1
|
Hartung F, Krutmann J, Haarmann-Stemmann T. Evidence that the aryl hydrocarbon receptor orchestrates oxinflammatory responses and contributes to airborne particulate matter-induced skin aging. Free Radic Biol Med 2025; 233:264-278. [PMID: 40157462 DOI: 10.1016/j.freeradbiomed.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Exposure to airborne particulate matter (PM) is a substantial threat to public health, contributing to respiratory, cardiovascular, and skin-related diseases. Population-based studies strongly indicate that chronic exposure to airborne PM, especially combustion-derived PM2.5, accelerates skin aging and thus reduces the quality of life of those affected. There is increasing evidence that especially PM-bound polycyclic aromatic hydrocarbons (PAHs) critically contribute to the clinical manifestation of skin aging, i.e. the development of lentigines/pigment spots and coarse wrinkles. PAHs harm human skin primarily by activating the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor amongst others involved in orchestrating xenobiotic metabolism and immune responses. In this review, we summarize the available population-based data linking particulate air pollution exposure to skin aging. We explain in detail how PAH-rich PM induces the formation of oxidative stress, the release of pro-inflammatory mediators, the expression extracellular matrix degrading metalloproteases, and melanin synthesis, in an AHR-dependent manner, and how these events may culminate in the development of pigment spots and wrinkles, respectively. We also review the current data on the interaction of airborne PM with another factor of the skin aging exposome that exerts its deleterious effects in part through AHR-dependent signaling pathways, namely solar ultraviolet radiation.
Collapse
Affiliation(s)
- Frederick Hartung
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | |
Collapse
|
2
|
Amadou A, Praud D, Marques C, Noh H, Frenoy P, Vigneron A, Coudon T, Deygas F, Severi G, Fervers B, Mancini FR. Dietary intake of polycyclic aromatic hydrocarbons (PAHs) and breast cancer risk: Evidence from the French E3N-Generations prospective cohort. ENVIRONMENT INTERNATIONAL 2025; 200:109505. [PMID: 40373460 DOI: 10.1016/j.envint.2025.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND While there is compelling evidence of the association between occupational exposure to polycyclic aromatic hydrocarbons (PAHs) and risk of breast cancer (BC), findings on PAH dietary exposure are less consistent. The present study aims to evaluate the association between PAH dietary intake and BC risk. METHODS The study included 67,879 women who completed a validated semi-quantitative dietary questionnaire (208 food items) from the E3N-Generations cohort study. PAH dietary intake was estimated by combining E3N food consumption data with food contamination levels obtained from the second French total diet study (TDS2). Cox regression was used to estimate adjusted hazard ratios (HRs) and 95 % confidence intervals (CIs) for the association between PAH dietary intake (sum of four PAHs (PAH4) namely benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA) and benzo[b]fluoranthene (BbF)) and BC risk. Additionally, BaP, a surrogate for total PAHs, was investigated as the second exposure variable. RESULTS After an average follow-up of 17.6 years, 5,686 incident BC were diagnosed. Overall, the estimated HRs for the associations between each quintile of PAH4 and BC risk, taking the first quintile as reference, were all greater than 1, but were statistically significant only for the third quintile (HRQ3 vs Q1 = 1.10; CI: 1.01-1.20). By estrogen (ER) and progesterone (PR) hormone receptor status, we observed a positive association between PAH4 dietary intake and ER-PR- BC (HRQ4 vs Q1 = 1.34; CI: 1.01-1.76). Moreover, there was a borderline positive association with BaP, for the second (HRQ2 vs Q1 = 1.08; CI: 0.99-1.17) and third (HRQ3 vs Q1 = 1.07; CI: 0.98-1.16) quintiles. CONCLUSIONS This study supports a relationship between PAH4 dietary intake and BC risk, notably with a non-linear trend. A positive but marginal association was observed between BaP dietary intake and BC risk.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Hwayoung Noh
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Arnaud Vigneron
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008 Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | | |
Collapse
|
3
|
Mohamed AH, Alshammari MB, Aly AA, Sadek KU, Ahmad A, Aziz EA, El-Yazbi AF, El-Agroudy EJ, Abdelaziz ME. New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies. J Enzyme Inhib Med Chem 2024; 39:2311818. [PMID: 38488131 PMCID: PMC10946275 DOI: 10.1080/14756366.2024.2311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Kamal U. Sadek
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Eman A. Aziz
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman J. El-Agroudy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa E. Abdelaziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Sharma P, Chukwuka AV, Chatterjee S, Chakraborty D, Bhowmick S, Mistri TK, Saha NC. Biomarker and adverse outcome pathway responses of Tubifex tubifex (sludge worm) exposed to environmentally-relevant levels of acenaphthene: insights from behavioral, physiological, and chemical structure-activity analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61894-61911. [PMID: 39448429 DOI: 10.1007/s11356-024-35290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including acenaphthene, pose a significant threat to aquatic ecosystems by harming vital organisms such as benthic invertebrates. This study evaluated the impact of environmentally relevant concentrations of acenaphthene on Tubifex tubifex, focusing on sublethal acute toxicity and subchronic biomarker responses. Key biomarkers assessed included histopathological changes and the modulation of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA). Additionally, the study examined structure-activity relationships and species sensitivity distribution (SSD). Concentrations exceeding the solubility threshold of acenaphthene (3.9 mg/L) triggered distinct, concentration-dependent behavioral responses in Tubifex tubifex, such as clumping, mucus secretion, and body wrinkling. Prolonged exposure exacerbated these behavioral dysfunctions, while subchronic exposure resulted in significant histopathological alterations, including epithelial hyperplasia, inflammation, edema, fibrosis, and degenerative changes. The edematic appearance of the body wall suggested a potential immune response to exposure. Furthermore, increased activities of CAT, SOD, and GST indicated oxidative stress in the worms. The study found a 1.5-fold increase in CAT and GST activity, a fivefold increase in SOD, and a striking 100-fold increase in MDA levels compared to controls, signifying an overwhelmed antioxidant defense system and potential cellular disruption. The SSD curve revealed hazard concentrations (HC50 and HC90), indicating that Tubifex tubifex exhibited lower sensitivity to acenaphthene compared to other taxa. In silico analysis and read-across models confirmed the potential of acenaphthene to induce significant oxidative stress upon exposure. The correlation between biomarker responses and structure-activity relationship analysis highlighted the aromatic nature of acenaphthene as a key factor in generating reactive metabolites, inhibiting antioxidant enzymes, and promoting redox cycling, ultimately contributing to adverse outcomes. These findings, coupled with behavioral responses and SSD curve inferences, underscore the importance of the solubility threshold of acenaphthene as a critical benchmark for evaluating its ecological impact in aquatic environments.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), National Environmental Standards and Regulations Enforcement Agency, Abuja, Nigeria.
| | | | | | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur Campus, SRM Nagar, Potheri, Chennai, 603203, India
| | | |
Collapse
|
5
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Duangnin N, Kiattisin K. Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications. Int J Mol Sci 2024; 25:9416. [PMID: 39273362 PMCID: PMC11395326 DOI: 10.3390/ijms25179416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen's egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Gasparini C, Iori S, Pietropoli E, Bonato M, Giantin M, Barbarossa A, Bardhi A, Pilastro A, Dacasto M, Pauletto M. Sub-acute exposure of male guppies (Poecilia reticulata) to environmentally relevant concentrations of PFOA and GenX induces significant changes in the testis transcriptome and reproductive traits. ENVIRONMENT INTERNATIONAL 2024; 187:108703. [PMID: 38705092 DOI: 10.1016/j.envint.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are frequently detected in the environment and are linked to adverse reproductive health outcomes in humans. Although legacy PFAS have been phased out due to their toxicity, alternative PFAS are increasingly used despite the fact that information on their toxic effects on reproductive traits is particularly scarce. Here, we exposed male guppies (Poecilia reticulata) for a short period (21 days) to an environmentally realistic concentration (1 ppb) of PFOA, a legacy PFAS, and its replacement compound, GenX, to assess their impact on reproductive traits and gene expression. Exposure to PFAS did not impair survival but instead caused sublethal effects. Overall, PFAS exposure caused changes in male sexual behaviour and had detrimental effects on sperm motility. Sublethal variations were also seen at the transcriptional level, with the modulation of genes involved in immune regulation, spermatogenesis, and oxidative stress. We also observed bioaccumulation of PFAS, which was higher for PFOA than for GenX. Our results offer a comprehensive comparison of these two PFAS and shed light on the toxicity of a newly emerging alternative to legacy PFAS. It is therefore evident that even at low concentrations and with short exposure, PFAS can have subtle yet significant effects on behaviour, fertility, and immunity. These findings underscore the potential ramifications of pollution under natural conditions and their impact on fish populations.
Collapse
Affiliation(s)
- C Gasparini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - S Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - E Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Bonato
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - A Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy; Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (CIRI-SDV), Alma Mater Studiorum University of Bologna, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra 50, I-40064 Ozzano dell'Emilia (Bologna), Italy
| | - A Pilastro
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy; National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy.
| |
Collapse
|
7
|
Kourtchev I, Hellebust S, Heffernan E, Wenger J, Towers S, Diapouli E, Eleftheriadis K. A new on-line SPE LC-HRMS method for the analysis of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in PM 2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155496. [PMID: 35483471 DOI: 10.1016/j.scitotenv.2022.155496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
A sensitive analytical method has been developed and validated for the determination of 16 polyfluorinated alkyl substances (PFAS) in fine airborne particulate matter (PM2.5) using on-line solid phase extraction (SPE) coupled with liquid chromatography (LC) - negative electrospray ionisation high resolution mass spectrometry (-) ESI-HRMS. On-line SPE allows simultaneous sample clean-up from interfering matrices and lower limits of detection (LODs) by injecting a large volume of sample into the LC system without compromising chromatographic efficiency and resolution. The method provides LODs in the range 0.08-0.5 pg/mL of sample extract allowing detection of selected PFAS in aerosol particles at low fg/m3 level and showed good tolerance to the considered PM matrix. The validated method was applied for analysis of PFAS in ambient PM2.5 samples collected at two urban locations in Ireland, i.e., Enniscorthy and Dublin. Several PFAS were observed above the detection limit, including perfluorobutyrate (PFBA), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (L-PFBS) and perfluorononanoic acid (PFNA), as well as fluorotelomer sulfonates: 4:2 FTS, 6:2 FTS and 8:2 FTS. The results indicate that some toxic PFAS, such as PFOS and PFOA, are still detected in the environment despite being phased out from production and subject to restricted use in the EU and USA for more than two decades. Observation of fluorotelomer sulfonates (4:2 FTS, 6:2 FTS and 8:2 FTS, which are used as alternatives for legacy PFOA and PFOS) in ambient PM2.5 samples raises a concern about their persistence in the atmosphere and impact on human health considering emerging evidence that they could have similar health endpoints as PFOA and PFOS. To our knowledge, this is the first study to identify PFAS in ambient PM2.5 at urban locations in Ireland and also the first study to detect 4:2 and 8:2 fluorotelomer sulfonates in atmospheric aerosol particles.
Collapse
Affiliation(s)
- Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore CV8 3LG, UK.
| | - Stig Hellebust
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Eimear Heffernan
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - John Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Sam Towers
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore CV8 3LG, UK
| | - Evangelia Diapouli
- ERL, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Athens, Greece
| | - Konstantinos Eleftheriadis
- ERL, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Athens, Greece
| |
Collapse
|
8
|
Julaton T, Taclendo A, Oyong G, Rempillo O, Galvez MC, Vallar E. In Silico Insights on the Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and the Prospective Anti-Inflammatory Capacity of Andrographis paniculata Phytocompounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148588. [PMID: 35886440 PMCID: PMC9317509 DOI: 10.3390/ijerph19148588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Inflammation linked to various diseases is the biological response to certain stimuli. The pro-inflammatory potential of Polycyclic Aromatic Hydrocarbons (PAHs) as potential inducers of inflammation bound to the Toll-like Receptor 4 (TLR4) and the anti-inflammatory capacity of A. paniculata (AP) phytocompounds as prospective inhibitors of the Nuclear Factor Kappa B (NF-κB) p50 transcription factor are investigated via in silico techniques. The molecular docking of the PAHs and AP phytocompounds is performed in AutoDock Vina by calculating their binding energies. The molecular dynamics simulations (MDS) of the apo and ligand-bound complex of the top binding ligands were performed in CABS-flex. The agonists, which included the PAHs indeno(1,2,3-cd)pyrene (IP), and dibenz(a,h)anthracene (DahA), had the highest binding energies of −10 kcal/mol and −9.2 kcal/mol, respectively. The most stable antagonists in the binding site with binding energies to the NF-κB p50 were the AP phytocompounds with −5.6 kcal/mol for ergosterol peroxide and −5.3 kcal/mol for 14-deoxy-14,15-dehydroandrographolide. The MDS of the apo human TLR4 and PAH-bound TLR4, and the apo p50 and the AP phytocompound-bound NF-κB p50 showed minimal fluctuations. These results reveal that IP and DahA are significant inducers of inflammation, whereas ergosterol peroxide and 14-deoxy-14,15-dehydroandrographolide are inhibitors of the NF-κB pathway. Furthermore, the study theorizes that any inflammatory activity induced by PAH can be potentially inhibited by A. paniculata phytocompounds.
Collapse
Affiliation(s)
- Trixia Julaton
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Aibelou Taclendo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Glenn Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Ecological Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ofelia Rempillo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Maria Cecilia Galvez
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Edgar Vallar
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
- Correspondence:
| |
Collapse
|
9
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
10
|
Olasehinde TA, Olaniran AO. Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes. Toxicol Res 2022; 38:365-377. [DOI: 10.1007/s43188-021-00115-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
|
11
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
12
|
Wang H, Liu J, Kong Q, Li L, Gao J, Fang L, Liu Z, Fan X, Li C, Lu Q, Qian A. Cytotoxicity and inflammatory effects in human bronchial epithelial cells induced by polycyclic aromatic hydrocarbons mixture. J Appl Toxicol 2021; 41:1803-1815. [PMID: 33782999 DOI: 10.1002/jat.4164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most common contaminants in the air pollutants. Inhalation exposure to PAHs could increase the risk of respiratory disease, cardiovascular disease and even cancer. However, the biotoxicity of multi-component PAHs from atmospheric pollutants has been poorly studies. The main topic of this study was to investigate the PAHs mixture, which derived from atmospheric pollutants, induced toxic effects and inflammatory effects on human bronchial epithelial cells in vitro. The results showed that PAHs mixture could decrease the cell viability, increase the apoptosis rate, and induce cell cycle arrest at S-phase. Furthermore, the expression of inflammatory factors IL-1β and IL-6 were increased and NF-κB signaling pathway was activated in PAHs mixture-treated cells. The findings of this study indicate that PAHs mixture-induced cytotoxicity and inflammation may be related to intracellular ROS generation and to the activated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Jinren Liu
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Qingbo Kong
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Junhong Gao
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Le Fang
- Department of Clinical Laboratory, 521 Hospital of Ordnance Industry, Xi'an, China
| | - Zhiyong Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Cunzhi Li
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Qing Lu
- Biological Effects and Technology Division, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
13
|
Wang Y, Jiao Y, Kong Q, Zheng F, Shao L, Zhang T, Jiang D, Gao X. Occurrence of polycyclic aromatic hydrocarbons in fried and grilled fish from Shandong China and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13045-y. [PMID: 33630261 DOI: 10.1007/s11356-021-13045-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Diet is the main way for the human body to ingest polycyclic aromatic hydrocarbons (PAHs). In this study, the occurrence, dietary exposure, and health risks of 15 PAHs in 31 fried and grilled fish samples were investigated, which were collected from the Shandong Province of China. The results showed that benzo[a]pyrene (BaP) of 5 samples exceeded the European Union (EU) limit value. Naphthalene (NaP) and fluorene (Fle) were present in all samples, and the average concentration of ∑15PAHs was 91.1 μg/kg, with light PAHs dominated. The average contamination level of ∑15PAHs in fried and grilled fish was distributed differently, and there seemed to be more PAH contamination in the grilled samples. The results of the margin of exposure (MOE) suggested that PAH ingestion through fried and grilled fish did not imply significant toxicological concern for consumers in Shandong. The incremental lifetime cancer risk (ILCR) values for the consumption of fried and grilled fish were higher than 1 × 10-6, indicating a potential health risk in the adult population. The study provides baseline health information on PAH intake by residents due to dietary exposure to fried and grilled fish food products, suggesting that health risk monitoring of PAHs in such foods should be continually performed.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanni Jiao
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qi Kong
- Department of Radiology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Fengjia Zheng
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Lijun Shao
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Tianran Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Estimated 24-hour urinary sodium excretion as a risk factor for oxidative stress in Zambian adults: A cross-sectional study. PLoS One 2020; 15:e0242144. [PMID: 33180810 PMCID: PMC7660463 DOI: 10.1371/journal.pone.0242144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Persistent oxidative stress predisposes to various non-communicable diseases (NCDs), whose occurrence is increasing in sub-Saharan Africa. The aim of this study was to evaluate the link between markers of oxidative stress and some risk factors for NCDs in a Zambian cohort. Methods We assessed oxidative stress by measuring 8-isoprostane (lipid oxidative stress) and 8-hydroxydeoxyguanosine (DNA oxidative stress). In addition, we measured mycotoxins (aflatoxin M1 and ochratoxin A), salt intake estimated from 24-hour sodium excretion calculated using the Tanaka and Kawaski formulae, and 1-hydroxypyrene (a metabolite of polycyclic aromatic hydrocarbons). Data on lifestyle risk factors were collected using questionnaires. Results Included were 244 participants; 128 (52%) were female and the median age was 48 years (IQR 39–58). The median level of 8-isoprostane was 0.13 ng/mg creatinine (IQR 0.08–0.23) while that of 8-hydroxydeoxyguanosine (8-OHdG) was 4 ng/mg creatinine (IQR 2–10). The median 24-hour sodium excretion was 21 g (IQR 16–25 g), with none being less than the 5 g recommended by WHO. Unadjusted urinary levels of 8-isoprostane were moderately correlated with 1-hydroxypyrene (Spearman r = 0.30, p<0.001) and estimated 24-hour urine sodium (Spearman r = 0.38, p<0.001). Urinary levels of 8-OHdG were not correlated with 1-hydroxypyrene, estimated 24-hour urine sodium, aflatoxin M1 or ochratoxin A (all p-values >0.05). Using logistic regression, adjusted and unadjusted 8-isoprostanes levels were associated with 1-hydroxypyrene (p = 0.02 and p = 0.001 respectively) and estimated 24-hour urine sodium method (p = 0.003 and p<0.001 respectively). However, only unadjusted 8-OHdG was associated with 1-hydroxypyrene (p = 0.03) and age (p = 0.007). Conclusions Estimated 24-hour urinary sodium is high among Zambians and it is associated with lipid but not DNA oxidative stress. High exposure to polycyclic aromatic hydrocarbons is also associated with oxidative stress.
Collapse
|
15
|
Jain RB. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115178. [PMID: 32688109 DOI: 10.1016/j.envpol.2020.115178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2003-2014 for US children aged 6-11 years (N = 2097), adolescents aged 12-19 ears (N = 2642), and adults aged ≥ 20 years (N = 9170) were analyzed to investigate the effects of dietary, demographic, disease, lifestyle, and other factors on concentrations of nine metabolites of polycyclic aromatic hydrocarbons (PAH) in urine. PAHs analyzed were: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Adults with diabetes were found to have higher adjusted levels of 1-hydroxynaphthalene (4139 vs. 3622 ng/L, p < 0.01) than nondiabetics. Adults with albuminuria had higher adjusted levels of 1-hydroxynaphthalene (4140 vs.3621 ng/L, p < 0.01) and 2-hydroxynaphthalene (6039 vs. 5468 ng/L, p < 0.01) than those without albuminuria. Children with albuminuria had lower adjusted levels of 9-hydroxyfluorene (162 vs. 187 ng/L, p = 0.04), 1-hydroxyphenanthrene (92 vs. 108 ng/L, p < 0.01), and 1-hydroxypyrene (118 vs. 138 ng/L, p < 0.01) than those without albuminuria. The ratios of smoker to nonsmoker adjusted levels for adults varied from a low of 1.4 for 2-hydroxyphenanthrene to a high of 5.6 for 3-hydroxyfluorene. Exposure to environmental tobacco smoke at home was associated with higher levels of most OH-PAHs among children, adolescents, and adults. Consumption of red meat not processed at high temperatures was associated with increased levels of 1-hydroxypyrene (β = 0.00040, p = 0.01), 1-, 2-, and 3-hydroxyphenanthrene, 3-, and 9-hydroxyfluorene. Consumption of red meat processed at high temperatures was associated with increased levels of 2-hydroxynaphthalene (β = 0.00046, p = 0.02) among adults. Consumption of fish processed at high temperatures was associated with decreased levels of 1-hydroxynaphtahlene (β = - 0.00088, p < 0.01), 2-, 3-, and 9-hydroxyfluorene, 1-, 2-, and 3-hydroxyphenanthrene. Among adults, alcohol consumption and caffeine may be associated with increased levels of certain OH-PAHs. Oxidative stress and inflammation associated with exposure to PAHs are associated with albuminuria and have the potential to lead to the development of diabetes.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Ct, Dacula, Ga, 30019, USA.
| |
Collapse
|
16
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|