1
|
Stolzenberg-Solomon R, Jin D, Huang WY, Brockman J. Prediagnostic whole-blood cadmium and molybdenum associated with pancreatic cancer in an American cohort. Am J Epidemiol 2025; 194:1275-1284. [PMID: 38965764 DOI: 10.1093/aje/kwae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Environmental exposures to elements such as cadmium might be contributing to the increasing incidence of pancreatic cancer. Few prospective studies have examined the association between trace elements and pancreatic ductal adenocarcinoma (PDAC). We conducted a nested case-control study in participants aged 55-74 years at baseline from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial cohort to examine the association between 12 trace elements measured in prediagnostic whole-blood samples and PDAC. From May 1998 through December 2014, 318 incident PDAC cases were identified during follow-up to 16.7 years. Of 636 control participants, 2 who were alive when each case patient was diagnosed were selected and matched by age (±5 years), sex, calendar date of blood sample collection (2-month blocks), and race and ethnic group. We used multivariable adjusted conditional logistic regression to calculate odds ratios (ORs) and 95% CIs. Cadmium and molybdenum were associated with PDAC (highest compared with lowest quintile: for cadmium, OR = 1.81 [95% CI, 01.12-2.95], P = .03 for trend; for molybdenum, OR = 0.50 [95% CI, 0.32-0.80], P = .02 for trend). The inverse molybdenum association was only observed among ever smokers (OR = 0.31 [95% CI, 0.17-0.58]; P = .003 for trend, P = .03 for interaction) with no association in never smokers. Lead, arsenic, and other trace elements were not associated with PDAC. Our results support that an increasing prediagnostic whole-blood level of cadmium is associated with increased PDAS risk, whereas that for molybdenum reduces PDAC risk.
Collapse
Affiliation(s)
- Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - David Jin
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - John Brockman
- Department of Chemistry, University of Missouri Research Reactor Center, Columbia, MO, United States
| |
Collapse
|
2
|
Gui W, Wang WX. Intestinal Cu(II)/(I) Redox State Transformation Causes Cu(I) Overflow and Toxicity of the Gut and Liver in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7495-7505. [PMID: 40223213 DOI: 10.1021/acs.est.4c14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Copper (Cu) has long been a concern for human health. While previous studies have explored the toxic effects of Cu, no study is available on the relationship between the Cu redox state transformation and biotoxicity in higher organisms. In this study, we explored the gut and liver toxicity caused by the overflow of Cu(I) at low doses of Cu exposure. Here, we first elucidated the digestive and metabolic systems as the main toxic target sites by a systematic epidemiological analysis. Then, ICP-MS analysis verified that the gut and liver were the top two Cu-high-accumulated organs in zebrafish exposed to 10 and 100 μg/L waterborne Cu for 72 h. In-situ Cu(I) and Cu(II) imaging techniques demonstrated that exogenous Cu(II) was converted to Cu(I) in the zebrafish gut. Furthermore, transcriptomic sequencing revealed that the high overflow of Cu(I) induced gut toxicity by cell cycle arrest in the G phase. However, the substantial accumulation of Cu(I) disrupted the metabolism of energy source nutrients and energy supply, leading to hepatic toxicity. This study provides new insights into the toxic mechanism based on Cu redox state and emphasizes the health risks associated with Cu exposure in the digestive and metabolic systems.
Collapse
Affiliation(s)
- Wanying Gui
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong(852)95772465, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong(852)95772465, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Ma S, Zhang J, Xu C, Da M, Xu Y, Chen Y, Mo X. Increased serum levels of cadmium are associated with an elevated risk of cardiovascular disease in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1836-1844. [PMID: 34363163 DOI: 10.1007/s11356-021-15732-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have determined the effects of exposure to certain heavy metals on cardiovascular disease (CVD); however, the association between cadmium exposure and CVD in adults remains unclear. The relationship between serum levels of cadmium and the risk of CVD was studied by analyzing available data from 38,223 different participants of the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2016. After adjusting for all covariates, we found that higher serum cadmium concentrations were positively related to both the overall risk of CVD (odds ratio (OR): 1.45; 95% confidence interval (CI): 1.22, 1.72; p for trend <0.001) and the risks of its subtypes, including congestive heart failure, coronary heart disease, heart attack, and stroke. Elevated cadmium levels were associated with increased levels of lipids and inflammatory factors, including blood triglycerides, total cholesterol, white blood cells (WBCs), and C-reactive protein (CRP). Our study provided epidemiological evidence that cadmium may increase the risk of CVD by elevating blood lipids and inflammation.
Collapse
Affiliation(s)
- Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jie Zhang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Min Da
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yong Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Yuan J, Zhao Y, Bai Y, Gu J, Yuan Y, Liu X, Liu Z, Zou H, Bian J. Cadmium induces endosomal/lysosomal enlargement and blocks autophagy flux in rat hepatocytes by damaging microtubules. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112993. [PMID: 34808507 DOI: 10.1016/j.ecoenv.2021.112993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Acute exposure to cadmium (Cd) causes vacuolar degeneration in buffalo rat liver 3 A (BRL 3 A) cells. The present study aimed to determine the relationship between Cd-induced microtubule damage and intracellular vacuolar degeneration. Western blotting results showed that Cd damaged the microtubule network and downregulated the expression of microtubule-associated proteins-kinesin-1 heavy chain (KIF5B), γ-tubulin, and acetylated α-tubulin in BRL 3 A cells. Immunofluorescence staining revealed that Cd inhibited interactions between α-tubulin and microtubule-associated protein 4 (MAP4) as well as KIF5B. Increasing Cd concentrations decreased the levels of the lipid kinase, PIKfyve, which regulates the activity of endosome-lysosome fission. Immunofluorescence and transmission electron microscopy revealed vacuole-like organelles that were late endosomes and lysosomes. The PIKfyve inhibitor, YM201636, and the microtubule depolymerizer, nocodazole, aggravated Cd-induced endosome-lysosome enlargement. Knocking down the kif5b gene that encodes KIF5B intensified the enlargement of endosome-lysosomes and expression of early endosome antigen 1 (EEA1), Ras-related protein Rab-7a (RAB7), and lysosome-associated membrane glycoprotein 2 (LAMP2). Nocodazole, YM201636, and the knockdown of kif5b blocked autophagic flux. We concluded that Cd-induced damage to the microtubule network is the main reason for endosome-lysosome enlargement and autophagic flux blockage in BRL 3 A cells, and kinesin-1 plays a critical role in this process.
Collapse
Affiliation(s)
- Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
5
|
Neurotoxic Effect of Flavonol Myricetin in the Presence of Excess Copper. Molecules 2021; 26:molecules26040845. [PMID: 33562817 PMCID: PMC7914656 DOI: 10.3390/molecules26040845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress (OS) induced by the disturbed homeostasis of metal ions is one of the pivotal factors contributing to neurodegeneration. The aim of the present study was to investigate the effects of flavonoid myricetin on copper-induced toxicity in neuroblastoma SH-SY5Y cells. As determined by the MTT method, trypan blue exclusion assay and measurement of ATP production, myricetin heightened the toxic effects of copper and exacerbated cell death. It also increased copper-induced generation of reactive oxygen species, indicating the prooxidative nature of its action. Furthermore, myricetin provoked chromatin condensation and loss of membrane integrity without caspase-3 activation, suggesting the activation of both caspase-independent programmed cell death and necrosis. At the protein level, myricetin-induced upregulation of PARP-1 and decreased expression of Bcl-2, whereas copper-induced changes in the expression of p53, p73, Bax and NME1 were not further affected by myricetin. Inhibitors of ERK1/2 and JNK kinases, protein kinase A and L-type calcium channels exacerbated the toxic effects of myricetin, indicating the involvement of intracellular signaling pathways in cell death. We also employed atomic force microscopy (AFM) to evaluate the morphological and mechanical properties of SH-SY5Y cells at the nanoscale. Consistent with the cellular and molecular methods, this biophysical approach also revealed a myricetin-induced increase in cell surface roughness and reduced elasticity. Taken together, we demonstrated the adverse effects of myricetin, pointing out that caution is required when considering powerful antioxidants for adjuvant therapy in copper-related neurodegeneration.
Collapse
|
6
|
Kwok ML, Li ZP, Law TYS, Chan KM. Promotion of cadmium uptake and cadmium-induced toxicity by the copper transporter CTR1 in HepG2 and ZFL cells. Toxicol Rep 2020; 7:1564-1570. [PMID: 33294387 PMCID: PMC7695923 DOI: 10.1016/j.toxrep.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Cadmium (Cd2+) is considered a human carcinogen as it causes oxidative stress and alters DNA repair responses. However, how Cd2+ is taken up by cells remains unclear. We hypothesized that Cd2+ could be transported into cells via a membrane copper (Cu) transporter, CTR1. CTR1 expression was not affected by Cd2+ exposure at the mRNA or protein level. Stable cell lines overexpressing either hCTR1, in the human liver cell line HepG2, or zCTR1, in the zebrafish liver cell line ZFL, were created to study their responses to Cd2+ insult. It was found that both HepG2 and ZFL cells overexpressing CTR1 had higher Cd2+ uptake and thus became sensitive to Cd2+. In contrast, hCTR1 knockdown in HepG2 cells led to a reduced uptake of Cd2+, making the cells relatively resistant to Cd2+. Localization studies revealed that hCTR1 had a clustered pattern after Cd2+ exposure, possibly in an attempt to reduce both Cd2+ uptake and Cd2+-induced toxicity. These in vitro results indicate that CTR1 can transport Cd2+ into the cell, resulting in Cd2+ toxicity.
Collapse
Key Words
- CTR1, High-affinity Cu-uptake protein 1
- Cadmium toxicity
- Cadmium uptake
- Cd, Cadmium
- Copper transporter
- Cu, Copper
- LC50, Median lethal concentration
- PBS, Phosphate-buffered saline
- Stable cell line
- h, hours
- hCTR1, Human CTR1 protein
- hCtr1, Human CTR1 gene
- min, minutes
- qPCR, Quantitative real-time PCR
- ybx1, Y box-binding protein 1 gene
- zCTR1, Zebrafish CTR1 protein
- zCtr1, Zebrafish CTR1 gene
Collapse
|
7
|
Kwok ML, Meng Q, Hu XL, Chung CT, Chan KM. Whole-transcriptome sequencing (RNA-seq) study of the ZFL zebrafish liver cell line after acute exposure to Cd 2+ ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105628. [PMID: 32971353 DOI: 10.1016/j.aquatox.2020.105628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a non-essential metal with no known biological function and a broad range of toxic effects in biological systems. We used whole-transcriptome sequencing (RNA-seq) to study the effects of Cd2+ toxicity in zebrafish liver cells, ZFL. The results of an RNA-Seq analysis of ZFL cells exposed to 5, 10 or 20 μM Cd2+ for 4- or 24-h. The differentially expressed genes affected by Cd2+ were analyzed by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to study the regulated pathways. Cd2+ regulated the expression of genes associated with cellular Cu, Zn, and Fe homeostasis, DNA replication leading to cell cycle arrest and apoptosis, and glutathione metabolism. Cd2+ boosted up the amino acid synthesis, possibly to support the glutathione metabolism for tackling the oxidative stress generated from Cd2+. Cd2+ stimulation was similar to heat or xenobiotics, based on the responses from ZFL such as endoplasmic reticulum stress and protein folding. We linked also those finding of gene activations relating to carcinogenesis of Cd. This paper provides a comprehensive analysis of the expression profiles induced by Cd2+ exposure in ZFL cells, as well as useful insights into the specific toxic effects.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Chun Ting Chung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong.
| |
Collapse
|