1
|
Pohl F, Egan BM, Schneider DL, Mosley MC, Garcia MA, Hou S, Chiu CH, Kornfeld K. Environmental NaCl affects C. elegans development and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.641258. [PMID: 40161617 PMCID: PMC11952357 DOI: 10.1101/2025.03.09.641258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sodium is an essential nutrient, but is toxic in excess. In humans, excessive dietary sodium can cause high blood pressure, which contributes to age-related diseases including stroke and heart disease. We used C. elegans to elucidate how sodium levels influence animal aging. Most experiments on this animal are conducted in standard culture conditions: Nematode Growth Medium (NGM) agar with a lawn of E. coli. Here, we report that the supplemental NaCl in standard NGM, 50 mM, accelerates aging and decreases lifespan. For comparison, we prepared NGM with reduced NaCl or excess NaCl. Considering reduced NaCl as a baseline, wild-type worms on standard NGM displayed normal development and fertility but reduced lifespan and health span, indicating toxicity in old animals. The long-lived mutants daf-2, age-1, and nuo-6, cultured on standard NGM, also displayed reduced lifespan. Thus, NaCl in standard NGM accelerates aging in multiple genetic backgrounds. Wild-type worms on excess NaCl displayed delayed development and reduced fertility, and reduced lifespan and health span, indicating toxicity in both young and old animals. These results suggest that young animals are relatively resistant to NaCl toxicity, but that aging causes progressive sensitivity, such that old animals display toxicity to both standard and excess NaCl. We investigated pathways that respond to NaCl. Young animals cultured with excess NaCl activated gpdh-1, a specific response to NaCl stress. Old animals cultured with excess NaCl activated gpdh-1 and hsp-6, a reporter for the mitochondrial unfolded protein response. Thus, excess NaCl activates multiple stress response pathways in older animals.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew C. Mosley
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Micklaus A. Garcia
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen-Hao Chiu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Stefanello ST, Mizdal CR, da Silva AF, Todesca LM, Soares FAA, Shahin V. Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells. DISCOVER NANO 2025; 20:12. [PMID: 39836351 PMCID: PMC11751257 DOI: 10.1186/s11671-025-04184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity. Besides, both compounds interfere with the integrity of nuclear pore complexes, the gatekeepers for all nucleocytoplasmic transport. Herein, we investigate the possible synergistic effects of both compounds on lowly, highly metastatic, and erlotinib-resistant non-small cell lung cancer. We observe a synergistic cytotoxic effect on erlotinib-resistant cells. Moreover, motility assays show that the compounds combination significantly impedes the motility of all cells. Drug safety and tolerability assessments were validated using the in vivo model organism Caenorhabditis elegans, where fairly high doses showed negligible impact on survival, development, or behavioral parameters. Our findings propose that the 1,6-HD and Pitstop-2 combination may usher in the design of potent strategies for treating advanced lung cancer.
Collapse
Affiliation(s)
- Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Caren Rigon Mizdal
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
3
|
Shalihat A, Lesmana R, Hasanah AN, Mutakin M. Selenium Organic Content Prediction in Jengkol ( Archidendron pauciflorum) and Its Molecular Interaction with Cardioprotection Receptors PPAR-γ, NF-κB, and PI3K. Molecules 2023; 28:molecules28103984. [PMID: 37241725 DOI: 10.3390/molecules28103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Cai H, Bao Y, Cheng H, Ge X, Zhang M, Feng X, Zheng Y, He J, Wei Y, Liu C, Li L, Huang L, Wang F, Chen X, Chen P, Yang X. Zinc homeostasis may reverse the synergistic neurotoxicity of heavy metal mixtures in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161699. [PMID: 36682567 DOI: 10.1016/j.scitotenv.2023.161699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal mixtures can cause nerve damage. However, the combined effects of metal mixtures are extremely complex and rarely studied. Zinc (Zn) homeostasis plays an integral role in neural function, but the role of Zn homeostasis in the toxicity of metal mixtures is not well understood. Here, we investigated the combined effects of manganese (Mn), lead (Pb) and arsenic (As) on nerves and the effect of Zn homeostasis on metal toxicity. Caenorhabditis elegans (Maupas, 1900) were exposed to single and multiple metals for 8 days, their movement, behavior, neurons and metal concentration were detected to evaluate the combined effect of metal mixtures. After nematodes were co-treated with metal mixtures and Zn, the nerve function, Zn concentration and redox balance were detected to evaluate the effect of Zn homeostasis on metal toxicity. The results showed that Mn + Pb and Pb + As mixtures induced synergistic toxicity for nematode nerves, which damaged movement, behavior and neurons, and decreased Zn concentration. While Zn supplementation recovered Zn homeostasis and promoted redox balance on nematodes, and then improved the nerve function. Our study demonstrated the combined effects of metal mixtures and the neuroprotective effect of Zn homeostasis. Therefore, assessment of metal mixtures toxicity should consider their interaction and the impacts of essential metals homeostasis.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China; Guangxi Key Laboratory of Research on Medical Engineering Integration and Innovation, Liuzhou, Guangxi, China
| | - Mengdi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
da Silva TC, da Silveira TL, Dos Santos LV, Arantes LP, Martins RP, Soares FAA, Dalla Corte CL. Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans. Neurochem Res 2023; 48:117-130. [PMID: 36018438 DOI: 10.1007/s11064-022-03727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.
Collapse
Affiliation(s)
- Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luiza Venturini Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Leticia Priscila Arantes
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, 85866-000, Brazil
| | - Rodrigo Pereira Martins
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima nº 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Pereira FSDO, Barbosa FAR, Canto RFS, Lucchese C, Pinton S, Braga AL, Azeredo JBD, Quines CB, Ávila DS. Dihydropyrimidinone-derived selenoesters efficacy and safety in an in vivo model of Aβ aggregation. Neurotoxicology 2021; 88:14-24. [PMID: 34718060 DOI: 10.1016/j.neuro.2021.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
In a previous in vitro study, dihydropyrimidinone-derived selenoesteres demonstrated antioxidant properties, metal chelators and inhibitory acetylcholinesterase (AChE) activity, making these compounds promising candidates for Alzheimer's Disease (AD) treatment. However, these effects have yet to be demonstrated in an in vivo animal model; therefore, this study aimed to evaluate the safety and efficacy of eight selenoester compounds in a Caenorhabditis elegans model using transgenic strains for amyloid-beta peptide (Aβ) aggregation. The L1 stage worms were acutely exposed (30 min) to the compounds at concentrations ranging from 5 to 200 μM and after 48 h the maintenance temperature was increased to 25 ° C for Aβ expression and aggregation. After 48 h, several parameters related to phenotypic manifestations of Aβ toxicity and mechanistic elucidation were analyzed. At the concentrations tested no significant toxicity of the compounds was found. The selenoester compound FA90 significantly reduced the rate of paralyzed worms and increased the number of swimming movements compared to the untreated worms. In addition, FA90 and FA130 improved egg-laying induced by levamisole and positively modulated HSP-6 and HSP-4 expression, thereby increasing reticular and mitochondrial protein folding response in C. elegans, which could attenuate Aβ aggregation in early exposure. Therefore, our initial screening using an alternative model demonstrated that FA90, among the eight selenoesters evaluated, was the most promising compound for AD evaluation screening in more complex animals.
Collapse
Affiliation(s)
- Flávia Suelen de Oliveira Pereira
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Flavio Augusto Rocha Barbosa
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Rômulo Farias Santos Canto
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Simone Pinton
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Antônio Luiz Braga
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliano Braun de Azeredo
- Graduate Program in Pharmaceutical Sciences, Pharmacy Course, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Caroline Brandão Quines
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
8
|
Capperucci A, Coronnello M, Salvini F, Tanini D, Dei S, Teodori E, Giovannelli L. Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity. Bioorg Chem 2021; 110:104812. [PMID: 33744808 DOI: 10.1016/j.bioorg.2021.104812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Differently substituted β-hydroxy- and β-amino dialkyl and alkyl-aryl tellurides and selenides have been prepared through ring-opening reactions of epoxides and aziridines with selenium- or tellurium-centered nucleophiles. The antioxidant properties and the cytotoxicity of such compounds have been investigated on normal human dermal fibroblasts. Most of the studied compounds exhibited a low cytotoxicity and a number of them proved to be non-toxic, not showing any effect on cell viability even at the highest concentration used (100 μM). The obtained results showed a significant antioxidant potential of the selected organotellurium compounds, particularly evident under conditions of exogenously induced oxidative stress. The antioxidant activity of selenium-containing analogues of active tellurides has also been evaluated on cells, highlighting that the replacement of Se with Te brought about a significant increase in the peroxidase activity.
Collapse
Affiliation(s)
- Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy
| | - Marcella Coronnello
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Francesca Salvini
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy.
| | - Silvia Dei
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | - Elisabetta Teodori
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Lisa Giovannelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmacology, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
9
|
Naß J, Efferth T. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153439. [PMID: 33352493 DOI: 10.1016/j.phymed.2020.153439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Depression and stress-related disorders are leading causes of death worldwide. Standard treatments elevating serotonin or noradrenaline levels are not sufficiently effective and cause adverse side effects. A connection between dopamine pathways and stress-related disorders has been suggested. Compounds derived from herbal medicine could be a promising alternative. We examined the neuroprotective effects of ursolic acid (UA) by focusing on dopamine signalling. METHODS Trolox equivalent capacity assay was used to determine the antioxidant activities of UA in vitro. C. elegans N2 wildtype and dopamine receptor-knockout mutants (dop1-deficient RB665 and dop3-deficient LX703 strains) were used as in vivo models. H2DCFDA and acute juglone assays were applied to determine the antioxidant activity in dependency of dopamine pathways in vivo. Stress was assessed by heat and acute osmotic stress assays. The influence of UA on overall survival was analyzed by a life span assay. The dop1 and dop3 mRNA expression was determined by real time RT-PCR. We also examined the binding affinity of UA towards C. elegans Dop1 and Dop3 receptors as well as human dopamine receptors D1 and D3 by molecular docking. RESULTS Antioxidant activity assays showed that UA exerts strong antioxidant activity. UA increased resistance towards oxidative, osmotic and heat stress. Additionally, UA increased life span of nematodes. Moreover, dop1 and dop3 gene expression was significantly enhanced upon UA treatment. Docking analysis revealed stronger binding affinity of UA to C. elegans and human dopamine receptors than the natural ligand, dopamine. Binding to Dop1 was stronger than to Dop3. CONCLUSION UA reduced stress-dependent ROS generation and acted through Dop1 and to a lesser extent through Dop3 to reduce stress and prolong life span in C. elegans. These results indicate that UA could be a promising lead compound for the development of new antidepressant medications.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Caenorhabditis elegans/drug effects
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Dopamine/metabolism
- Gene Knockout Techniques
- Humans
- Longevity/drug effects
- Molecular Docking Simulation
- Mutation
- Reactive Oxygen Species/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/chemistry
- Receptors, Dopamine D3/metabolism
- Signal Transduction/drug effects
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Triterpenes/chemistry
- Triterpenes/pharmacology
- Ursolic Acid
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
10
|
Shalihat A, Hasanah AN, Mutakin, Lesmana R, Budiman A, Gozali D. The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: A literature review. Biomed Pharmacother 2020; 134:111125. [PMID: 33341057 DOI: 10.1016/j.biopha.2020.111125] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium is a trace element that provides protection against cellular damage and death. Previous research using several types of cells identified anti-oxidant, anti-inflammatory, and anti-apoptotic effects for selenium. One of the diseases related to selenium is cardiovascular disease, as low selenium intake has been linked to cardiomyopathy. However, the mechanism of the cardioprotective effects of selenium is not thoroughly understood. Several studies supported the possible effects of selenium on heart cell survival. In this review, we analyzed recent research (2015-2020) on the roles and mechanism of action of selenium in cell survival and its cardioprotective effects. Furthermore, the prevention of apoptosis through both intrinsic and extrinsic pathways is discussed in this review. Signalling pathways that regulate cell survival such as the p-AMPK, poly (ADP-ribose) polymerase-1, nuclear factor-erythroid 2-related factor-2, AKT/PI3K, and STAT pathways are involved in the protective effects of selenium. In addition, signaling pathways that affect heart cell survival include the AKT and STAT pathways. It also affects autophagy through the PPAR-γ pathway. These findings should facilitate further research on the cardioprotective effects of selenium.
Collapse
Affiliation(s)
- Ayu Shalihat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Departement of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno - Hatta No. 752, Cipadung Kidul, Panyileukan, Bandung, 40614, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia.
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia; Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
11
|
Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. Arch Toxicol 2020; 95:673-691. [PMID: 33159585 PMCID: PMC7870616 DOI: 10.1007/s00204-020-02945-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessity, rigorous toxicity testing in terms of safety evaluation has not been reported so far, especially using alternatives to animal models. Here, we provide a strategy by use of alternative in vitro (cell cultures) and in vivo (Caenorhabditis elegans, hen’s egg test) approaches for detailed investigation of the impact of commonly used rosemary, citrus and eucalyptus essential oil on acute, developmental and reproductive toxicity as well as on mucous membrane irritation. In general, all EOs under study exhibited a comparable impact on measured parameters, with a slightly increased toxic potential of rosemary oil. In vitro cell culture results indicated a concentration-dependent decrease of cell viability for all EOs, with mean IC50 values ranging from 0.08 to 0.17% [v/v]. Similar results were obtained for the C. elegans model when using a sensitized bus-5 mutant strain, with a mean LC50 value of 0.42% [v/v]. In wild-type nematodes, approximately tenfold higher LC50 values were detected. C. elegans development and reproduction was already significantly inhibited at concentrations of 0.5% (wild-type) and 0.1% (bus-5) [v/v] of EO, respectively. Gene expression analysis revealed a significant upregulation of xenobiotic and oxidative stress genes such as cyp-14a3, gst-4, gpx-6 and sod-3. Furthermore, all three EOs under study showed an increased short-time mucous membrane irritation potential, already at 0.5% [v/v] of EO. Finally, GC–MS analysis was performed to quantitate the relative concentration of the most prominent EO compounds. In conclusion, our results demonstrate that EOs can exhibit severe toxic properties, already at low concentrations. Therefore, a detailed toxicological assessment is highly recommended for each EO and single intended application.
Collapse
|
12
|
Synthesis of Novel Selenocyanates and Evaluation of Their Effect in Cultured Mouse Neurons Submitted to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5417024. [PMID: 33093936 PMCID: PMC7275203 DOI: 10.1155/2020/5417024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Herein, we report the synthesis of novel selenocyanates and assessment of their effect on the oxidative challenge elicited by hydrogen peroxide (H2O2) in cultured mouse neurons. First, α-methylene-β-hydroxy esters were prepared as precursors of allylic bromides. A reaction involving the generated bromides and sodium selenocyanate was conducted to produce the desired selenocyanates (3a-f). We next prepared cultures of neurons from 7-day-old mice (n = 36). H2O2 (10-5 M) was added into the culture flasks as an oxidative stress inducer, alone or combined with one of each designed compounds. (PhSe)2 was used as a positive control. It was carried out assessment of lipid (thiobarbituric acid reactive species, 4-hydroxy-2'-nonenal, 8-isoprostane), DNA (8-hydroxy-2'-deoxyguanosine), and protein (carbonyl) modification parameters. Finally, catalase and superoxide dismutase activities were also evaluated. Among the compounds, 3b, 3d, and 3f exhibited the most pronounced pattern of antioxidant activity, similar to (PhSe)2. These novel aromatic selenocyanates could be promising to be tried in most sophisticated in vitro studies or even at the preclinical level.
Collapse
|
13
|
Stefanello ST, Mizdal CR, Gonçalves DF, Hartmann DD, Dobrachinski F, de Carvalho NR, Salman SM, Sauer AC, Dornelles L, de Campos MMA, Soares FAA. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity. Bioorg Chem 2020; 98:103727. [DOI: 10.1016/j.bioorg.2020.103727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
14
|
Budel RG, da Silva DA, Moreira MP, Dalcin AJF, da Silva AF, Nazario LR, Majolo JH, Lopes LQS, Santos RCV, Antunes Soares FA, da Silva RS, Gomes P, Boeck CR. Toxicological evaluation of naringin-loaded nanocapsules in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 188:110754. [DOI: 10.1016/j.colsurfb.2019.110754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
|
15
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Rohn I, Raschke S, Aschner M, Tuck S, Kuehnelt D, Kipp A, Schwerdtle T, Bornhorst J. Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems. Mol Nutr Food Res 2019; 63:e1801304. [PMID: 30815971 PMCID: PMC6499701 DOI: 10.1002/mnfr.201801304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Indexed: 01/10/2023]
Abstract
SCOPE Small selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. METHODS AND RESULTS In the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. CONCLUSION Se species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.
Collapse
Affiliation(s)
- Isabelle Rohn
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | | | - Simon Tuck
- Umeå Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Anna Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743, Jena, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Julia Bornhorst
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
17
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
18
|
The antibacterial and anti-biofilm activity of gold-complexed sulfonamides against methicillin-resistant Staphylococcus aureus. Microb Pathog 2018; 123:440-448. [DOI: 10.1016/j.micpath.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023]
|
19
|
Kobayashi H, Suzuki N, Ogra Y. Mutagenicity comparison of nine bioselenocompounds in three Salmonella typhimurium strains. Toxicol Rep 2018; 5:220-223. [PMID: 29854592 PMCID: PMC5978006 DOI: 10.1016/j.toxrep.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Selenium (Se) is an essential element in animals but becomes severely toxic when the amount ingested exceeds the adequate intake level. It is known that the toxicological effects of Se are highly dependent on its chemical form. In this study, we evaluated the mutagenicity of nine naturally occurring Se compounds or the so-called bioselenocompounds, including selenite, selenate, selenocyanate, selenomethionine, selenocystine, Se-methylselenocysteine, selenohomolanthionine, N-acetylgalactosamine-type selenosugar, and trimethylselenonium ion, by using the Ames test. Salmonella typhimurium TA98, TA100, and TA1535 were used for the mutagenicity evaluation in the presence or absence of S9 mix, a metabolic activator. Only selenate showed weak mutagenicity even in the absence of S9 mix. None of the bioselenocompounds except selenate exhibited mutagenicity in all the strains tested in the presence or absence of S9 mix. Selenomethionine and selenocystine reduced the number of colonies in all the strains although no other selenoamino acids exerted the same effect. These results indicate that selenate directly or indirectly injures genome. Among the bioselenocompounds tested, selenomethionine and selenocystine show antibacterial activity, but the mechanism is unclear.
Collapse
Affiliation(s)
- Hironori Kobayashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| |
Collapse
|
20
|
Kotlar I, Colonnello A, Aguilera-González MF, Avila DS, de Lima ME, García-Contreras R, Ortíz-Plata A, Soares FAA, Aschner M, Santamaría A. Comparison of the Toxic Effects of Quinolinic Acid and 3-Nitropropionic Acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotox Res 2018; 33:259-267. [PMID: 28822104 DOI: 10.1007/s12640-017-9794-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
The tryptophan metabolite, quinolinic acid (QUIN), and the mitochondrial toxin 3-nitropropionic acid (3-NP) are two important tools for toxicological research commonly used in neurotoxic models of excitotoxicity, oxidative stress, energy depletion, and neuronal cell death in mammals. However, their toxic properties have yet to be explored in the nematode Caenorhabditis elegans (C. elegans) for the establishment of novel, simpler, complementary, alternative, and predictive neurotoxic model of mammalian neurotoxicity. In this work, the effects of QUIN (1-100 mM) and 3-NP (1-10 mM) were evaluated on various physiological parameters (survival, locomotion, and longevity) in a wild-type (WT) strand of C. elegans (N2). Their effects were also tested in the VC1772 strain (knock out for the antioxidant SKN-1 pathway) and the VP596 strain (worms with a reporter gene for glutathione S-transferase (GST) transcription) in order to establish the role of the SKN-1 pathway in the mode of action of QUIN and 3-NP. In N2, the higher doses of both toxins decreased survival, though only QUIN altered motor activity. Both toxins also reduced longevity in the VC1772 strain (as compared to N2 strain) and augmented GST transcription in the VP596 strain at the highest doses. The changes induced by both toxins require high doses, and therefore appear moderate when compared with other toxic agents. Nevertheless, the alterations produced by QUIN and 3-NP in C. elegans are relevant to mammalian neurotoxicity as they provide novel mechanistic approaches to the assessment of neurotoxic events comprising oxidative stress and excitotoxicity, in the nematode model.
Collapse
Affiliation(s)
- Ilan Kotlar
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Fernanda Aguilera-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alma Ortíz-Plata
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Stefanello ST, Hartmann DD, Amaral GP, Courtes AA, Leite MTB, da Silva TC, Gonçalves DF, Souza MB, da Rosa PC, Dornelles L, Soares FAA. Antioxidant protection by β-selenoamines against thioacetamide-induced oxidative stress and hepatotoxicity in mice. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Sílvio Terra Stefanello
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Diane Duarte Hartmann
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Guilherme Pires Amaral
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Aline Alves Courtes
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Martim T. B. Leite
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Thayanara Cruz da Silva
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Débora Farina Gonçalves
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Micaela B. Souza
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Pâmela Carvalho da Rosa
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Luciano Dornelles
- Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímicae Biologia Molecular, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900 Brazil
| |
Collapse
|
22
|
Chang CH, Ho CT, Liao VHC. N-γ-(L-Glutamyl)-L-selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 2017; 61. [PMID: 28133928 DOI: 10.1002/mnfr.201600954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
Abstract
SCOPE Selenium is an essential trace nutrient for human health. This study investigates the organic form of selenium, N-γ-(L-Glutamyl)-L-selenomethionine (Glu-SeMet), for its effects on aging indicators and stress resistance. The role of the selenoprotein TRXR-1 was also evaluated in Caenorhabditis elegans. METHODS AND RESULTS Glu-SeMet-treated wild-type N2 worms showed increased survival upon oxidative and thermal stress challenges. However, Glu-SeMet treatment did not extend the lifespan of wild-type N2 C. elegans under normal conditions (p = 0.128 for 0.01 μM and p = 0.799 for 10 μM Glu-SeMet). Under stress conditions, Glu-SeMet significantly increased the survival of wild-type N2 C. elegans, but the phenomenon was absent from trxr-1 null mutant worms. Furthermore, Glu-SeMet treatments significantly ameliorated aging indicators, including body bends, pumping rate, defecation duration, and lipofuscin accumulation in wild-type N2 nematodes. Nevertheless, the ameliorative effects by Glu-SeMet were absent in the trxr-1 null mutant worms. CONCLUSION The findings indicate that enhanced stress resistance and improved aging indicators by Glu-SeMet in C. elegans are mediated by the selenoprotein TRXR-1. Glu-SeMet has potential for improving health and also provides new insights into selenium's regulatory mechanisms in intact organisms.
Collapse
Affiliation(s)
- Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Gómez Castaño JA, Romano RM, Salamanca AR, Amésquita G, Beckers H, Willner H, Della Védova CO. Vibrational spectra, conformational properties and argon matrix photochemistry of diacetyl diselenide, CH3C(O)Se2C(O)CH3. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jovanny A. Gómez Castaño
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
- Laboratorio de Química Teórica y Computacional, Grupo de Investigación Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Rosana M. Romano
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
| | - Ana R. Salamanca
- Laboratorio de Química Teórica y Computacional, Grupo de Investigación Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Germán Amésquita
- Grupo de Investigación en Informática, Electrónica y Comunicaciones (INFELCOM), Facultad de Ingenieria; Universidad Pedagógica y Tecnológica de Colombia (UPTC); Avenida Central del Norte Tunja Boyacá Colombia
| | - Helmut Beckers
- Anorganische Chemie; Bergische Universität Wuppertal; Gaußstr. 20 D-42097 Wuppertal Germany
| | - Helge Willner
- Anorganische Chemie; Bergische Universität Wuppertal; Gaußstr. 20 D-42097 Wuppertal Germany
| | - Carlos O. Della Védova
- CEQUINOR (UNLP-CONICET), Departamento de Química, Facultad de Ciencias Exactas; Universidad Nacional de La Plata; 47 esq. 115 1900 La Plata Argentina
| |
Collapse
|
24
|
Wyatt LH, Diringer SE, Rogers LA, Hsu-Kim H, Pan WK, Meyer JN. Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3256-64. [PMID: 26938845 PMCID: PMC4964607 DOI: 10.1021/acs.est.5b06044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.
Collapse
Affiliation(s)
- Lauren H. Wyatt
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Sarah E. Diringer
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Laura A. Rogers
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - William K. Pan
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Corresponding Author. Phone: 919-613-8109;
| |
Collapse
|