1
|
Cini N, Atasoy Ö, Uyanikgil Y, Yaprak G, Erdoğan MA, Erbas O. Ceftriaxone has a neuroprotective effect in a whole-brain irradiation-induced neurotoxicity model by increasing GLT-1 and reducing oxidative stress. Strahlenther Onkol 2025:10.1007/s00066-025-02405-z. [PMID: 40353856 DOI: 10.1007/s00066-025-02405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/30/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Radiation-induced brain injury is a prominent side effect of whole-brain irradiation (IR) due to triggered oxidative and inflammatory processes, often resulting in severe and debilitating cognitive dysfunction and neuronal damage. The development of persistent oxidative stress results from radiation-induced reactive oxygen species. Another result is the initiation of glutamate excitotoxicity, which is closely associated with changes in glutamate levels. Elevated release or reduced glutamate uptake disrupts neuronal homeostasis, leading to oxidative stress, mitochondrial dysfunction, and neuroinflammation. The neuroprotective and antioxidant properties of ceftriaxone (CTX) have been linked to its ability to reduce glutamate excitotoxicity, inflammation, and to modulate oxidative stress. MATERIALS AND METHODS Twenty-one female Wistar rats were included in the study, and 14 of them underwent whole-brain IR with a single dose of 20 Gy on day 7. Saline and CTX applications continued for 21 days. The animals were divided into three groups: group 1: normal control; group 2: IR + saline; and group 3: IR + CTX. To compare the groups, a one-way analysis of variance (ANOVA) statistical test was employed, with a significance threshold set at p < 0.05. RESULTS Ceftriaxone treatment had a positive impact on the results of various assessments, e.g., behavioral tests including the three-chamber sociability test, the open-field test, and passive avoidance learning. It also led to increased counts of hippocampal CA1, CA3, and Purkinje neurons as well as elevated brain levels of brain-derived neurotrophic factor (BDNF), glutamate transporter 1 (GLT-1), and superoxide dismutase (SOD) activity. Conversely, CTX reduced the glial fibrillary acidic protein (GFAP) immunostaining index as well as brain levels of malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α). CONCLUSION Ceftriaxone demonstrated promising effectiveness in mitigating radiation-induced neurocognitive impairments and the deterioration of social memory capacity. This effect is achieved by reducing neuronal loss, oxidative stress, and neuroinflammation in irradiated rat brains. Furthermore, the application of CTX facilitated removal of excess glutamate from synapses, thus preventing glutamate excitotoxicity and protecting neurons from excitotoxic cell death.
Collapse
Affiliation(s)
- Nilsu Cini
- Department of Radiation Oncology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey.
| | - Özüm Atasoy
- Department of Radiation Oncology, Giresun Education and Research Hospital, Giresun, Turkey
- Department of Medical Biochemistry, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Gökhan Yaprak
- Department of Radiation Oncology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Mümin Alper Erdoğan
- Department of Physiology, Izmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Demiroğlu Bilim University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Poljak L, Miše B, Čičin-Šain L, Tvrdeić A. Ceftriaxone Inhibits Conditioned Fear and Compulsive-like Repetitive Marble Digging without Central Nervous System Side Effects Typical of Diazepam-A Study on DBA2/J Mice and a High-5HT Subline of Wistar-Zagreb 5HT Rats. Biomedicines 2024; 12:1711. [PMID: 39200176 PMCID: PMC11351474 DOI: 10.3390/biomedicines12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive-compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5-3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam.
Collapse
Affiliation(s)
- Ljiljana Poljak
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Branko Miše
- University Hospital for Infectious Diseases “Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Lipa Čičin-Šain
- Laboratory for Neurochemistry and Molecular Neurobiology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Mwamwitwa KW, Bukundi EM, Maganda BA, Munishi C, Fimbo AM, Buma D, Muro EP, Sabiiti W, Shewiyo DH, Shearer MC, Smith AD, Kaale EA. Adverse Drug Reactions Resulting From the Use of Chiral Medicines Amoxicillin, Amoxicillin-Clavulanic Acid, and Ceftriaxone: A Mixed Prospective-Retrospective Cohort Study. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2024; 61:469580241273323. [PMID: 39279290 PMCID: PMC11406638 DOI: 10.1177/00469580241273323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 09/18/2024]
Abstract
The use of chiral medicines (possessing center(s) of asymmetric carbon) may cause adverse drug reactions (ADRs). The safety assurance of these medicines is critical. We aimed to evaluate registered and commonly used anti-infective chiral medicines circulating in the Tanzanian market to establish their safety profile to protect public health. A mixed prospective-retrospective cohort study was conducted to assess the safety profile of amoxicillin, amoxicillin-clavulanic acid and ceftriaxone injection. ADRs causality assessment was conducted by using World Health Organization (WHO)-Algorithm criteria. Data were collected from 7 tertiary hospitals: Muhimbili National Hospital (MNH), Kilimanjaro Christian Medical Centre (KCMC), Bugando Medical Centre (BMC), Ligula Referral-Regional Hospital (LRRH), Kitete Referral-Regional Hospital (KRRH), Dodoma Referral-Regional Hospital (DRRH), and Mbeya Zonal-Referral Hospital (MZRH). Data were supplemented by those recorded in the WHO-Vigiflow/VigiLyze database within the same monitoring period. Data were analyzed using STATA version-15. The results were considered statistically significant when P < .05. A total of 2522 patients were enrolled in hospitals: MNH (499), KCMC (407), BMC (396), LRRH (387), KRRH (345), DRRH (249), and MZRH (239). Among those, 1197 (47.5%) were treated with ceftriaxone, 585 (23.2%) amoxicillin and 740(29.3%) amoxicillin-clavulanic acid. Out of those, 102 (4.5%) experienced adverse events (AEs), 49 (48%) were due to ceftriaxone, 37 (36.3%) amoxicillin-clavulanic acid and 16 (15.7%) amoxicillin (P-value .012). A total of 443 participants from the enrolled and WHO-Vigiflow/VigiLyze database were experienced with ADRs. The ADRs affected mainly gastro-intestinal system 234 (53%), skin and subcutaneous tissue 85 (19%), nervous system 49 (11%), respiratory thoracic 22 (5%), and general disorders 18(4%). In this study, approximately 90% of reported AEs were ADRs possible-related to the monitored medicines, with few plausible and certain. Ceftriaxone injection caused more ADRs. Amoxicillin-clavulanic acid was associated with more ADRs than amoxicillin alone. The safety profile of these medicines is still maintained; however, comprehensive monitoring of ADRs is recommended to improve patient safety and enhance overall treatment outcomes.
Collapse
Affiliation(s)
- Kissa W. Mwamwitwa
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Tanzania Medicines and Medical Devices Authority, Dodoma, Tanzania
| | - Elias M. Bukundi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Betty A. Maganda
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Castory Munishi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Adam M. Fimbo
- Tanzania Medicines and Medical Devices Authority, Dodoma, Tanzania
| | - Deus Buma
- Department of Pharmacy, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Eva P. Muro
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | | | | | | | | | | |
Collapse
|
4
|
Lim SW, Su HC, Nyam TTE, Chio CC, Kuo JR, Wang CC. Ceftriaxone therapy attenuates brain trauma in rats by affecting glutamate transporters and neuroinflammation and not by its antibacterial effects. BMC Neurosci 2021; 22:54. [PMID: 34521349 PMCID: PMC8439027 DOI: 10.1186/s12868-021-00659-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ceftriaxone is a β-lactam antibiotic used to treat central nervous system infections. Whether the neuroprotective effects of ceftriaxone after TBI are mediated by attenuating neuroinflammation but not its antibacterial actions is not well established. METHODS Anesthetized male Sprague-Dawley rats were divided into sham-operated, TBI + vehicle, and TBI + ceftriaxone groups. Ceftriaxone was intraperitoneally injected at 0, 24, and 48 h with 50 or 250 mg/kg/day after TBI. During the first 120 min after TBI, we continuously measured heart rate, arterial pressure, intracranial pressure (ICP), and cerebral perfusion pressure. The infarct volume was measured by TTC staining. Motor function was measured using the inclined plane. Glutamate transporter 1 (GLT-1), neuronal apoptosis and TNF-α expression in the perilesioned cortex were investigated using an immunofluorescence assay. Bacterial evaluation was performed by Brown and Brenn's Gram staining. These parameters above were measured at 72 h after TBI. RESULTS Compared with the TBI + vehicle group, the TBI + ceftriaxone 250 mg/kg group showed significantly lower ICP, improved motor dysfunction, reduced body weight loss, decreased infarct volume and neuronal apoptosis, decreased TBI-induced microglial activation and TNF-α expression in microglia, and increased GLT-1 expression in neurons and microglia. However, the grades of histopathological changes of antibacterial effects are zero. CONCLUSIONS The intraperitoneal injection of ceftriaxone with 250 mg/kg/day for three days may attenuate TBI by increasing GLT-1 expression and reducing neuroinflammation and neuronal apoptosis, thereby resulting in an improvement in functional outcomes, and this neuroprotective effect is not related to its antibacterial effects.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Hui-Chen Su
- Departments of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tee-Tau Eric Nyam
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Chung-Ching Chio
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Departments of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Che-Chuan Wang
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Departments of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
5
|
Shi L, Li X, Ji Z, Wang Z, Shi Y, Tian X, Wang Z. The reproductive inhibitory effects of levonorgestrel, quinestrol, and EP-1 in Brandt's vole ( Lasiopodomys brandtii). PeerJ 2020; 8:e9140. [PMID: 32566388 PMCID: PMC7293854 DOI: 10.7717/peerj.9140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Rodent pests can inflict devastating impacts on agriculture and the environment, leading to significant economic damage associated with their high species diversity, reproductive rates and adaptability. Fertility control methods could indirectly control rodent pest populations as well as limit ecological consequences and environmental concerns caused by lethal chemical poisons. Brandt's voles, which are common rodent pests found in the grasslands of middle-eastern Inner Mongolia, eastern regions of Mongolia, and some regions of southern Russia, were assessed in the present study. METHODS We evaluated the effects of a 2-mg/kg dose of levonorgestrel and quinestrol and a 1:1 mixture of the two (EP-1) on reproductive behavior as well as changes in the reproductive system, reproductive hormone levels, and toxicity in Brandt's voles. RESULTS Our results revealed that all three fertility control agents can cause reproductive inhibition at a dosage of 2 mg/kg. However, quinestrol caused a greater degree of toxicity, as determined by visible liver damage and reduced expression of the detoxifying molecule CYP1A2. Of the remaining two fertility control agents, EP-1 was superior to levonorgestrel in inhibiting the secretion of follicle-stimulating hormone and causing reproductive inhibition. We believe that these findings could help promote the use of these fertility control agents and, in turn, reduce the use of chemical poisons and limit their detrimental ecological and environmental impacts.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neurosci Biobehav Rev 2020; 115:116-130. [PMID: 32485268 DOI: 10.1016/j.neubiorev.2020.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Ceftriaxone is a beta-lactam antibiotic that increases the expression of the major glutamate transporter, GLT-1. As such, ceftriaxone ameliorates symptoms across multiple rodent models of neurological diseases and substance use disorders. However, the mechanism behind GLT-1 upregulation is unknown. The present review synthesizes this literature in order to identify commonalities in molecular changes. We find that ceftriaxone (200 mg/kg for at least two days) consistently restores GLT-1 expression in multiple rodent models of neurological disease, especially when GLT-1 is decreased in the disease model. The same dose given to healthy/drug-naive rodents does not reliably upregulate GLT-1 in any brain region except the hippocampus. Increased GLT-1 expression does not consistently arise from transcriptional regulation, and is likely to be due to trafficking changes. In addition to altered transporter expression, ceftriaxone ameliorates neuropathologies (e.g. tau, amyloid beta, cell death) and aberrant protein expression associated with a number of neurological disease models. Taken together, these results indicate that ceftriaxone remains a strong candidate for treatment of multiple disorders in the clinic.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Daniel Fierro
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Javier Mesa
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA
| | - Malgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
Tai CH, Bellesi M, Chen AC, Lin CL, Li HH, Lin PJ, Liao WC, Hung CS, Schwarting RK, Ho YJ. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res 2019; 364:149-156. [DOI: 10.1016/j.bbr.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
8
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
9
|
Ceftriaxone-mediated upregulation of the glutamate transporter GLT-1 contrasts neurotoxicity evoked by kainate in rat organotypic spinal cord cultures. Neurotoxicology 2017; 60:34-41. [DOI: 10.1016/j.neuro.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
|