hESC, were significantly attenuated compared with the non-NAC pretreated exposure group. These results suggest that PM exposure may reduce the proliferation and pluripotency of hESC through ROS-mediated AKT/ERK pathways, thereby affecting the long-term development of embryos.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingman Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| |
Collapse
|
7
|
Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution using organoid models. Brain Res 2020; 1729:146582. [PMID: 31809699 PMCID: PMC7058376 DOI: 10.1016/j.brainres.2019.146582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Primate brains vary dramatically in size and organization, but the genetic and developmental basis for these differences has been difficult to study due to lack of experimental models. Pluripotent stem cells and brain organoids provide a potential opportunity for comparative and functional studies of evolutionary differences, particularly during the early stages of neurogenesis. However, many challenges remain, including isolating stem cell lines from additional great ape individuals and species to capture the breadth of ape genetic diversity, improving the reproducibility of organoid models to study evolved differences in cell composition and combining multiple brain regions to capture connectivity relationships. Here, we describe strategies for identifying evolved developmental differences between humans and non-human primates and for isolating the underlying cellular and genetic mechanisms using comparative analyses, chimeric organoid culture, and genome engineering. In particular, we focus on how organoid models could ultimately be applied beyond studies of progenitor cell evolution to decode the origin of recent changes in cellular organization, connectivity patterns, myelination, synaptic development, and physiology that have been implicated in human cognition.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew T Schmitz
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sebastian Torres Montoya
- Health Co-creation Laboratory, Medellin General Hospital, Medellin, Antioquia, Colombia; Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex A Pollen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Garland MA, Sengupta S, Mathew LK, Truong L, de Jong E, Piersma AH, La Du J, Tanguay RL. Glucocorticoid receptor-dependent induction of cripto-1 ( one-eyed pinhead) inhibits zebrafish caudal fin regeneration. Toxicol Rep 2019; 6:529-537. [PMID: 31249786 PMCID: PMC6584771 DOI: 10.1016/j.toxrep.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
We previously used a chemical genetics approach with the larval zebrafish to identify small molecule inhibitors of tissue regeneration. This led to the discovery that glucocorticoids (GC) block early stages of tissue regeneration by the inappropriate activation of the glucocorticoid receptor (GR). We performed a microarray analysis to identify the changes in gene expression associated with beclomethasone dipropionate (BDP) exposure during epimorphic fin regeneration. Oncofetal cripto-1 showed > eight-fold increased expression in BDP-treated regenerates. We hypothesized that the mis-expression of cripto-1 was essential for BDP to block regeneration. Expression of cripto-1 was not elevated in GR morphants in the presence of BDP indicating that cripto-1 induction was GR-dependent. Partial translational suppression of Cripto-1 in the presence of BDP restored tissue regeneration. Retinoic acid exposure prevented increased cripto-1 expression and permitted regeneration in the presence of BDP. We demonstrated that BDP exposure increased cripto-1 expression in mouse embryonic stem cells and that regulation of cripto-1 by GCs is conserved in mammals.
Collapse
Key Words
- AEC, apical epithelial cap
- BDP, beclomethasone dipropionate
- Beclomethasone dipropionate
- Cripto-1
- DMSO, dimethyl sulfoxide
- EB, embryoid body
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- Epimorphic regeneration
- FGF, fibroblast growth factor
- GC, glucocorticoid
- GR, glucocorticoid receptor
- Glucocorticoids
- ISH, in situ hybridization
- MIAME, Minimum Information About a Microarray Experiment
- MO, morpholino oligonucleotide
- One-eyed pinhead
- RA, retinoic acid
- SEM, standard error of the mean
- TGF-β, transforming growth factor beta
- Zebrafish
- dpa, days post-amputation
- dpf, days post-fertilization
- eSC, embryonic stem cell
- hpa, hours post-amputation
- hpf, hours post-fertilization
- mLIF, murine leukemia inhibitory factor
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- zf, zebrafish
Collapse
Affiliation(s)
| | - Sumitra Sengupta
- Department of Environmental and Molecular Toxicology, United States
| | - Lijoy K Mathew
- Department of Environmental and Molecular Toxicology, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, United States
| | - Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jane La Du
- Department of Environmental and Molecular Toxicology, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, United States
| |
Collapse
|
9
|
Martinez IKC, Sparks NRL, Madrid JV, Affeldt H, Vera MKM, Bhanu B, Zur Nieden NI. Video-based kinetic analysis of calcification in live osteogenic human embryonic stem cell cultures reveals the developmentally toxic effect of Snus tobacco extract. Toxicol Appl Pharmacol 2019; 363:111-121. [PMID: 30468815 PMCID: PMC6594699 DOI: 10.1016/j.taap.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022]
Abstract
Epidemiological studies suggest tobacco consumption as a probable environmental factor for a variety of congenital anomalies, including low bone mass and increased fracture risk. Despite intensive public health initiatives to publicize the detrimental effects of tobacco use during pregnancy, approximately 10-20% of women in the United States still consume tobacco during pregnancy, some opting for so-called harm-reduction tobacco. These include Snus, a type of orally-consumed yet spit-free chewing tobacco, which is purported to expose users to fewer harmful chemicals. Concerns remain from a developmental health perspective since Snus has not reduced overall health risk to consumers and virtually nothing is known about whether skeletal problems from intrauterine exposure arise in the embryo. Utilizing a newly developed video-based calcification assay we determined that extracts from Snus tobacco hindered calcification of osteoblasts derived from pluripotent stem cells early on in their differentiation. Nicotine, a major component of tobacco products, had no measurable effect in the tested concentration range. However, through the extraction of video data, we determined that the tobacco-specific nitrosamine N'-nitrosonornicotine caused a reduction in calcification with similar kinetics as the complete Snus extract. From measurements of actual nitrosamine concentrations in Snus tobacco extract we furthermore conclude that N'-nitrosonornicotine has the potential to be a major trigger of developmental osteotoxicity caused by Snus tobacco.
Collapse
Affiliation(s)
- Ivann K C Martinez
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; IGERT Graduate Program in Video Bioinformatics and Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Nicole R L Sparks
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Joseph V Madrid
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States
| | - Henry Affeldt
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States
| | - Madeline K M Vera
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Bir Bhanu
- Center for Research in Intelligent Systems, Bourns College of Engineering, University of California Riverside, Riverside, CA, United States
| | - Nicole I Zur Nieden
- Department of Molecular, Cell & Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521, United States; IGERT Graduate Program in Video Bioinformatics and Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, CA, United States; Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|