1
|
Size distribution of the quasi-circular vegetation patches in the Yellow River Delta, China. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Alotaibi NM, Kenyon EJ, Bertelli CM, Al-Qthanin RN, Mead J, Parry M, Bull JC. Environment predicts seagrass genotype, phenotype, and associated biodiversity in a temperate ecosystem. FRONTIERS IN PLANT SCIENCE 2022; 13:887474. [PMID: 35991459 PMCID: PMC9386313 DOI: 10.3389/fpls.2022.887474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Coastal vegetative ecosystems are among the most threatened in the world, facing multiple anthropogenic stressors. A good example of this is seagrass, which supports carbon capture, coastal stabilization, and biodiversity, but is declining globally at an alarming rate. To understand the causes and consequences of changes to these ecosystems, we need to determine the linkages between different biotic and abiotic components. We used data on the seagrass, Zostera marina, collected by citizen scientists across 300 km of the south coast of the United Kingdom as a case study. We assembled data on seagrass genotype, phenotype, infauna, and associated bathymetry, light, sea surface temperature, and wave and current energy to test hypotheses on the distribution and diversity of this temperate sub-tidal ecosystem. We found spatial structure in population genetics, evident through local assortment of genotypes and isolation by distance across a broader geographic scale. By integrating our molecular data with information on seagrass phenotype and infauna, we demonstrate that these ecosystem components are primarily linked indirectly through the effects of shared environmental factors. It is unusual to examine genotypic, phenotypic, and environmental data in a single study, but this approach can inform both conservation and restoration of seagrass, as well as giving new insights into a widespread and important ecosystem.
Collapse
Affiliation(s)
- Nahaa M Alotaibi
- Department of Biosciences, Swansea University, Swansea, United Kingdom
- Department of Biology, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kenyon
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| | - Chiara M Bertelli
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| | | | - Jessica Mead
- Ocean Conservation Trust, National Marine Aquarium, Plymouth, United Kingdom
| | - Mark Parry
- Ocean Conservation Trust, National Marine Aquarium, Plymouth, United Kingdom
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
3
|
Alotaibi NM, Kenyon EJ, Cook KJ, Börger L, Bull JC. Low genotypic diversity and long-term ecological decline in a spatially structured seagrass population. Sci Rep 2019; 9:18387. [PMID: 31804557 PMCID: PMC6895181 DOI: 10.1038/s41598-019-54828-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/14/2019] [Indexed: 12/03/2022] Open
Abstract
In isolated or declining populations, viability may be compromised further by loss of genetic diversity. Therefore, it is important to understand the relationship between long-term ecological trajectories and population genetic structure. However, opportunities to combine these types of data are rare, especially in natural systems. Using an existing panel of 15 microsatellites, we estimated allelic diversity in seagrass, Zostera marina, at five sites around the Isles of Scilly Special Area of Conservation, UK, in 2010 and compared this to 23 years of annual ecological monitoring (1996–2018). We found low diversity and long-term declines in abundance in this relatively pristine but isolated location. Inclusion of the snapshot of genotypic, but less-so genetic, diversity improved prediction of abundance trajectories; however, this was spatial scale-dependent. Selection of the appropriate level of genetic organization and spatial scale for monitoring is, therefore, important to identify drivers of eco-evolutionary dynamics. This has implications for the use of population genetic information in conservation, management, and spatial planning.
Collapse
Affiliation(s)
- Nahaa M Alotaibi
- Department of Biosciences, Swansea University, Swansea, Wales, United Kingdom.,Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Emma J Kenyon
- School of Life Sciences, University of Sussex, Brighton, England, UK
| | | | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, Wales, United Kingdom
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, Wales, United Kingdom.
| |
Collapse
|
4
|
Abstract
The replacement of forest areas with human-dominated landscapes usually leads to fragmentation, altering the structure and function of the forest. Here we studied the dynamics of forest patch sizes at a global level, examining signals of a critical transition from an unfragmented to a fragmented state, using the MODIS vegetation continuous field. We defined wide regions of connected forest across continents and big islands, and combined five criteria, including the distribution of patch sizes and the fluctuations of the largest patch over the last sixteen years, to evaluate the closeness of each region to a fragmentation threshold. Regions with the highest deforestation rates-South America, Southeast Asia, Africa-all met these criteria and may thus be near a critical fragmentation threshold. This implies that if current forest loss rates are maintained, wide continental areas could suddenly fragment, triggering extensive species loss and degradation of ecosystems services.
Collapse
|
5
|
Riascos AP. Universal scaling of the distribution of land in urban areas. Phys Rev E 2018; 96:032302. [PMID: 29347001 DOI: 10.1103/physreve.96.032302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/07/2022]
Abstract
In this work, we explore the spatial structure of built zones and green areas in diverse western cities by analyzing the probability distribution of areas and a coefficient that characterize their respective shapes. From the analysis of diverse datasets describing land lots in urban areas, we found that the distribution of built-up areas and natural zones in cities obey inverse power laws with a similar scaling for the cities explored. On the other hand, by studying the distribution of shapes of lots in urban regions, we are able to detect global differences in the spatial structure of the distribution of land. Our findings introduce information about spatial patterns that emerge in the structure of urban settlements; this knowledge is useful for the understanding of urban growth, to improve existing models of cities, in the context of sustainability, in studies about human mobility in urban areas, among other applications.
Collapse
Affiliation(s)
- A P Riascos
- Department of Civil Engineering, Universidad Mariana, San Juan de Pasto, Colombia
| |
Collapse
|
6
|
Abadie A, Lejeune P, Pergent G, Gobert S. From mechanical to chemical impact of anchoring in seagrasses: The premises of anthropogenic patch generation in Posidonia oceanica meadows. MARINE POLLUTION BULLETIN 2016; 109:61-71. [PMID: 27289285 DOI: 10.1016/j.marpolbul.2016.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Intensive anchoring of leisure boats in seagrass meadows leads to mechanical damages. This anthropogenic impact creates bare mat patches that are not easily recolonized by the plant. Several tools are used to study human impacts on the structure of seagrass meadows but they are not able to assess the indirect and long term implication of mechanical destruction. We chose to investigate the possible changes in the substrate chemistry given contrasted boat impacts. Our observations show that hydrogen sulfide concentrations remain high at 15 and 20m depth (42.6μM and 18.8μM) several months after the highest period of anchoring during the summer. Moreover, our multidisciplinary study reveals that anchoring impacts of large boats at 15 and 20m depth can potentially change the seascape structure. By taking into account both structural and chemical assessments, different managing strategies must be applied for coastal areas under anthropogenic pressures.
Collapse
Affiliation(s)
- Arnaud Abadie
- Station de Recherches Sous-marines et Oceanographiques (STARESO), Pointe Revellata, BP 33, 20260 Calvi, France; Laboratory of Oceanology. MARE Centre, University of Liege. B6C, 4000 LIEGE, Sart Tilman, Belgium; EqEL-FRES 3041, UMR CNRS SPE 6134, University of Corsica, 20250 Corte, France.
| | - Pierre Lejeune
- Station de Recherches Sous-marines et Oceanographiques (STARESO), Pointe Revellata, BP 33, 20260 Calvi, France
| | - Gérard Pergent
- EqEL-FRES 3041, UMR CNRS SPE 6134, University of Corsica, 20250 Corte, France
| | - Sylvie Gobert
- Laboratory of Oceanology. MARE Centre, University of Liege. B6C, 4000 LIEGE, Sart Tilman, Belgium
| |
Collapse
|
7
|
Irvine MA, Jackson EL, Kenyon EJ, Cook KJ, Keeling MJ, Bull JC. Fractal measures of spatial pattern as a heuristic for return rate in vegetative systems. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150519. [PMID: 27069643 PMCID: PMC4821254 DOI: 10.1098/rsos.150519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Measurement of population persistence is a long-standing problem in ecology; in particular, whether it is possible to gain insights into persistence without long time-series. Fractal measurements of spatial patterns, such as the Korcak exponent or boundary dimension, have been proposed as indicators of the persistence of underlying dynamics. Here we explore under what conditions a predictive relationship between fractal measures and persistence exists. We combine theoretical arguments with an aerial snapshot and time series from a long-term study of seagrass. For this form of vegetative growth, we find that the expected relationship between the Korcak exponent and persistence is evident at survey sites where the population return rate can be measured. This highlights a limitation of the use of power-law patch-size distributions and other indicators based on spatial snapshots. Moreover, our numeric simulations show that for a single species and a range of environmental conditions that the Korcak-persistence relationship provides a link between temporal dynamics and spatial pattern; however, this relationship is specific to demographic factors, so we cannot use this methodology to compare between species.
Collapse
Affiliation(s)
- M. A. Irvine
- Centre for Complexity Science, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK
| | - E. L. Jackson
- School of Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - E. J. Kenyon
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - M. J. Keeling
- Mathematics Institute and Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - J. C. Bull
- Department of Biosciences, University of Swansea, Swansea, UK
| |
Collapse
|