1
|
Ying M, Yang Y, Huo Q, Sun J, Hong X, Yang F, Fang Y, Lu L, Mao T, Xiao P, Tao G. Nrf-2/HO-1 activation protects against oxidative stress and inflammation induced by metal welding fume UFPs in 16HBE cells. Sci Rep 2024; 14:24057. [PMID: 39402078 PMCID: PMC11473639 DOI: 10.1038/s41598-024-74599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
As one of the main occupational hazards, welding fumes can cause oxidative damage and induce series of diseases, such as COPD or asthma. To clarify the effects of the metal fume ultrafine particulates (MF-UFPs) of welding fumes on oxidative damage, UFPs were collected by melt inert gas (MIG) and manual metal arc (MMA) welding, and the composition was confirmed. Human bronchial epithelial 16HBE cells were treated with 0-1000 µg/cm2 MF-UFPs to analyse the cytotoxicity, oxidative stress and cytokines. The protein and mRNA expression of Keap1-Nrf-2/antioxidant response elements (AREs) signalling pathway components were also analysed. After 4 h of treatment, the cell viability decreased 25% after 33.85 and 32.81 µg/cm2 MIG/MMA-UFPs treated. The intracellular ATP concentrations were also decreased significantly, while LDH leakage was increased. The decreased mitochondrial membrane potential and increased ROS suggested the occurrence of oxidative damage, and the results of proteome profiling arrays also showed a significant increase in IL-6 and IL-8. The expression of AREs which related to antioxidant and anti-inflammatory were also increased. These results indicate that the MF-UFPs can cause oxidative stress in 16HBE cells and activate the Nrf-2/ARE signalling pathway to against oxidative damage.
Collapse
Affiliation(s)
- Mengchao Ying
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Yun Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Qian Huo
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Jingqiu Sun
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Xinyu Hong
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Feng Yang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
| | - Yamin Fang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China
| | - Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Tingfeng Mao
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, China.
| |
Collapse
|
2
|
Collatuzzo G, Hamdani M, Boffetta P. Risk of bladder, kidney and prostate cancer from occupational exposure to welding fumes: a systematic review and meta-analysis. Int Arch Occup Environ Health 2024; 97:221-230. [PMID: 38231405 DOI: 10.1007/s00420-023-02040-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Our aimed to conduct a meta-analysis of cohort studies on risk of genitourinary (GU) cancers in workers exposed to welding fumes (WF). METHODS We performed a systematic review of studies published on Pubmed, Scopus and Embase following PRISMA criteria. Two researchers selected cohort studies on WF exposure. From 2582 articles, 7 non-overlapping studies were included. Quality of studies was scored according to CASP. We run a random effects meta-analysis to calculate the relative risk (RR) and 95% confidence intervals (CI) of GU cancer, overall and stratified by cancer, country, and quality score. RESULTS We included seven studies reporting results on GU cancers, including prostate, bladder and kidney cancer (PC, BC, and KC). The RR was 1.19 (95% CI = 1.07-1.32, 16 risk estimates) for GU cancer; 1.13 (95% CI = 0.90-1.42, 4 risk estimates) for PC; 1.26 (95% CI = 0.98-1.60, 7 risk estimates) for BC and 1.28 (95% CI = 1.12-1.47, 5 risk estimates) for KC. Heterogeneity was present in all meta-analyses (p < 0.001). The increased risk was more pronounced in North American than in European studies (respectively, OR = 1.35, 95% CI = 1.18-1.55; OR = 1.13, 95% CI = 1.01-1.27 p heterogeneity = 0.03). There was no heterogeneity according to quality score (p = 0.4). Data were insufficient to investigate associations by industry or welding type. Publication bias for each cancer was excluded. CONCLUSION This meta-analysis suggests increased risk of KC and BC, but not of PC, in workers exposed to WF. Confounding by other occupational and non-occupational risk factors could not be excluded. Data were not adequate to address the risk of specific exposure circumstances.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Maha Hamdani
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Sani A, Lawal Abdullahi I, Darma AI. Hepatotoxicity and ALAD Activity Profile for Prediction of NOAEL of Metal Welding Fumes in Albino Rats. Biol Trace Elem Res 2023; 201:1781-1791. [PMID: 35525901 DOI: 10.1007/s12011-022-03273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
Abstract
Metal fume pollutants of urban Kano, a city of over 10 million people, and widespread metal works have increased exposure with related health effects. Few data on metal fume toxicity and atmospheric levels have been documented in Nigeria and Kano in particular. Hence, the work was aimed at evaluating the metal fume toxicity to laboratory rat species for setting the permissible limit of exposure in urban Kano. The investigation involved the collection of metal welding fumes and subsequent laboratory analysis. Experimental animals were then exposed intratracheally to varying doses of the fumes which were equivalent to normal metal workers' daily routine of 2, 4, and 8 h for 3, 5, 10, and 20 years. Following euthanization, whole blood samples were collected and functions of liver and delta-aminolevunilic acid dehydratase were evaluated in the serum. Exposure to the fumes has caused significant mortality that was observed to be dose-dependent and statistically different (p < 0.05); moreover, the fumes had synergistically affected the functions of liver. In addition, the fumes had increased (statistically) the activity delta-aminolevinilic acid dehydratase. This has indicated that exposure to metal welding fumes being multi-elemental is toxic and had produced mortality at exposure to higher doses of metal welding fumes. It was therefore established from the study that no-observed-adverse-effect level (NOAEL) for metal welding fumes is 25.73 mg with LD50 of 270 mg which corresponds to the metal worker's 4-h shifts daily for 5 years under existing working conditions. It was recommended that regular monitoring should be put in place to limit exposure and extent of engagement in metal works beyond NOAEL levels.
Collapse
Affiliation(s)
- Ali Sani
- Department of Instrument Science and Engineering, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria.
| | | | - Aminu Inuwa Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Quintana-Sosa M, León-Mejía G, Narváez DM, Suarez-Arnedo A, Restrepo HGD, De Moya YS, Ruiz-Benitez M, Valencia KF, Trindade C, Miranda-Guevara A, Dias J, Henriques JAP, da Silva J. Association of buccal micronucleus cytome assay (BMNCyt) biomarkers with inorganic element concentration and genetic polymorphisms in welders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104025. [PMID: 36460284 DOI: 10.1016/j.etap.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.
Collapse
Affiliation(s)
- Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Diana M Narváez
- Laboratorio de Genética Humana, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Yurina Sh De Moya
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Alvaro Miranda-Guevara
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil; Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA) & Universidade La Salle (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|