1
|
Andal KP, Kumar AS. In Situ Electrochemical Reduction of Imidacloprid involving a Nitroso-Intermediate-Trapped DWCNT and Its Biomimetic Cellular Oxidative Stress-Related Mediated Oxidation of Thiols. Chem Asian J 2025:e202401779. [PMID: 40195815 DOI: 10.1002/asia.202401779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Imidacloprid (IMP) is a widely used pesticide and insecticide known for its effectiveness in controlling pests and increasing crop yields. Exposure of the compound to water bodies has led to environmental pollution and adverse effects on human health. One major concern is the generation of oxidative-stress in the cellular system, which is often a result of IMP exposure. Although the exact mechanism of toxicity is not fully understood, it is believed that the nitroso-intermediate of IMP (IMP-NO) binds to acetylcholine receptors, disrupting neural function. Thiol pools in the blood serum act as antioxidants to mitigate the toxicity. This study presents an in situ electrochemical conversion of IMP into its key intermediate, IMP-NO, and its subsequent entrapment on a double-walled carbon nanotube-modified glassy carbon electrode (GCE/DWCNT@IMP-NO) as a surface confined redox-peak in a physiological solution. It was characterized by SEM, FTIR, Raman, SECM, and LC-MS techniques. The system exhibited excellent mediated oxidation of the thiol group, using cysteine as a model. The findings presented in this work correlate with observations related to cellular oxidative-stress and its thiol-assisted mitigation. Employing a Michaelis-Menten-type enzyme-substrate reaction mechanism and estimated the kinetic parameters. Chronoamperometric techniques were used to demonstrate the oxidative detection of thiol.
Collapse
Affiliation(s)
- Kandavel Preethika Andal
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
2
|
Gupta V, Srivastava R. Amelioration and Immuno-modulation by Ashwagandha on Wi-fi Induced Oxidative Stress in Regulating Reproduction Via Estrogen Receptor Alpha in Male Japanese Quail. Reprod Sci 2025; 32:455-466. [PMID: 39806168 DOI: 10.1007/s43032-024-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.1264 mw/cm2 and SAR = 0.9978 W/Kg. Wi-fi exposure induces a decrease in testicular weight, volume, density and gonado-somatic index (GSI) while Ashwagandha increases them. Oxidative stress parameters increased and activity of SOD, catalase, GSH was reduced in testes of exposed quail while Ashwagandha treatment reinstates the redox balance. Exposure to Wi-fi alters quail reproduction by increase in corticosterone and decreased testosterone with reduced expression of estrogen receptor alpha (ERα) in testis. Wi-fi exposure increases IL1β and reduces IL10 in testis. IL-1β inhibits testicular cell function and promotes apoptosis by increasing NF-κB and decreasing sperm count in exposed quails. Ashwagandha increases expression of ERα, sperm count and immunity in quail testis. Further, decrease in IL1β, NF-κB and increase in IL-10 after administration of Ashwagandha in Wi-fi exposed quail prevents inflammatory damages and enhances gonadal function. Thus, exposure to Wi-fi increases oxidative stress, activates apoptosis, modulates immunity in testis while Ashwagandha reverses them via enhanced ERα expression, increase in sperm count thereby enhancing fertility in male Japanese quail.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
| |
Collapse
|
3
|
Nahar M, Rai R, Jat D. Therapeutic intervention of vitamin B12 in mitigating chronic alcoholism induced alterations in adult zebrafish ( Danio rerio): a holistic in vivo approach. Int J Neurosci 2024:1-15. [PMID: 39207796 DOI: 10.1080/00207454.2024.2398564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic alcoholism refers to the unpleasant symptoms directly resulting from excessive drinking. Increased alcohol metabolites and an unbalanced oxidative state are likely to blame for the reported effects under these circumstances. According to preclinical and clinical research, vitamin B12 can act on several organ systems with demonstrated neuroprotective, antioxidant, and glutamate modulating properties. OBJECTIVE This research sought to examine the ameliorative effects of vitamin B12 (VtB12) in persistent alcohol (AlOH) exposed adult zebrafish with the help of following parameters like the anxiety related behavior test, Oxidative stress, and antioxidant assays, histological and immunofluorescence analysis. METHODS Zebrafish pretreated with 0.40% AlOH (v/v) for 120 min (+AlOH) or not (-AlOH), were exposed for 6 h to home tank water (-VtB12) or to 59 µg-VtB12/kg-fish food (+VtB12) to analyze anxiety behavior in the geotaxis (novel tank) test as well as the oxidative brain damage in the adult zebrafish. RESULTS Adult zebrafish exposed to chronic AlOH showed a decrease in the distance travelled, average and mobility speed, and increased the average frozen time, the explored area, and total no. of the site explored in the trapezoid tank. AlOH exposure also resulted in oxidative damage, enhanced lipid peroxidation, advanced oxidative protein products, decreased enzymatic and non-enzymatic antioxidant activities, and enhanced reactive oxygen species generation. Additionally, VtB12 supplementation improved neurogenesis, evident in increased Nissl cell numbers and NeuN expression in the brain. CONCLUSION Chronic alcoholism may be effect on the brain cells as well as on the neuro-behavior of zebrafish. This research demonstrated that VtB12 shows promise as a neuroprotective agent against chronic alcoholism induced alterations in zebrafish's brain.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Ravina Rai
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| |
Collapse
|
4
|
Gupta V, Srivastava R. Ashwagandha Diminishes Hippocampal Apoptosis Induced by Microwave Radiation by Acetylcholinesterase Dependent Neuro-Inflammatory Pathway in Male Coturnix coturnix Japonica. Neurochem Res 2024; 49:1687-1702. [PMID: 38506951 DOI: 10.1007/s11064-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
5
|
Adegbola PI, Aborisade AB, Olaniyi TD, Adetutu A. Evaluation of long-term effects of nickel and benzo [a] anthracene contaminated diets in rats' kidney; mimicking human exposure from food. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:8-19. [PMID: 38505130 PMCID: PMC10944713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVES Accumulative effects of heavy metals and polycyclic aromatic hydrocarbon could result in various toxicities. This study evaluated the effects of long-term exposure to low doses of nickel and benzo [a] anthracene on the kidney of rats, simulating human exposure through food. METHODS Thirty-six (36) Male rats weighing between 80-100 g were assigned into six groups of 6 animals each; Group A (normal), Group B1 and B2 (fed nickel contaminated feed for 12 and 24 weeks), Group C1 and C2 (fed benzo [a] anthracene contaminated feed for 12 and 24 weeks). Blood and kidney of the rats were harvested after animal sacrifice. Serum creatinine and urea concentration and renal Superoxide Dismutase (SOD) activity, GSH, MDA, protein carbonyl, and total protein concentration by spectrophotometric methods. While the concentration of 8-oxodeoxyguanosine in kidney was determined by ELISA method and protein carbonyl by colorimetric method. Renal histological analysis was done with H and E staining. Statistical analysis was performed with Statistical Package for Social Sciences (SPSS) and statistical significance was accepted 95 percent confidence level. RESULT From the results, urea concentration increased significantly (P<0.05) in the nickel exposed group after 24 weeks exposure whereas creatinine concentration increased significantly (P<0.05) after 12 weeks of exposure when compared with the control. Comparison of the serum urea and creatinine level of the benzo [a] anthracene exposed group with the control showed no significant (P>0.05) difference. Histological observations indicate glomerular atrophy and widened capsular space haemorrhagic areas, visceral and parietal layer of the Bowman's capsule, the proximal convoluted tubule in the nickel exposed group while the kidney of benzo (a) anthracene exposed rats showed deviation in the histo-architecture of the renal parenchyma as evidenced by glomerular atrophy and widened Bowman's capsular space and focal haemorrhagic areas. Protein thiol level and Superoxide dismutase activity was significantly (P<0.05) depleted in the benzo [a] anthracene exposed groups. The levels of total protein, protein carbonyl, and 8-oxodeoxyguanosine were significantly (P<0.05) elevated in the nickel and benzo [a] anthracene exposed groups. CONCLUSION This study demonstrated the oxidative stress causing effects of benzo [a] anthracene and nickel in the kidney. It also shows that consistent exposure to low doses of the contaminants for a lifetime might result in renal oxidative stress with consequential loss of renal function.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of TechnologyOgbomoso, Nigeria
- Department of Biochemistry and Forensic Science, First Technical UniversityIbadan, Nigeria
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of TechnologyOgbomoso, Nigeria
| | - Temitope Deborah Olaniyi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of TechnologyOgbomoso, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of TechnologyOgbomoso, Nigeria
| |
Collapse
|
6
|
Sharma P, Verma PK, Sood S, Raina R, Tukra S, Bhat ZF, Aadil RM. Ameliorative Potential of Ginger (Zingiber officinale) following Repeated Coexposure with Fluoride and Dimethoate in Blood and Brain of Wistar Rats. J Food Biochem 2024; 2024:1-16. [DOI: 10.1155/2024/8815630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Coexposure to exogenous neurotoxins, such as fluoride (F−) and dimethoate (DM), is a serious public health concern. In the current study, Wistar rats were exposed to DM (1/10th LD50) and F− (4.5 ppm) in drinking water individually as well as in combination continuously for 28 days and the effectiveness of ginger and quercetin was assessed in combating the oxidative stress-mediated combined toxic effects on blood and brain. Significant (p<0.05) reductions were observed in the levels of total antioxidant status (TAS), glutathione peroxidase (GPx), blood glutathione (GSH), activities of catalase (CAT), total thiols (TTH), superoxide dismutase (SOD), aryl esterase (AE), and acetylcholinesterase (AChE) whereas significant elevations (p<0.05) in malondialdehyde (MDA) and advanced oxidation protein products (AOPP) were recorded in blood and brain of coexposed rats. Administration of ginger and quercetin significantly (p<0.05) ameliorated the combined F- and DM-induced hematotoxicity as well as neurotoxicity as indicated by the levels of markers of oxidative injury in brain and blood in coexposed rats, which showed significant (p<0.05) improvement. Moreover, pathological changes, such as neurodegeneration, perivascular edema, and gliosis, observed after combined F− and DM toxicity in the brain (cerebrum and cerebellum) were markedly reduced after ginger supplementation.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Shilpa Sood
- Division of Veterinary Pathology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Sheen Tukra
- Division of Veterinary Pharmacology and Toxicology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu, Jammu and Kashmir, India
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Abdelhafez HEDH, Hammam FM, EL-Dahshan AA, AboDalam H, Guo J. Imidacloprid Induces Neurotoxicity in Albino Male Rats by Inhibiting Acetylcholinesterase Activity, Altering Antioxidant Status, and Primary DNA Damage. J Toxicol 2023; 2023:4267469. [PMID: 37727350 PMCID: PMC10506876 DOI: 10.1155/2023/4267469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide used worldwide, either alone or in combination with other pesticides. The goal of this study was to assess the effects of IMI on the central nervous system of rats and its mechanism of oxidative stress-induced DNA damage by oxidant/antioxidant parameters. Fifteen male rats, divided into three groups, were used: the first group received 5 ml/kg body weight corn oil as a control, the second received a high oral dose of IMI (45 mg/kg body weight), while the third received a low dose (22 mg/kg body weight). After 28 days, acetylcholinesterase (AChE) activity, oxidative stress markers, histopathological alterations, and DNA damage were examined in the brains of these rats. The AChE activities decreased significantly after IMI exposure, reaching 2.45 and 2.75 nmol/min/mg protein in high dose and low dose, respectively, compared to the control group (3.75 nmol/g tissues), while the concentration of malondialdehyde MDA increased significantly (29.28 and 23.92 nmol/g tissues) vs. the control group (19.28 nmol/g tissues). The antioxidant status parameters such as reduced glutathione (GSH) content was 13.77 and 17.63 nmol/g, catalase (CAT) activity was 22.56 and 26.65 µmol/min/g, and superoxide dismutase (SOD) activity was 6.66 and 7.23 µmol/min/g in both doses against the control group (21.37 nmol/g, 30.67 µmol/min/g, 11.76 µmol/min/g), respectively, and histopathological changes in the brain tissues were observed. More in vivo research using epigenetic methods is needed to determine the ability of IMI and its metabolites to cause neurotoxicity and DNA lesions in mammalian brains.
Collapse
Affiliation(s)
- Hossam El Din H. Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Fatma M. Hammam
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Asmaa A. EL-Dahshan
- Department of Zoology, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Hussien AboDalam
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
8
|
Bastos RG, Rodrigues SDO, Marques LA, Oliveira CMD, Salles BCC, Zanatta AC, Rocha FD, Vilegas W, Pagnossa JP, de A Paula FB, da Silva GA, Batiha GE, Aggad SS, Alotaibi BS, Yousef FM, da Silva MA. Eugenia sonderiana O. Berg leaves: Phytochemical characterization, evaluation of in vitro and in vivo antidiabetic effects, and structure-activity correlation. Biomed Pharmacother 2023; 165:115126. [PMID: 37494787 DOI: 10.1016/j.biopha.2023.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.
Collapse
Affiliation(s)
- Renan G Bastos
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Sarah de O Rodrigues
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | | | - Carla M de Oliveira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Bruno C C Salles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Ana C Zanatta
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | | | - Wagner Vilegas
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Jorge P Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Fernanda B de A Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Geraldo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Sarah S Aggad
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. box 84428, Riyadh 11671, Saudi Arabia
| | - Fatimah M Yousef
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marcelo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil.
| |
Collapse
|
9
|
Adeniyi OE, Adebayo OA, Akinloye O, Adaramoye OA. Combined cerium and zinc oxide nanoparticles induced hepato-renal damage in rats through oxidative stress mediated inflammation. Sci Rep 2023; 13:8513. [PMID: 37231036 DOI: 10.1038/s41598-023-35453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The toxicity profiles of nanoparticles (NPs) used in appliances nowadays remains unknown. In this study, we investigated the toxicological consequences of exposure to cerium oxide (CeO2) and zinc oxide (ZnO) nanoparticles given singly or in combination on the integrity of liver and kidney of male Wistar rats. Twenty (20) rats were allotted into four groups and treated as: Control (normal saline), CeO2NPs (50 μg/kg), ZnONPs (80 μg/kg) and [CeO2NPs (50 μg/kg) + ZnONPs (80 μg/kg)]. The nanoparticles were given to the animals through the intraperitoneal route, three times per week for four repeated weeks. Results revealed that CeO2 and ZnO NPs (singly) increased serum AST and ALT by 29% & 57%; 41% & 18%, and co-administration by 53% and 23%, respectively. CeO2 and ZnO NPs increased hepatic and renal malondialdehyde (MDA) by 33% and 30%; 38% and 67%, respectively, while co-administration increased hepatic and renal MDA by 43% and 40%, respectively. The combined NPs increased hepatic NO by 28%. Also, CeO2 and ZnO NPs, and combined increased BAX, interleukin-1β and TNF-α by 45, 38, 52%; 47, 23, 82% and 41, 83, 70%, respectively. Histology revealed hepatic necrosis and renal haemorrhagic parenchymal in NPs-treated rats. Summarily, CeO2 and ZnO NPs produced oxidative injury and induced inflammatory process in the liver and kidney of experimental animals.
Collapse
Affiliation(s)
- Olola Esther Adeniyi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olayinka Anthony Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyemi Akinloye
- Clinical Chemistry and Molecular Diagnostic Laboratory, Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Oluwatosin Adekunle Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Biochemistry Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun State, Nigeria.
| |
Collapse
|
10
|
Sharma P, Verma PK, Sood S, Yousuf R, Kumar A, Raina R, Shabbir MA, Bhat ZF. Protective Effect of Quercetin and Ginger ( Zingiber officinale) Extract against Dimethoate Potentiated Fluoride-Induced Nephrotoxicity in Rats. Foods 2023; 12:1899. [PMID: 37174437 PMCID: PMC10177764 DOI: 10.3390/foods12091899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the potential of quercetin and Zingiber officinale (ZO) Roscoe extract to alleviate the renal damage induced by dimethoate (DM) and fluoride (F-) alone and by their combined exposure in rats. A total of 54 adult Wistar rats were randomly allocated to nine groups (n = 6). A sub-lethal dose of DM (1/10th of the median lethal dose) was administered by oral gavage alone and along with F- (4.5 ppm, three-fold the permissible limit) in their drinking water continuously for 28 days. Chromatographical analysis revealed the presence of quercetin, curcumin, and other phytochemicals with strong antioxidant properties in ZO-rhizome extract. Severe changes were observed in the levels of the renal biomarkers and histoarchitecture after co-administration of the toxicants, indicating greater kidney damage. The administration of ZO extract (300 mg/kg) along with either or both toxicants led to a significant restoration of the biochemical markers and renal antioxidant profile and histology.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Rasia Yousuf
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Amit Kumar
- Quality Management and Instrumentation Division, Indian Institute of Integrative Medicine (CSIR-Lab), Jammu 180016, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Jammu, Jammu 181102, India
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu 181102, India
| |
Collapse
|
11
|
Radovanović J, Antonijević B, Ćurčić M, Baralić K, Kolarević S, Bulat Z, Đukić-Ćosić D, Buha Djordjević A, Vuković-Gačić B, Javorac D, Antonijević Miljaković E, Carević M, Mandinić Z. Fluoride subacute testicular toxicity in Wistar rats: Benchmark dose analysis for the redox parameters, essential elements and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120321. [PMID: 36191801 DOI: 10.1016/j.envpol.2022.120321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Excessive fluoride (F-) levels in the environment could induce different pathological changes, including comorbidities in reproductive functions. Hence, the aim of the present in vivo study was to explore F- subacute toxicity mechanisms via Benchmark dose (BMD) methodology on rat's testicles. The experiment was conducted on thirty male Wistar rats for 28 days, divided into six groups (n = 5): 1) Control (tap water); 2) 10 mg/L F-; 3) 25 mg/L F-; 4) 50 mg/L F-; 5) 100 mg/L F-; 6) 150 mg/L F-. Testicles were dissected out and processed for the determination of F- tissue concentrations, redox status parameters, essential elements level, and DNA damage. PROASTweb 70.1 software was used for determination of external and internal dose-response relationship. The results confirmed a significant increase in superoxide anion (O2.-), total oxidative status (TOS), copper (Cu), zinc (Zn), iron (Fe), DNA damage levels, and decrease in superoxide dismutase activity (SOD1) and total thiol (SH) groups. The dose-dependent changes were confirmed for SOD1 activity and DNA damage. The most sensitive parameters were SOD1 activity and DNA damage with the lowest BMDLs 0.1 μg F-/kg b. w. Since human and animal populations are daily and frequently unconsciously exposed to F-, this dose-response study is valuable for further research regarding the F- health risk assessment.
Collapse
Affiliation(s)
- Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Hydroecology and Water Protection, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Branka Vuković-Gačić
- Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Momir Carević
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
12
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Salivary Redox Homeostasis in Human Health and Disease. Int J Mol Sci 2022; 23:ijms231710076. [PMID: 36077473 PMCID: PMC9455999 DOI: 10.3390/ijms231710076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Homeostasis is a self-regulatory dynamic process that maintains a stable internal environment in the human body. These regulations are essential for the optimal functioning of enzymes necessary for human health. Homeostasis elucidates disrupted mechanisms leading to the development of various pathological conditions caused by oxidative stress. In our work, we discuss redox homeostasis and salivary antioxidant activity during healthy periods and in periods of disease: dental carries, oral cavity cancer, periodontal diseases, cardiovascular diseases, diabetes mellitus, systemic sclerosis, and pancreatitis. The composition of saliva reflects dynamic changes in the organism, which makes it an excellent tool for determining clinically valuable biomarkers. The oral cavity and saliva may form the first line of defense against oxidative stress. Analysis of salivary antioxidants may be helpful as a diagnostic, prognostic, and therapeutic marker of not only oral, but also systemic health.
Collapse
|
14
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
15
|
Abdelhafez HEDH, AbdAllah AA, Afify MM, Mahmoud NF, Guo J, Murad SA, Ibrahim EA. Protective action of polysaccharides from Laurencia papillose (Rhodophyta) against imidacloprid induced genotoxicity and oxidative stress in male albino rats. Environ Anal Health Toxicol 2022; 37:e2022011-0. [PMID: 35878919 PMCID: PMC9314203 DOI: 10.5620/eaht.2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Imidacloprid (IMI), the main component of neonicotinoid insecticides, promotes oxidative stress and genotoxicity in mammals. The aim of this experiment is to assess oxidative stress in liver cells and genotoxicity of erythrocytes for rats exposed to sub-lethal doses of IMI and the protective effects for Rhodophyta as antioxidant material versus imidacloprid. A total of 30 adult male albino rats (average body weight, 190–200 g) were divided into six groups (n=5) as follows: group 1 served as the control, group 2 received 200 mg/kg red algae, group 3 received 45 mg/kg IMI (high-dose group), group 4 received 22.5 mg/kg IMI (low-dose group), group 5 received 200 mg/kg red algae +45 mg/kg IMI, and group 6 received 200 mg/kg red algae +22.5 mg/kg IMI. After 28 d of treatment, the antioxidant activity of the crude extract of red algae was assessed in terms of free radical scavenging activity and found to be higher in TCA (75.57%) followed by DPPH (50.08%) at concentration 100 μg extract and a significant increase in lipid peroxidation and reductions in glutathione were observed in liver cells were intoxicated with high and low doses of IMI. Moreover decreases in catalase and glutathione peroxidase parameters in same previous groups which indicated oxidative stress. In addition significant increases in micronucleus frequency (MN) in the bone marrow of the rats as a genotoxicity marker which indicated DNA damage in erythrocytes cells with alterations in the histopathology of liver cells were also noted such as necrosis, inflammatory cells, infiltration, and necrobiotic changes. Whereas Rhodophyta succeeded in alleviation the oxidative damage and genotoxicity induced by the insecticide. In conclusion, IMI demonstrates hazardous effects, such as alterations in antioxidant status and mutagenicity of erythrocytes and polysaccharides from Rhodophyta has good antioxidant activity in vivo model systems against imidacloprid.
Collapse
Affiliation(s)
- Hossam El Din H. Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural pesticides Lab, Agricultural Research Center, Giza,
Egypt
- Correspondence:
| | - Amr A AbdAllah
- Mammalian and Aquatic Toxicology Department, Central Agricultural pesticides Lab, Agricultural Research Center, Giza,
Egypt
| | - Mostafa M Afify
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef,
Egypt
| | - Naglaa F Mahmoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Giza,
Egypt
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou,
China
| | - Soha A Murad
- Plant Biochemistry Department, National Research Centre (NRC), Giza,
Egypt
| | - Eman A Ibrahim
- Plant Biochemistry Department, National Research Centre (NRC), Giza,
Egypt
| |
Collapse
|
16
|
Henneh IT, Ahlidja W, Alake J, Kwabil A, Ahmed MA, Kyei-Asante B, Adinortey MB, Ekor M, Armah FA. Ziziphus abyssinica root bark extract ameliorates paracetamol-induced liver toxicity in rats possibly via the attenuation of oxidative stress. Toxicol Rep 2022; 9:1929-1937. [DOI: 10.1016/j.toxrep.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
17
|
The Protective Effects of Carrageenan Oligosaccharides on Intestinal Oxidative Stress Damage of Female Drosophila melanogaster. Antioxidants (Basel) 2021; 10:antiox10121996. [PMID: 34943099 PMCID: PMC8698627 DOI: 10.3390/antiox10121996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Carrageenan oligosaccharides (COS) have been reported to possess excellent antioxidant activities, but the underlying mechanism remains poorly understood. In this study, H2O2 was applied to trigger oxidative stress. The results showed that the addition of COS could effectively extend the lifespan of female Drosophila, which was associated with improvements by COS on the antioxidant defense system, including a decrease in MDA, the enhanced activities of SOD and CAT, the reduction of ROS in intestinal epithelial cells, and the up-regulation of antioxidant-relevant genes (GCL, GSTs, Nrf2, SOD). Meanwhile, the axenic female Drosophila fed with COS showed almost no improvement in the above measurements after H2O2 treatment, which highlighted the antioxidant mechanism of COS was closely related to intestinal microorganisms. Then, 16S rDNA high-throughput sequencing was applied and the result showed that the addition of COS in diets contributed to the diversity and abundance of intestinal flora in H2O2 induced female Drosophila. Moreover, COS significantly inhibited the expression of gene mTOR, elevated its downstream gene 4E-BP, and further inhibited autophagy-relevant genes (AMPKα, Atg1, Atg5, Atg8a) in H2O2 induced female Drosophila. The inhibition of the mTOR pathway and the activation of autophagy was probably mediated by the antioxidant effects of COS. These results provide potential evidence for further understanding of COS as an intestinal antioxidant.
Collapse
|
18
|
Piner Benli P, Kaya M, Coskun C. Fucoidan Modulated Oxidative Stress and Caspase-3 mRNA Expression Induced by Sulfoxaflor in the Brain of Mice. Neurotox Res 2021; 39:1908-1919. [PMID: 34570347 DOI: 10.1007/s12640-021-00415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The current study aimed to investigate the role of fucoidan in the oxidative and apoptotic effects of sulfoxaflor, a neonicotinoid sulfoximine insecticide, in the brain of Swiss albino mice (Mus musculus). Sulfoxaflor and fucoidan were administered to mice at doses of 15 mg/kg/day (1/50 oral LD50) and 50 mg/kg/day, respectively, by oral gavage for 24 h or 7 days. The tGSH, TBARS and protein levels, and GPx, GR, and GST enzyme activities were determined by spectrophotometric methods. Caspase-3 gene expression level was determined by RT-PCR. Data analysis showed that brains of sulfoxaflor-treated mice exhibited higher TBARS levels; GPx, GR, and GST enzyme activities; and caspase-3 expression levels, as well as lower levels of tGSH. Co-administration of fucoidan and sulfoxaflor reduced the TBARS levels, increased tGSH levels, and increased GPx, GR, and GST enzyme activities. Fucoidan also decreased the sulfoxaflor-induced up-regulation of caspase-3 mRNA expression. Results of the present study showed that sulfoxaflor caused oxidative stress by inducing lipid peroxidation and altering GSH-dependent antioxidants in the brain of mice. In addition, sulfoxaflor may trigger apoptotic cell death shown by the up-regulation of caspase-3. Fucoidan treatment modulated all the aforementioned alterations in the brain of mice. It was concluded that fucoidan might have antioxidant effects that support the GSH-dependent antioxidant system and can play a modulator role in oxidative stress and caspase-3 expression in the brain of sulfoxaflor treated-mice.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330, Adana, Turkey
| | - Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
19
|
Ibrahim KA, Abdelgaid HA, El-Desouky MA, Fahmi AA, Abdel-Daim MM. Linseed ameliorates renal apoptosis in rat fetuses induced by single or combined exposure to diesel nanoparticles or fenitrothion by inhibiting transcriptional activation of p21/p53 and caspase-3/9 through pro-oxidant stimulus. ENVIRONMENTAL TOXICOLOGY 2021; 36:958-974. [PMID: 33393722 DOI: 10.1002/tox.23097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/27/2020] [Indexed: 02/05/2023]
Abstract
Gestational exposure to environmental pollutants can induce oxidative injury and apoptosis since the fetal organs are sensitively vulnerable to these chemicals. In this work, we have investigated the renal anti-apoptotic efficiency of linseed (LS) against the oxidative stress-mediated upregulation of the fetal apoptosis-related genes following the prenatal intoxication with diesel nanoparticles (DNPs) and/or fenitrothion (FNT). A fifty-six timed-pregnant rats were equally divided to eight groups; control, LS (20% in diet), DNPs (0.5 mg/kg by intratracheal inoculation), FNT (3.76 mg/kg by gavage), DNPs+FNT, LS + DNPs, LS + FNT, and LS + DNPs+FNT. The transmission electron microscope analysis revealed the spherical shape of diesel particles with a homogeneous nanosized range (20-92.3 nm) and the crystallinity was confirmed by electron diffraction microscopy. Administration of DNPs and/or FNT significantly increased fetal renal malondialdehyde, nitric oxide, and glutathione reductase as compared with the control group. However, they declined the level of glutathione together with the activities of glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase. Furthermore, DNPs and/or FNT elicited many histopathological changes in fetal renal cells, markedly up-regulated apoptosis-related gene expressions (p53, p21 caspase-3, and caspase-9), and evoked DNA breaks as detected by comet assay. Interestingly, LS supplementation significantly ameliorated the disturbances in oxidant/antioxidant biomarkers, downregulated the apoptosis gene expressions, and alleviated DNA damage alongside renal cell architecture. These findings reveal that the antioxidant and anti-apoptotic characteristics of LS are acceptable defender pointers for the renal injury especially during gestational exposure to DNPs and/or FNT.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hala A Abdelgaid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6818-6829. [PMID: 33011947 DOI: 10.1007/s11356-020-10997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ethephon is an organophosphorus plant growth regulator used to accelerate the ripening process and decrease the duration of cultivation. Here, the potential protective role of aged garlic extract (AGE) was investigated against ethephon-mediated nephrotoxicity. Four experimental groups were established (n = 15), including control, AGE (250 mg/kg), ethephon (200 mg/kg), and AGE + ethephon. In the current work, kidney function parameters (urea, creatinine, and KIM-1) along with oxidative stress biomarkers, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, glutathione, and its related enzymes, superoxide dismutase, catalase, malondialdehyde, and nitric oxide, were determined. The expression of inflammatory mediators namely tumor necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (caspase 3, Bax, and Bcl2) were determined in the renal tissue. Additionally, the histopathological alterations in response to treatments were examined. Ethephon exposure increased the levels of kidney function markers along with relative kidney weight coupled with histological changes in the kidney tissue. Additionally, ethephon increased the levels of the tested pro-oxidant markers and decreased the antioxidant indices, resulting in oxidative damage to renal tissues. An elevation in the pro-inflammatory mediators was also recorded following ethephon intoxication. Furthermore, renal cell loss was observed through histological examinations and biochemical measurements upon ethephon administration. On the other hand, AGE significantly ameliorated the molecular, biochemical, and structural changes elicited by ethephon. These findings suggest that AGE may be used to decrease or prevent the side effects of ethephon exposure in kidneys, through the activation of Nrf2 and inhibition of inflammation and apoptotic response.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
21
|
Ugbaja RN, Akinhanmi TF, James AS, Ugwor EI, Babalola AA, Ezenandu EO, Ugbaja VC, Emmanuel EA. Flavonoid-rich fractions from Clerodendrum volubile and Vernonia amygdalina extenuates arsenic-invoked hepato-renal toxicity via augmentation of the antioxidant system in rats. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS, Revazova YA, Rakitskii VN, Goumenou M, Vardavas A, Stivaktakis P, Tsatsakis A. Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicol Rep 2020; 7:1090-1094. [PMID: 32953461 PMCID: PMC7484519 DOI: 10.1016/j.toxrep.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Genotoxicity of the mixture of generic pesticides imidacloprid + imazalil + tebuconazole in a ratio of 14.0/1.7/1.0 by weight was assessed using Ames test (Salmonella typhimurium) and micronucleus test in vivo on mammalian bone marrow erythrocytes (CD-1 mice) supporting the data creation for the Real Life Risk Simulation (RLRS) approach. This pesticides' combination is used in the commercial formulation for seed treatment in advance of or immediately before sowing. Tested pesticides' technical grade active ingredients (TGAIs) showed no evidence of genotoxicity upon separate treatments. In combination, the three pesticides demonstrated negative results in the Ames test but induced a statistically significant, dose-depended increase in MN-PCEs in mice bone marrow at doses lower than those used separately. The observed effect may be mediated by the synergistic action of the tested TGAIs, their metabolites or impurities.
Collapse
Affiliation(s)
- Nataliya A. Ilyushina
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Olga V. Egorova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Gleb V. Masaltsev
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Nataliya S. Averianova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Yulia A. Revazova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Valerii N. Rakitskii
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Marina Goumenou
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Alexander Vardavas
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Polychronis Stivaktakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
23
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 879] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694+10.3389/fphys.2020.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2024] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Singh P, Verma PK, Raina R, Sood S, Sharma P. Maximum contaminant level of arsenic in drinking water potentiates quinalphos-induced renal damage on co-administration of both arsenic and quinalphos in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21331-21340. [PMID: 32270456 DOI: 10.1007/s11356-020-08643-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to determine alterations in renal biomarkers, antioxidant profile, and histomorphology of renal tissue following subacute exposure to quinalphos alone or in conjunction with arsenic in rats. A total of 54 adult Wistar rats were randomly divided into nine groups of six rats each and were administered sub-lethal concentrations of quinalphos (1/100th and 1/10th of LD50) orally daily and arsenic (50 and 100 ppb) in drinking water for 28 days. Significantly (p < 0.05) decreased levels of antioxidant biomarkers in renal tissue, viz., total thiols, catalase, superoxide dismutase, glutathione peroxidase, glutathione-s-transferase, and glutathione reductase along with increased (p < 0.05) thiobarbituric acid reacting substance (TBRAS) levels indicated that significant oxidative damage to renal tissue occurred following repeated administrations of quinalphos at either dose levels or arsenic at the concentration of 100 ppb when compared with the control rats. The alterations in the antioxidant parameters were observed to be more pronounced in co-administered groups as compared with either toxicant administered group. Similarly, activity of renal acetylcholinesterase was decreased after repeated exposure to quinalphos or arsenic, but inhibition was higher (up to 48%) in rat renal tissue co-exposed with quinalphos and arsenic at the higher concentration. These findings corroborated with the histopathological alterations in renal tissue of toxicant exposed rats. The altered plasma and tissue antioxidant biomarkers along with histopathological changes in the kidney at higher dose level of either toxicant indicate that renal tissue is significantly impacted by these toxicants, and these effects become more pronounced after their co-administration.
Collapse
Affiliation(s)
- Parvinder Singh
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India.
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| |
Collapse
|
27
|
Gallic acid protects rat liver mitochondria ex vivo from bisphenol A induced oxidative stress mediated damages. Toxicol Rep 2019; 6:578-589. [PMID: 31293903 PMCID: PMC6595240 DOI: 10.1016/j.toxrep.2019.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 01/19/2023] Open
Abstract
Bisphenol A induces oxidative stress mediated liver mitochondrial damage. Bisphenol A induced damage is being protected when mitochondria are co-incubated with gallic acid. Scanning electron microscopy of mitochondrial tomography supports the biochemical observations. Gallic acid may be used as future remedial measure for the protection of bisphenol A induced damages of liver mitochondria.
Humans are often exposed to bisphenol A (BPA), the monomer of polycarbonate plastics and epoxy resins, through BPA contaminated drinking water, beverages and foods, packaged in polycarbonate plastic bottles and cans coated with epoxy resins due to leaching. Several research groups have reported that BPA may cause damage of mitochondria in liver, kidney, heart and brain cells by inducing oxidative stress. The antioxidant efficacy of gallic acid (GA), a polyphenol compound obtained from plants, against different toxicants induced oxidative stress has been well established. The aim of the present study was to examine the protective efficacy of GA against BPA induced oxidative damages of the rat liver mitochondria ex vivo. In our study, we have found a significant decrease in the intactness of mitochondria; a significant increase (P ≤ 0.001) in the levels of lipid peroxidation end product (i.e. malondialdehyde) and protein carbonylation product; and also a significant decrease (P ≤ 0.001) in the reduced glutathione content; when mitochondria were incubated with BPA (160 μM/ml) only. These results indicate that BPA probably causes damage to the cellular macromolecules through oxidative stress. We have observed significant counteractions (P ≤ 0.001) against BPA induced alterations in mitochondrial intactness, lipid peroxidation and protein carbonylation products formation and reduced glutathione content when mitochondria were incubated with BPA and GA (20 μg/ml/ 40 μg/ml/ 80 μg/ml) in combination in a dose-dependent manner. Gallic acid also showed significant restorations (P ≤ 0.001) of the activities of antioxidant enzymes, Krebs cycle enzymes, respiratory chain enzymes and thiolase when mitochondria were incubated with BPA and dosage of GA (20 μg/ml/ 40 μg/ml/ 80 μg/ml) in combination compared to BPA incubated mitochondria. Furthermore, GA significantly (P ≤ 0.001) counteracted the BPA induced decrease in tryptophan and NADH auto-fluroscence levels in mitochondria. This result suggests that GA protects the mitochondria probably by reducing the oxidative stress. Besides, GA protects the mitochondrial surface from BPA induced oxidative damages as viewed under the scanning electron microscope. Considering all the results, it can be concluded that GA shows potent efficacy in protecting the rat liver mitochondria ex vivo from BPA induced oxidative stress mediated damages.
Collapse
|