1
|
Zhang T, Chen M, Li D, Sun Y, Liu R, Sun T, Wang L. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Semen Coicis: A review. Int J Biol Macromol 2024; 272:132861. [PMID: 38838884 DOI: 10.1016/j.ijbiomac.2024.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Semen Coicis (S. Coicis) has been regarded as a valuable source of traditional herbal medicine in China for thousands of years. S. Coicis polysaccharides (SCPs) are one of the most important bioactive ingredients of S. Coicis, which have attracted worldwide attention, because of their great marketing potential and development prospects. Hot water extraction is currently the most commonly used method to isolate SCPs. The structural characteristics of SCPs have been extensively investigated through various advanced modern analytical techniques to dissect the structure-activity relationships. SCPs are mainly composed of diverse monosaccharides, from which Rha and Ara are the most prevalent glycosyl groups. In addition, the structures of SCPs are found to be closely related to their multiple biological activities, including antioxidant activity, immunomodulatory function, antitumor activity, hypoglycemic effect, intestinal microbiota regulatory activity, anti-inflammatory activity, among others. In view of this, this review aimed to provide systematic and current information on the isolation, structural characteristics, and bioactivities of SCPs to support their future applications as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Wei X, Li Y, Zhou S, Guo C, Dong X, Li Q, Guo J, Wang Y, Huang L. The Differences of Nutrient Components in Edible and Feeding Coix Seed at Different Developmental Stages Based on a Combined Analysis of Metabolomics. Molecules 2023; 28:molecules28093759. [PMID: 37175169 PMCID: PMC10180337 DOI: 10.3390/molecules28093759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Coix lachryma-jobi L. is an excellent plant resource that has a concomitant function for medicine, foodstuff and forage in China. At present, the commonly used cultivar for both medicine and foodstuff is Xiaobaike, and the cultivar for foraging is Daheishan. However, differences in the internal composition of plants lead to the expression of different phenotypic traits. In order to comprehensively elucidate the differences in nutrient composition changes in Coix seeds, a non-targeted metabolomics method based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) was used to analyze the metabolic changes in Coix seeds at different developmental stages. An edible Coix relative (Xiaobaike) and a feeding Coix relative (Daheishan) were selected as the research subjects. In the metabolome analysis of Coix seed, 314 metabolites were identified and detected, among which organic acids, carbohydrates, lipids, nucleotides and flavonoids were the main components. As an important standard for evaluating the quality of Coix seed, seven lipids were detected, among which fatty acids included not only even-chain fatty acids, but also odd-chain fatty acids, which was the first time detecting a variety of odd-chain fatty acids in Coix seed. The analysis of the compound contents in edible and feeding-type Coix lachryma-jobi L. and the lipid content at the mature stage showed that, among them, arachidic acid, behenic acid, heptadecanoic acid, heneicosanoic acid and pristanic acid may be the key compounds affecting the lipid content. In addition, in the whole process of semen coicis maturation, edible and feeding Coix show similar trends, and changes in the third period show clear compounds in the opposite situation, suggesting that edible and feeding Coix not only guarantee the relative stability of species but also provide raw materials for genetic breeding. This study provides valuable information on the formation of the edible and medicinal qualities of Coix.
Collapse
Affiliation(s)
- Xiaoyan Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shufeng Zhou
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Guo
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolong Dong
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Qishuang Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Zeng Y, Yang J, Chen J, Pu X, Li X, Yang X, Yang L, Ding Y, Nong M, Zhang S, He J. Actional Mechanisms of Active Ingredients in Functional Food Adlay for Human Health. Molecules 2022; 27:molecules27154808. [PMID: 35956759 PMCID: PMC9369982 DOI: 10.3390/molecules27154808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China;
| | - Jia Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Li’e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Yumei Ding
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Mingying Nong
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Shibao Zhang
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Jinbao He
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| |
Collapse
|
4
|
Zhu M, Wang X, Zhou Y, Tan J, Zhou Y, Gao F. Small RNA Sequencing Revealed that miR4415, a Legume-Specific miRNA, was Involved in the Cold Acclimation of Ammopiptanthus nanus by Targeting an L-Ascorbate Oxidase Gene and Regulating the Redox State of Apoplast. Front Genet 2022; 13:870446. [PMID: 35444684 PMCID: PMC9013972 DOI: 10.3389/fgene.2022.870446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous single-stranded RNAs that regulate plant growth, development, and environmental stress response posttranscriptionally. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub in the temperate area of Central Asia, can tolerate freezing stress as low as -30 degrees centigrade in winter, and miRNA might be involved in the cold acclimation which enables A. nanus to obtain tolerance to freezing stress. Systematic identification and functional analysis of the miRNAs involved in the cold acclimation in A. nanus may promote understanding of the miRNA-mediated gene regulation network underlying cold acclimation. Here, based on small RNA and degradome sequencing, 256 miRNAs and 1,808 miRNA-target pairs were identified in A. nanus. A total of 39 cold-responsive miRNAs were identified, of which 29 were upregulated and ten were downregulated. These cold-responsive miRNAs may participate in the cold acclimation by regulating redox homeostasis (miR398, miR4415, and miR408), calcium signaling (miR5225 and miR5211), growth and development (miR159 and miR390), and small RNA-mediated gene silencing (miR168 and miR1515). We found that miR4415, a legume-specific miRNA, is involved in the cold acclimation of A. nanus by targeting an L-ascorbate oxidase gene and then regulating the redox state of the apoplast. Our study provides important data for understanding the regulatory role of miRNA in the cold acclimation of A. nanus.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yanqiu Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jinhua Tan
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
5
|
Chakkinga Thodi R, Ibrahim JM, Nair AS, Thacheril Sukumaran S. Exploring the potent inhibitor β-stigmasterol from Pittosporum dasycaulon Miq. leaves against snake venom phospholipase A2 protein through in vitro and molecular dynamics behavior approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2021946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Junaida M. Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | | |
Collapse
|
6
|
Dagar P, Mishra A. Molecular docking analysis of modified gedunin from neem with snake venom enzymes. Bioinformation 2021; 17:776-783. [PMID: 35539885 PMCID: PMC9049082 DOI: 10.6026/97320630017776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Snakebites are a problem due to the increasing number of deaths and permanent disabilities. There is currently a shortage of antidotes for snakebite. The existing antibody antidote, produced from horse/sheep plasma/sera is expensive, species-dependent, and causes fatal side effects. Therefore, it is of interest use of natural flavonoid named gedunin from the Azadirachta indica (Neem) plant species to combat snakebites. Thus, we show the molecular docking analysis of gedunin (C26H31N2O6F) with enzymes (common in snake species) such as 5-nucleotidase, acetyl cholinesterase, L-aao, metalloproteinase, serine, thrombin and phospholipase A2. The modified gedunin in the enzyme pocket showed improved pharmacological properties for further consideration in combating snakebites.
Collapse
Affiliation(s)
- Priya Dagar
- Department of Biochemical Engineering, IIT (BHU), UP State, Varanasi - 221005, India
| | - Abha Mishra
- Department of Biochemical Engineering, IIT (BHU), UP State, Varanasi - 221005, India
| |
Collapse
|
7
|
Nayak AG, Kumar N, Shenoy S, Roche M. Evaluation of the merit of the methanolic extract of Andrographis paniculata to supplement anti-snake venom in reversing secondary hemostatic abnormalities induced by Naja naja venom. 3 Biotech 2021; 11:228. [PMID: 33959471 PMCID: PMC8060375 DOI: 10.1007/s13205-021-02766-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests a sizable involvement of hemotoxins in the morbidity associated with envenomation by the Indian spectacled cobra, Naja naja (N.N). This study investigates the ability of Indian polyvalent anti-snake venom (ASV), methanolic extract of Andrographis paniculata (MAP) and their combination in reversing the hemostatic abnormalities, viz. activated partial thromboplastin time(aPTT), prothrombin time(PT) and thrombin time(TT) in citrated plasma. These parameters were assessed in 2 groups of experiments. Group 1: Without the prior incubation of plasma with venom and Group 2: With prior incubation of plasma with venom for 90 min at 37°C. Venom caused significant (p < 0.001) prolongation in aPTT (175%), PT (49%) and TT (34%) in Group 1 and ASV could completely bring them back to normal. MAP showed a concentration-dependent reversal in aPTT, normalization of PT and prolongation of TT. When low concentration of ASV was supplemented with MAP, their combined effect in normalizing aPTT and PT improved by 37% and 26% respectively when compared to ASV alone. In Group 2, venom caused significant (p < 0.001) prolongation in aPTT (231%), PT (312%) and TT (245%). ASV had limited effect in reversing aPTT (52%), TT (31%) but completely normalized PT. MAP was marginally effective in reversing the prolonged aPTT and PT but caused further prolongation of TT. Combination of ASV and MAP was more effective than ASV alone in reversing venom-induced increase in aPTT (52%) and PT (29%). The study proved that, a drastic reduction of ASV by 70%, could be effectively supplemented by MAP in combating hemostatic abnormalities induced by NN venom.
Collapse
Affiliation(s)
- Akshatha Ganesh Nayak
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Maya Roche
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, Karnataka India
| |
Collapse
|
8
|
Mukherjee AK. Species-specific and geographical variation in venom composition of two major cobras in Indian subcontinent: Impact on polyvalent antivenom therapy. Toxicon 2020; 188:150-158. [DOI: 10.1016/j.toxicon.2020.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
9
|
Ajisebiola BS, Rotimi S, Anwar U, Adeyi AO. Neutralization of Bitis arietans venom-induced pathophysiological disorder, biological activities and genetic alterations by Moringa oleifera leaves. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1793780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Solomon Rotimi
- Department of Biochemistry, Covenant University, Ota, Osun State, Nigeria
| | - Ullah Anwar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
10
|
Adeyi AO, Ajisebiola SB, Adeyi EO, Alimba CG, Okorie UG. Antivenom activity of Moringa oleifera leave against pathophysiological alterations, somatic mutation and biological activities of Naja nigricollis venom. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Vineetha MS, Bhavya J, Veena SM, Mirajkar KK, Muddapur U, Ananthraju KS, Zameer F, More SS. In vitro and in vivo inhibitory effects of Tabernaemontana alternifolia against Naja naja venom. Saudi Pharm J 2020; 28:692-697. [PMID: 32550800 PMCID: PMC7292863 DOI: 10.1016/j.jsps.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/17/2020] [Indexed: 11/25/2022] Open
Abstract
Background Tabernaemontana alternifolia root is traditionally used and practiced among few Indian tribes as an antidote for snakebites. Objective To combat and neutralize Naja naja venom using methanolic root extract of Tabernaemontana alternifolia and to explore its efficacy on venom biomarkers in search of newer herbal antidote or first-aid-point of care for therapeutics. Materialization. Pharmacological activities such as fibrinogenolytic, direct and indirect hemolytic activities for the neutralization of the venom were evaluated. Lethal toxicity annulation studies were performed using the murine model by pre-incubation and post-treatment protocols. Further, the neutralization of edema and myotoxicity were also evaluated. Results Electrophoretic analysis revealed that the complete neutralization of fibrinogen degradation was observed at 1:10 (w/w) (venom to extract). T. alternifolia exhibited an effective dose (ED50) value of 87.20 µg/mL for venom-induced hemolysis. Venom at 2 µg concentration produced 11 mm of hemolytic radiance and was neutralized at 1:20 (w/w) venom to extract concentration. The survival time and the neurotoxic symptoms in mice were concluded to be delayed by both the methods of lethal toxicity inhibition using methanol extract. The edema ratio reduced the venom to extract ratio of 1:20 (w/w) from 173 ± 45% to 133.61% when subjected to 5 µg of venom concentration. The plant extract significantly neutralized the myotoxic activity. Conclusion T. alternifolia methanolic root extract could be a potent contributor in the effective treatment of N. naja venom-induced toxicity.
Collapse
Affiliation(s)
- M S Vineetha
- School of Basic and Applied Sciences, Dayananda Sagar University, K.S Layout, Bangalore 560 111, Karnataka, India
| | - J Bhavya
- School of Basic and Applied Sciences, Dayananda Sagar University, K.S Layout, Bangalore 560 111, Karnataka, India
| | - S M Veena
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore 560 057, Karnataka, India
| | - Kiran K Mirajkar
- Department of Biochemistry, University of Agricultural Sciences, Dharwad 07, Karnataka, India
| | - Uday Muddapur
- Department of Biotechnology, KLE Technological University, Vidya Nagar, Hubli 03, Karnataka, India
| | - K S Ananthraju
- Department of Chemistry, Dayananda Sagar College of Engineering, K.S Layout, Bangalore 560 111, Karnataka, India
| | - Farhan Zameer
- School of Basic and Applied Sciences, Dayananda Sagar University, K.S Layout, Bangalore 560 111, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, K.S Layout, Bangalore 560 111, Karnataka, India
| |
Collapse
|