1
|
Li D, Geng Z, Xia S, Feng H, Jiang X, Du H, Wang P, Lian Q, Zhu Y, Jia Y, Zhou Y, Wu Y, Huang C, Zhu G, Shang Y, Li H, Städler T, Yang W, Huang S, Zhang C. Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato. Nat Commun 2024; 15:8652. [PMID: 39368981 PMCID: PMC11455918 DOI: 10.1038/s41467-024-53044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
The genetic analysis of potato is hampered by the complexity of tetrasomic inheritance. An ongoing effort aims to transform the clonally propagated tetraploid potato into a seed-propagated diploid crop, which would make genetic analyses much easier owing to disomic inheritance. Here, we construct and report the large-scale genetic and heterotic characteristics of a diploid F2 potato population derived from the cross of two highly homozygous inbred lines. We investigate 20,382 traits generated from multi-omics dataset and identify 25,770 quantitative trait loci (QTLs). Coupled with gene expression data, we construct a systems-genetics network for gene discovery in potatoes. Importantly, we explore the genetic basis of heterosis in this population, especially for yield and male fertility heterosis. We find that positive heterotic effects of yield-related QTLs and negative heterotic effects of metabolite QTLs (mQTLs) contribute to yield heterosis. Additionally, we identify a PME gene with a dominance heterotic effect that plays an important role in male fertility heterosis. This study provides genetic resources for the potato community and will facilitate the application of heterosis in diploid potato breeding.
Collapse
Affiliation(s)
- Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shixuan Xia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiuhan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yanhui Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yuxin Jia
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Yao Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chenglong Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, 650000, Kunming, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, 100081, Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, 572024, Sanya, China
| | - Thomas Städler
- Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
- Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China.
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
2
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
3
|
Ji Z, Belfield EJ, Li S, Fu X, Harberd NP. Discovery of a second-site nia2 mutation in the background of multiple Arabidopsis PIF-related mutants containing the pif3-3 allele. THE NEW PHYTOLOGIST 2024; 241:17-23. [PMID: 37891447 PMCID: PMC10952432 DOI: 10.1111/nph.19344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Affiliation(s)
- Zhe Ji
- Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | | | - Shan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- New Cornerstone Science LaboratoryBeijing100101China
| | | |
Collapse
|
4
|
Manzoor M, Naz S, Muhammad HMD, Ahmad R. Smart reprogramming of jujube germplasm against salinity tolerance through molecular tools. Funct Integr Genomics 2023; 23:222. [PMID: 37402037 DOI: 10.1007/s10142-023-01140-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan, Pakistan.
| |
Collapse
|
5
|
Sun H, Yuan Z, Li F, Zhang Q, Peng T, Li J, Du Y. Mapping of qChalk1 controlling grain chalkiness in japonica rice. Mol Biol Rep 2023:10.1007/s11033-023-08537-8. [PMID: 37231212 DOI: 10.1007/s11033-023-08537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice grain chalkiness is an undesirable characteristic that affects grain quality. The aim of this study was to map QTLs controlling grain chalkiness in japonica rice. METHODS AND RESULTS In this study, two japonica rice cultivars with similar grain shapes but different grain chalkiness rates were crossed and the F2 and BC1F2 populations were subjected to QTL-seq analysis to map the QTLs controlling the grain chalkiness rate. QTL-seq analysis revealed SNP index differences on chromosome 1 in both of the segregating populations. Using polymorphic markers between the two parents, QTL mapping was conducted on 213 individual plants in the BC1F2 population. QTL mapping confined a QTL controlling grain chalkiness, qChalk1, to a 1.1 Mb genomic region on chromosome 1. qChalk1 explained 19.7% of the phenotypic variation. CONCLUSION A QTL controlling grain chalkiness qChalk1 was detected in both F2 and BC1F2 segregating populations by QTL-Seq and QTL mapping methods. This result would be helpful for further cloning of the genes controlling grain chalkiness in japonica rice.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Zeke Yuan
- Henan Zhumadian Agricultural School, Zhumadian, 463000, People's Republic of China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Qianqian Zhang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453004, People's Republic of China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
6
|
Shamimuzzaman M, Ma G, Underwood W, Qi L. Mutation and sequencing-based cloning and functional studies of a rust resistance gene in sunflower (Helianthus annuus). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37029526 DOI: 10.1111/tpj.16238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Rust, caused by the fungus Puccinia helianthi Schwein., is one of the most devastating diseases of sunflower (Helianthus annuus L.), affecting global production. The rust R gene R11 in sunflower line HA-R9 shows broad-spectrum resistance to P. helianthi virulent races and was previously mapped to an interval on sunflower chromosome 13 encompassing three candidate genes annotated in the XRQr1.0 reference genome assembly. In the current study, we combined ethyl methane sulfonate (EMS) mutagenesis with targeted region capture and PacBio long-read sequencing to clone the R11 gene. Sequencing of a 60-kb region spanning the R11 locus from the R11 -HA-R9 rust-resistant line and three EMS-induced susceptible mutants facilitated the identification of R11 and definition of induced mutations. The R11 gene is predicted to have a single 3996-bp open reading frame and encodes a protein of 1331 amino acids with CC-NBS-LRR domains typical of genes conferring plant resistance to biotrophic pathogens. Point mutations identified in the R11 rust-susceptible mutants resulted in premature stop codons, consistent with loss of function leading to rust susceptibility. Additional functional studies using comparative RNA sequencing of the resistant line R11 -HA-R9 and R11 -susceptible mutants revealed substantial differences in gene expression patterns associated with R11 -mediated resistance at 7 days post-inoculation with rust, and uncovered the potential roles of terpenoid biosynthesis and metabolism in sunflower rust resistance.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108, USA
| | - William Underwood
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| |
Collapse
|
7
|
Depuydt T, De Rybel B, Vandepoele K. Charting plant gene functions in the multi-omics and single-cell era. TRENDS IN PLANT SCIENCE 2023; 28:283-296. [PMID: 36307271 DOI: 10.1016/j.tplants.2022.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Despite the increased access to high-quality plant genome sequences, the set of genes with a known function remains far from complete. With the advent of novel bulk and single-cell omics profiling methods, we are entering a new era where advanced and highly integrative functional annotation strategies are being developed to elucidate the functions of all plant genes. Here, we review different multi-omics approaches to improve functional and regulatory gene characterization and highlight the power of machine learning and network biology to fully exploit the complementary information embedded in different omics layers. Finally, we discuss the potential of emerging single-cell methods and algorithms to further increase the resolution, allowing generation of functional insights about plant biology.
Collapse
Affiliation(s)
- Thomas Depuydt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; Vlaams Instituut voor Biotechnologie, Center for Plant Systems Biology, Ghent, Belgium; Ghent University, Bioinformatics Institute Ghent, Ghent, Belgium.
| |
Collapse
|
8
|
Zhao T, Zhang Y, Wang F, Zhang B, Chen Q, Liu L, Yan L, Yang Y, Meng Q, Huang J, Zhang M, Lin J, Qin J. Transcriptome mapping related genes encoding PR1 protein involved in necrotic symptoms to soybean mosaic virus infection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:7. [PMID: 37313127 PMCID: PMC10248650 DOI: 10.1007/s11032-022-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/24/2022] [Indexed: 06/15/2023]
Abstract
Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01351-3.
Collapse
Affiliation(s)
- Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yuhang Zhang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, 510006 Guangzhou, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061 USA
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yue Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Qingmin Meng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jinan Huang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| |
Collapse
|
9
|
Balimponya EG, Dwiyanti MS, Ito T, Sakaguchi S, Yamamori K, Kanaoka Y, Koide Y, Nagayoshi Y, Kishima Y. Seed management using NGS technology to rapidly eliminate a deleterious allele from rice breeder seeds. BREEDING SCIENCE 2022; 72:362-371. [PMID: 36776441 PMCID: PMC9895803 DOI: 10.1270/jsbbs.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Spontaneous mutations are stochastic phenomena that occur in every population. However, deleterious mutated allele present in seeds distributed to farmers must be detected and removed. Here, we eliminated undesirable mutations from the parent population in one generation through a strategy based on next-generation sequencing (NGS). This study dealt with a spontaneous albino mutant in the 'Hinohikari' rice variety grown at the Miyazaki Comprehensive Agricultural Experiment Station, Japan. The incidence of albinism in the population was 1.36%. NGS analysis revealed the genomic basis for differences between green and albino phenotypes. Every albino plant had a C insertion in the Snow-White Leaf1 (SWL1) gene on chromosome 4 causing a frameshift mutation. Selfing plants heterozygous for the mutant allele, swl1-R332P, resulted in a 3:1 green/albino ratio, confirming that a single recessive gene controls albinism. Ultrastructural leaf features in the swl1-R332P mutants displayed deformed chlorophyll-associated organelles in albino plants that were similar to those of previously described swl1 mutants. Detection of the causative gene and its confirmation using heterozygous progenies were completed within a year. The NGS technique outlined here facilitates rapid identification of spontaneous mutations that can occur in breeder seeds.
Collapse
Affiliation(s)
- Elias G. Balimponya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Maria S. Dwiyanti
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Toshiaki Ito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Shuntaro Sakaguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Koichi Yamamori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yoshitaka Kanaoka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| | - Yoshifumi Nagayoshi
- Miyazaki Comprehensive Agricultural Experiment Station, Miyazaki 880-0212, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060‑8589, Japan
| |
Collapse
|
10
|
Li B, Zhang X, Liu Z, Wang L, Song L, Liang X, Dou S, Tu J, Shen J, Yi B, Wen J, Fu T, Dai C, Gao C, Wang A, Ma C. Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122815. [PMID: 34961286 PMCID: PMC8709392 DOI: 10.3390/plants10122815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/20/2023]
Abstract
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The Brassica species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II S haplotype, named BrS-325, was identified in a pak choi line '325', which was responsible for the completely self-compatible phenotype. To obtain the entire S locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in B. rapa. S locus comparative analysis showed that the closest relatives to BrS-325 was BrS-60, and high sequence polymorphism existed in the S locus. Meanwhile, two duplicated SRKs (BrSRK-325a and BrSRK-325b) were distributed in the BrS-325 locus with opposite transcription directions. BrSRK-325b and BrSCR-325 were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II S haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II S haplotype BrS-325 in B. rapa. The complete SC phenotype of '325' showed the potential for practical breeding application value in B. rapa.
Collapse
Affiliation(s)
- Bing Li
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Xueli Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Zhiquan Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China;
| | - Lulin Wang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Liping Song
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Xiaomei Liang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Shengwei Dou
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxing Tu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxiong Shen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Bin Yi
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jing Wen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Tingdong Fu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Cheng Dai
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Chaozhi Ma
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| |
Collapse
|
11
|
Wu L, Han L, Li Q, Wang G, Zhang H, Li L. Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. MOLECULAR PLANT 2021; 14:77-94. [PMID: 33340690 DOI: 10.1016/j.molp.2020.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
The functional genes underlying phenotypic variation and their interactions represent "genetic mysteries". Understanding and utilizing these genetic mysteries are key solutions for mitigating the current threats to agriculture posed by population growth and individual food preferences. Due to advances in high-throughput multi-omics technologies, we are stepping into an Interactome Big Data era that is certain to revolutionize genetic research. In this article, we provide a brief overview of current strategies to explore genetic mysteries. We then introduce the methods for constructing and analyzing the Interactome Big Data and summarize currently available interactome resources. Next, we discuss how Interactome Big Data can be used as a versatile tool to dissect genetic mysteries. We propose an integrated strategy that could revolutionize genetic research by combining Interactome Big Data with machine learning, which involves mining information hidden in Big Data to identify the genetic models or networks that control various traits, and also provide a detailed procedure for systematic dissection of genetic mysteries,. Finally, we discuss three promising future breeding strategies utilizing the Interactome Big Data to improve crop yields and quality.
Collapse
Affiliation(s)
- Leiming Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|
13
|
Tanaka T, Nishii Y, Matsuo H, Takahashi T. Easy-to-Use InDel Markers for Genetic Mapping between Col-0 and L er-0 Accessions of Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9060779. [PMID: 32580428 PMCID: PMC7355782 DOI: 10.3390/plants9060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Map-based gene cloning has played a key role in many genetic studies using the model plant, Arabidopsis thaliana. In the post- next generation sequencing era, identification of point mutations and their corresponding genes is increasingly becoming a powerful and important approach to define plant gene function. To perform initial mapping experiments efficiently on Arabidopsis mutants, enrichment of easy-to-use and reliable polymorphic DNA markers would be desirable. We present here a list of InDel polymorphic markers between Col-0 and Ler-0 accessions that can be detected in standard agarose gel electrophoresis.
Collapse
|
14
|
Hong SW, Kim DR, Kwon YS, Kwak YS. Genome-wide screening antifungal genes in Streptomyces griseus S4-7, a Fusarium wilt disease suppressive microbial agent. FEMS Microbiol Lett 2020; 366:5519859. [PMID: 31210261 DOI: 10.1093/femsle/fnz133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Streptomyces is a widely studied bacterial genus, particularly with regard to secondary metabolites and antibiotics production. Streptomyces griseus S4-7 was isolated from a strawberry Fusarium wilt disease suppressive soil, and its biological control ability has been well established. However, the antifungal mechanism of strain S4-7 is not yet fully understood at the molecular and biochemical level. Therefore, in this study we created a random mutant library for strain S4-7 with the Tn5 transposon element to investigate antifungal traits on a genome-wide scale. In total 4646 individual mutant strains were created and 13 mutants were selected based on loss of antifungal activity. The knockout genes were identified as electron transfer oxidoreductase (eto),sigma factor-70(sig70) and nrps by Inverse PCR (I-PCR). eto regulates the geranylgeranyl reductase gene, which is involved in terpenoid-quinone biosynthesis, an important factor in cell fitness. In the △eto strain, expression of wbl, a master regulator of the production of secondary metabolites, was significantly reduced. sig70 is responsible for the cell differentiation sensing mechanism in genus Streptomyces. △nrps showed decreased production of hybrid peptide-polyketide siderophores. These results suggest that S. griseus S4-7 may have various antifungal mechanisms, and each mechanism is essential to maximal antifungal activity.
Collapse
Affiliation(s)
- Sung Won Hong
- Division of Applied Life Science (BK21Plus), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Gyeongsang Naional University, Jinju 52828, Republic of Korea
| | - Youn Sang Kwon
- Environmetal Toxicology Research Center, Korea Institute of Toxicology, Jinju, 52828 Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.,Department of Plant Medicine, Gyeongsang Naional University, Jinju 52828, Republic of Korea
| |
Collapse
|
15
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
16
|
Li L, Qi Z, Chai L, Chen Z, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Ni Z. The semidominant mutation w5 impairs epicuticular wax deposition in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1213-1225. [PMID: 31965231 DOI: 10.1007/s00122-020-03543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 05/14/2023]
Abstract
The semidominant EMS-induced mutant w5 affects epicuticular wax deposition and mapped to an approximately 194-kb region on chromosome 7DL. Epicuticular wax is responsible for the glaucous appearance of plants and protects against many biotic and abiotic stresses. In wheat (Triticum aestivum L.), β-diketone is a major component of epicuticular wax in adult plants and contributes to the glaucousness of the aerial organs. In the present study, we identified an ethyl methanesulfonate-induced epicuticular wax-deficient mutant from the elite wheat cultivar Jimai22. Compared to wild-type Jimai22, the mutant lacked β-diketone and failed to form the glaucous coating on all aerial organs. The mutant also had significantly increased in cuticle permeability, based on water loss and chlorophyll efflux. Genetic analysis indicated that the mutant phenotype is controlled by a single, semidominant gene on the long arm of chromosome 7D, which was not allelic to the known wax gene loci W1-W4, and was therefore designated W5. W5 was finely mapped to an ~ 194-kb region (flanked by the molecular markers SSR2 and STARP11) that harbored four annotated genes according to the reference genome of Chinese Spring (RefSeq v1.0). Collectively, these data will broaden the knowledge of the genetic basis underlying epicuticular wax deposition in wheat.
Collapse
Affiliation(s)
- Linghong Li
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongqi Qi
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mingyi Zhang
- Dryland Agricultural Research Centre, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, China
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
17
|
Cao J, Gursanscky NR, Fletcher SJ, Sawyer A, Wadia M, McKeough L, Coleman M, Dressel U, Taochy C, Mitter N, Vaucheret H, Carroll BJ. Can-Seq: a PCR and DNA sequencing strategy for identifying new alleles of known and candidate genes. PLANT METHODS 2020; 16:16. [PMID: 32082406 PMCID: PMC7017465 DOI: 10.1186/s13007-020-0555-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Forward genetic screens are a powerful approach for identifying the genes contributing to a trait of interest. However, mutants arising in genes already known can obscure the identification of new genes contributing to the trait. Here, we describe a strategy called Candidate gene-Sequencing (Can-Seq) for rapidly identifying and filtering out mutants carrying new alleles of known and candidate genes. RESULTS We carried out a forward genetic screen and identified 40 independent Arabidopsis mutants with defects in systemic spreading of RNA interference (RNAi), or more specifically in root-to-shoot transmission of post-transcriptional gene silencing (rtp). To classify the mutants as either representing a new allele of a known or candidate gene versus carrying a mutation in an undiscovered gene, bulk genomic DNA from up to 23 independent mutants was used as template to amplify a collection of 47 known or candidate genes. These amplified sequences were combined into Can-Seq libraries and deep sequenced. Subsequently, mutations in the known and candidate genes were identified using a custom Snakemake script (https://github.com/Carroll-Lab/can_seq), and PCR zygosity tests were then designed and used to identify the individual mutants carrying each mutation. Using this approach, we showed that 28 of the 40 rtp mutants carried homozygous nonsense, missense or splice site mutations in one or more of the 47 known or candidate genes. We conducted complementation tests to demonstrate that several of the candidate mutations were responsible for the rtp defect. Importantly, by exclusion, the Can-Seq pipeline also identified rtp mutants that did not carry a causative mutation in any of the 47 known and candidate genes, and these mutants represent an undiscovered gene(s) required for systemic RNAi. CONCLUSIONS Can-Seq offers an accurate, cost-effective method for classifying new mutants into known versus unknown genes. It has several advantages over existing genetic and DNA sequencing approaches that are currently being used in forward genetic screens for gene discovery. Using Can-Seq in conjunction with map-based gene cloning is a cost-effective approach towards identifying the full complement of genes contributing to a trait of interest.
Collapse
Affiliation(s)
- Jiangling Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Nial R. Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Stephen J. Fletcher
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Mehershad Wadia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Lachlan McKeough
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Marek Coleman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Uwe Dressel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Christelle Taochy
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
18
|
Wang P, Yao FJ, Lu LX, Fang M, Zhang YM, Khan AA, Kong XH, Yu J, Jiang WZ, Kitamoto Y, Honda Y. Map-based cloning of genes encoding key enzymes for pigment synthesis in Auricularia cornea. Fungal Biol 2019; 123:843-853. [PMID: 31627860 DOI: 10.1016/j.funbio.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Color is an important quality attribute of fungi, and a useful marker for classification, genetic, and molecular research. However, there is much debate over which enzymes play key regulatory roles in pigment synthesis pathways among different fungi and even within the same species. Auricularia cornea is the most widely cultivated mushroom in the genus Auricularia; 1.834 million tons of this mushroom were produced in 2016 in China. Thus, systematic studies on its color inheritance and the genes encoding key enzymes for pigment synthesis have high scientific and economic value. In this study, the white strain ACW001 and the purple strain ACP004 of A. cornea were used as dikaryotic parents. Selfing populations of ACW001 and ACP004 were constructed with their monokaryotic strains. The fruiting body color of the two populations was consistent with that of their parents, confirming that the two parents were color homozygotes. All strains in the hybrid population of the two parents produced purple fruiting bodies. A robust hybrid strain (ACW001-33×ACP004-33) was selected from the hybrid population, and 87 monokaryotic strains of ACW001-33×ACP004-33 were obtained as a mapping population. Finally, a testcross population was constructed by crossing the mapping population with the test strain ACW001-9. The color genotype of each monokaryotic strain in the mapping population was identified by a fruiting test. The genomes of the two monokaryotic strains ACW001-33 and ACP004-33 were sequenced, and then simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular marker primers were developed. Then, 88 pairs of primers that could distinguish the genotypes of the mapping population were used to construct a genetic linkage map. The genetic linkage map consisted of 12 linkage groups (LGs) spanning 1315.2 cM. The color control locus was preliminarily located at 24.5 cM of the 11th LG. Fine-mapping primers were designed based on sequence differences between ACW001-33 and ACP004-33 in the primary location region. Four color control candidate genes were located in an 8.2-kb region of ACW001-33_contig733 and a 9.2-kb region of ACP004-33_contig802. Homologous alignment and prediction of conserved domain analyses indicated that two of the color control candidate genes encoded proteins with unknown function, and the other two, ACP004_g11815 and ACP004_g11816, encoded glutamyl aminotransferases. These two genes were consecutively arranged on ACP004-33_contig802, and were likely to encode key enzymes in the γ-glutamine-4-hydroxy-benzoate (GHB) pigment synthesis pathway. Primers were designed from the flanking sequences of the two genes and used to analyze the testcross population. Products were amplified only from the 30 testcross strains with purple fruiting bodies, confirming the accuracy of the localization results. We discuss the deficiencies and advantages of map-based cloning in fungi vs. plants, and summarize the steps and requirements of the map-based cloning method for fungi. This study has provided novel ideas and methods for locating functional genes in fungi.
Collapse
Affiliation(s)
- Peng Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Fang-Jie Yao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; College of Horticulture, Jilin Agricultural University, Changchun, 130118, China.
| | - Li-Xin Lu
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Ming Fang
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - You-Min Zhang
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China.
| | - Asif Ali Khan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Xiang-Hui Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Wan-Zhu Jiang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yutaka Kitamoto
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| |
Collapse
|
19
|
Xiao XO, Lin W, Li K, Feng X, Jin H, Zou H. Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant ( Solanum melongena L.). Genes (Basel) 2019; 10:E595. [PMID: 31394801 PMCID: PMC6722539 DOI: 10.3390/genes10080595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis. QRT-PCR results showed that only the Sme2.5_06210.1_g00004.1, which was annotated as UFGT (Flavonoid galactosidase transferase), expression significantly decreased in the L6-5 mutant compared with the WT. Also, the Sme2.5_06210.1_g00004.1 expression was lower in the colorless eggplant compared with colorful eggplant in the natural eggplant cultivar. These results suggest that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanin synthesis.
Collapse
Affiliation(s)
- Xi-Ou Xiao
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China.
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China.
| | - Wenqiu Lin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Ke Li
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Xuefeng Feng
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Hui Jin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Huafeng Zou
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| |
Collapse
|
20
|
Reddy SH, Kambalimath SK, Singhal RK, Chikkakariyappa MK, Muthurajan R, Rajanna MP, Sreevathsa R, Sevanthi AM, Mohapatra T, Sarla N, Chinnusamy V, Krishnan GS, Singh AK, Singh NK, Sharma RP, Sheshshayee SM. Allele-specific analysis of single parent backcross population identifies HOX10 transcription factor as a candidate gene regulating rice root growth. PHYSIOLOGIA PLANTARUM 2019; 166:596-611. [PMID: 30175846 DOI: 10.1111/ppl.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Understanding the molecular and physiological mechanisms of trait diversity is crucial for crop improvement to achieve drought adaptation. Root traits such as high biomass and/or deep rootedness are undoubtedly important drought adaptive traits. The major aim of this investigation was to functionally characterize a set of ethyl methane sulfonate-induced rice mutants for root traits. We report the identification of a high-root biomass mutant through a novel screening strategy for yield and Δ13 C measurements. The high-root mutant (392-9-1) thus identified, had a 66% higher root biomass compared to wild-type (Nagina-22). Better maintenance of leaf turgor and carbon assimilation rates resulted in lower drought susceptibility index in 392-9-1. Targeted resequencing revealed three non-synonymous single nucleotide variations in 392-9-1 for the genes HOX10, CITRATE SYNTHASE and ZEAXANTHIN EPOXIDASE. Segregation pattern of phenotype and mutant alleles in a single parent backcross F2 population revealed a typical 3:1 segregation for each of the mutant alleles. The number of F2 progeny with root biomass equal to or greater than that of 392-9-1 represented approximately one-third of the population indicating a major role played by HOX10 gene in regulating root growth in rice. Allele-specific Sanger sequencing in contrasting F2 progenies confirmed the co-segregation of HOX10 allele with the root biomass. The non-synonymous mutations in the other two genes did not reveal any specific pattern of co-segregation with root phenotype, indicating a strong role of HOX10, an upstream transcription factor, in regulating root biomass in rice.
Collapse
Affiliation(s)
- Sowmya H Reddy
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | - Sumanth K Kambalimath
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | - Rajesh K Singhal
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | | | - Raveendran Muthurajan
- Center for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | - Trilochan Mohapatra
- Secretary, DARE and DG Indian Council for Agricultural Research, New Delhi, India
| | | | | | - Gopala S Krishnan
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Ashok K Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Sreeman M Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| |
Collapse
|
21
|
Dong J, Tu M, Feng Y, Zdepski A, Ge F, Kumar D, Slovin JP, Messing J. Candidate gene identification of existing or induced mutations with pipelines applicable to large genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:673-682. [PMID: 30417446 DOI: 10.1111/tpj.14153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Bulked segregant analysis (BSA) is used to identify existing or induced variants that are linked to phenotypes. Although it is widely used in Arabidopsis and rice, it remains challenging for crops with large genomes, such as maize. Moreover, analysis of huge data sets can present a bottleneck linking phenotypes to their molecular basis, especially for geneticists without programming experience. Here, we identified two genes of maize defective kernel mutants with newly developed analysis pipelines that require no programing skills and should be applicable to any large genome. In the 1970s, Neuffer and Sheridan generated a chemically induced defective kernel (dek) mutant collection with the potential to uncover critical genes for seed development. To locate such mutations, the dek phenotypes were introgressed into two inbred lines to take advantage of maize haplotype variations and their sequenced genomes. We generated two pipelines that take fastq files derived from next-generation (nextGen) paired-end DNA and cDNA sequencing as input, call on several well established and freely available genomic analysis tools to call SNPs and INDELs, and generate lists of the most likely causal mutations together with variant index plots to locate the mutation to a specific sequence position on a chromosome. The pipelines were validated with a known strawberry mutation before cloning the dek mutants, thereby enabling phenotypic analysis of large genomes by next-generation sequencing.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Anna Zdepski
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Fei Ge
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Janet P Slovin
- Genetic Improvement of Fruits and Vegetables Laboratory, US Department of Agriculture - Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
22
|
Rallapalli G, Corredor-Moreno P, Chalstrey E, Page M, MacLean D. Rapid fine mapping of causative mutations from sets of unordered, contig-sized fragments of genome sequence. BMC Bioinformatics 2019; 20:9. [PMID: 30616525 PMCID: PMC6323790 DOI: 10.1186/s12859-018-2515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traditional Map based Cloning approaches, used for the identification of desirable alleles, are extremely labour intensive and years can elapse between the mutagenesis and the detection of the polymorphism. High throughput sequencing based Mapping-by-sequencing approach requires an ordered genome assembly and cannot be used with fragmented, un-scaffolded draft genomes, limiting its application to model species and precluding many important organisms. RESULTS We addressed this gap in resource and presented a computational method and software implementations called CHERIPIC (Computing Homozygosity Enriched Regions In genomes to Prioritise Identification of Candidate variants). We have successfully validated implementation of CHERIPIC using three different types of bulk segregant sequence data from Arabidopsis, maize and barley, respectively. CONCLUSIONS CHERIPIC allows users to rapidly analyse bulk segregant sequence data and we have made it available as a pre-packaged binary with all dependencies for Linux and MacOS and as Galaxy tool.
Collapse
Affiliation(s)
- Ghanasyam Rallapalli
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK. .,Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK.
| | - Pilar Corredor-Moreno
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.,John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Edward Chalstrey
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.,Birkbeck, University of London, Bloomsbury, London, WC1E 7HX, UK
| | - Martin Page
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
23
|
Hu N, Xian Z, Li N, Liu Y, Huang W, Yan F, Su D, Chen J, Li Z. Rapid and user-friendly open-source CRISPR/Cas9 system for single- or multi-site editing of tomato genome. HORTICULTURE RESEARCH 2019; 6:7. [PMID: 30603093 PMCID: PMC6312546 DOI: 10.1038/s41438-018-0082-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
CRISPR/Cas9-induced genome editing is a powerful tool for studying gene function in a variety of organisms, including plants. Using multi-sgRNAs to target one or more genes is helpful to improve the efficacy of gene editing and facilitate multi-gene editing. Here, we describe a CRISPR/Cas9 system which can be conveniently developed as a CRISPR kit. SgRNA expression cassettes can be rapidly generated by one-step PCR using our CRISPR kit. In our kit, there are two binary vectors pHNCas9 and pHNCas9HT. The binary vector pHNCas9 was constructed to allow to assemble up to eight sgRNA expression cassettes by one-step Golden Gate cloning. Another binary vector pHNCas9HT can be used to generate a large number of single target constructs by directly transforming ligation reactions products into A. tumefaciens without several procedures, such as PCR and plasmid extraction. The two binary vectors are designed according to the principles of standard BioBrick assembly to be used as an open-source tool. For example, we used BioBrick as a visual T-DNA tag. We also developed a primer design aid to complement the system. With this primer design aid, researchers can rapidly obtain primers and GC content, and sgRNA sequence of target site. Our CRISPR/Cas9 system can perform single- and multi-site editing and multiple gene editing to produce various types of mutations in tomato. This rapid and user-friendly CRISPR/Cas9 system for tomato can be potentially used for mutagenesis of important crop species for genetic improvement and is suitable for research into the function of genes.
Collapse
Affiliation(s)
- Nan Hu
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Zhiqiang Xian
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Ning Li
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Yudong Liu
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Wei Huang
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Fang Yan
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Deding Su
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Jingxuan Chen
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 405200 People’s Republic of China
| |
Collapse
|
24
|
Whole Genome Resequencing from Bulked Populations as a Rapid QTL and Gene Identification Method in Rice. Int J Mol Sci 2018; 19:ijms19124000. [PMID: 30545055 PMCID: PMC6321147 DOI: 10.3390/ijms19124000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 11/16/2022] Open
Abstract
Most Quantitative Trait Loci (QTL) and gene isolation approaches, such as positional- or map-based cloning, are time-consuming and low-throughput methods. Understanding and detecting the genetic material that controls a phenotype is a key means to functionally analyzing genes as well as to enhance crop agronomic traits. In this regard, high-throughput technologies have great prospects for changing the paradigms of DNA marker revealing, genotyping, and for discovering crop genetics and genomic study. Bulk segregant analysis, based on whole genome resequencing approaches, permits the rapid isolation of the genes or QTL responsible for the causative mutation of the phenotypes. MutMap, MutMap Gap, MutMap+, modified MutMap, and QTL-seq methods are among those approaches that have been confirmed to be fruitful gene mapping approaches for crop plants, such as rice, irrespective of whether the characters are determined by polygenes. As a result, in the present study we reviewed the progress made by all these methods to identify QTL or genes in rice.
Collapse
|
25
|
Reverse Genetics for Peste des Petits Ruminants Virus: Current Status and Lessons to Learn from Other Non-segmented Negative-Sense RNA Viruses. Virol Sin 2018; 33:472-483. [PMID: 30456658 PMCID: PMC6335227 DOI: 10.1007/s12250-018-0066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious transboundary animal disease with a severe socio-economic impact on the livestock industry, particularly in poor countries where it is endemic. Full understanding of PPR virus (PPRV) pathobiology and molecular biology is critical for effective control and eradication of the disease. To achieve these goals, establishment of stable reverse genetics systems for PPRV would play a key role. Unfortunately, this powerful technology remains less accessible and poorly documented for PPRV. In this review, we discussed the current status of PPRV reverse genetics as well as the recent innovations and advances in the reverse genetics of other non-segmented negative-sense RNA viruses that could be applicable to PPRV. These strategies may contribute to the improvement of existing techniques and/or the development of new reverse genetics systems for PPRV.
Collapse
|
26
|
Li T, Wen J, Zhang Y, Correll J, Wang L, Pan Q. Reconstruction of an SSR-based Magnaporthe oryzae physical map to locate avirulence gene AvrPi12. BMC Microbiol 2018; 18:47. [PMID: 29855268 PMCID: PMC5984427 DOI: 10.1186/s12866-018-1192-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Pathogen avirulence (Avr) genes can evolve rapidly when challenged by the widespread deployment of host genes for resistance. They can be effectively isolated by positional cloning provided a robust and well-populated genetic map is available. RESULTS An updated, SSR-based physical map of the rice blast pathogen Magnaporthe oryzae (Mo) has been constructed based on 116 of the 120 SSRs used to assemble the last map, along with 18 newly developed ones. A comparison between the two versions of the map has revealed an altered marker content and order within most of the Mo chromosomes. The avirulence gene AvrPi12 was mapped in a population of 219 progeny derived from a cross between the two Mo isolates CHL42 and CHL357. A bulked segregant analysis indicated that the gene was located on chromosome 6, a conclusion borne out by an analysis of the pattern of segregation shown by individual isolates. Six additional PCR-based markers were developed to improve the map resolution in the key region. AvrPi12 was finally located within the sub-telomeric region of chromosome 6, distal to the SSR locus LSM6-5. CONCLUSIONS The improved SSR-based linkage map should be useful as a platform for gene mapping and isolation in Mo. It was used to establish the location of AvrPi12, thereby providing a starting point for its positional cloning.
Collapse
Affiliation(s)
- Tonghui Li
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jianqiang Wen
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yaling Zhang
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - James Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Ling Wang
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qinghua Pan
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
27
|
Espina MJ, Ahmed CMS, Bernardini A, Adeleke E, Yadegari Z, Arelli P, Pantalone V, Taheri A. Development and Phenotypic Screening of an Ethyl Methane Sulfonate Mutant Population in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:394. [PMID: 29651295 PMCID: PMC5884938 DOI: 10.3389/fpls.2018.00394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 05/04/2023]
Abstract
Soybean is an important oil-producing crop in the Fabaceae family and there are increasing demands for soybean oil and other soybean products. Genetic improvement of soybean is needed to increase its production. In order to provide genetic diversity and resources for identifying important genes, a new ethyl methane sulfonate (EMS) mutagenized soybean population was generated using the newly released germplasm, JTN-5203 (maturity group V). Treatment of soybean seeds with 60 mM EMS concentration was found to be suitable for inducing mutation. A total of 1,820 M1 individuals were produced from 15,000 treated seeds. The resulting M2 population was planted in the field for phenotyping. After harvest, seed traits including total oil, protein, starch, moisture content, fatty acid and amino acid compositions were measured by NIR. Phenotypic variations observed in this population include changes in leaf morphology, plant architecture, seed compositions, and yield. Of most interest, we identified plants with increased amounts of total protein (50% vs. 41% for control) and plants with higher amounts of total oil (25% vs. 21.2% control). Similarly, we identified plants with increases in oleic acid content and decreases in linoleic acid and linolenic acid. This EMS mutant population will be used for further studies including screening for various traits such as amino acid pathways, allergens, phytic acids, and other important soybean agronomic traits. In addition, these mutant individuals will be evaluated in the next generation to assess the heritability. Beneficial traits from these mutants can be exploited for future soybean breeding programs. This germplasm can also be used for discovering novel mutant alleles and for functional gene expression analysis using reverse genetics tools such as TILLING.
Collapse
Affiliation(s)
- Mary J. Espina
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - C. M. Sabbir Ahmed
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Angelina Bernardini
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Ekundayo Adeleke
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Zeinab Yadegari
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Prakash Arelli
- United States Department of Agriculture, Agricultural Research Service, Jackson, TN, United States
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
- *Correspondence: Ali Taheri,
| |
Collapse
|
28
|
Strategies for identification of mutations induced by carbon-ion beam irradiation in Arabidopsis thaliana by whole genome re-sequencing. Mutat Res 2017; 807:21-30. [PMID: 29268080 DOI: 10.1016/j.mrfmmm.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
Heavy-ion beam irradiation is a powerful physical mutagen that has been used to create numerous mutant materials in plants. These materials are an essential resource for functional genomics research in the post-genome era. The advent of Next-Generation Sequencing (NGS) technology has promoted the study of functional genomics and molecular breeding. A wealth of information can be gathered from whole genome re-sequencing; however, understanding the molecular mutation profile at genome wide, as well as identifying causal genes for a given phenotype are big challenging issues for researchers. The huge outputs created by NGS make it difficult to capture key information. It is worthy to explore an effective and efficient data-sieving strategy for mutation scanning at whole genome scale. Re-sequencing data from one laboratory wild type (Columbia) and eleven M3Arabidopsis thaliana lines derived from carbon-ion beam irradiation were used in present study. Both the number and different combinations of samples used for analysis affected the sieving results. The result indicated that using six samples was sufficient to filter out the shared mutation (background interference) sites as well as to identify the true mutation sites in the whole genome. The final number of candidate mutation sites could be further narrowed down by combining traditional rough map-based cloning. Our results demonstrated the feasibility of a parallel sequencing analysis as an efficient tool for the identification of mutations induced by carbon-ion beam irradiation. For the first time, we presented different analysis strategies for handling massive parallel sequencing data sets to detect the mutations induced by carbon-ion beam irradiation in Arabidopsis thaliana with low false-positive rate, as well as to identify the causative nucleotide changes responsible for a mutant phenotype.
Collapse
|
29
|
Zhang X, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 2017; 12:e0189788. [PMID: 29244865 PMCID: PMC5731758 DOI: 10.1371/journal.pone.0189788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022] Open
Abstract
In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.
Collapse
Affiliation(s)
- Xuebin Zhang
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dasuni Jayaweera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, Lyon, France
| | - Jeremy A. Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Zinnia H. González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
30
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017. [PMID: 29188438 DOI: 10.1007/s00438‐017‐1401‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA
- National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
31
|
Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S. Mapping causal mutations by exome sequencing in a wheat TILLING population: a tall mutant case study. Mol Genet Genomics 2017; 293:463-477. [PMID: 29188438 PMCID: PMC5854723 DOI: 10.1007/s00438-017-1401-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022]
Abstract
Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA, USA.,National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Luis Alejandro de Haro
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
32
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
33
|
González-Carranza ZH, Zhang X, Peters JL, Boltz V, Szecsi J, Bendahmane M, Roberts JA. HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS One 2017; 12:e0185106. [PMID: 28934292 PMCID: PMC5608315 DOI: 10.1371/journal.pone.0185106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/06/2017] [Indexed: 12/02/2022] Open
Abstract
The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT (HWS) affects organ growth and the timing of floral organ abscission. The loss-of-function hws-1 mutant exhibits fused sepals and increased organ size. To understand the molecular mechanisms of HWS during plant development, we mutagenized hws-1 seeds with ethylmethylsulphonate (EMS) and screened for mutations suppressing hws-1 associated phenotypes. We isolated the shs1/hws-1 (suppressor of hws-1) mutant in which hws-1 sepal fusion phenotype was suppressed. The shs1/hws-1 mutant carries a G→A nucleotide substitution in the MIR164 binding site of CUP-SHAPED COTYLEDON 1 (CUC1) mRNA. CUC1 and CUP-SHAPED COTYLEDON 2 (CUC2) transcript levels were altered in shs1, renamed cuc1-1D, and in hws-1 mutant. Genetic interaction analyses using single, double and triple mutants of cuc1-1D, cuc2-1D (a CUC2 mutant similar to cuc1-1D), and hws-1, demonstrate that HWS, CUC1 and CUC2 act together to control floral organ number. Loss of function of HWS is associated with larger petal size due to alterations in cell proliferation and mitotic growth, a role shared with the CUC1 gene.
Collapse
Affiliation(s)
- Zinnia H. González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Xuebin Zhang
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Veronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Univesité de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univesité de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univesité de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jeremy A. Roberts
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
34
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
35
|
Yan W, Chen Z, Lu J, Xu C, Xie G, Li Y, Deng XW, He H, Tang X. Simultaneous Identification of Multiple Causal Mutations in Rice. FRONTIERS IN PLANT SCIENCE 2017; 7:2055. [PMID: 28144247 PMCID: PMC5239786 DOI: 10.3389/fpls.2016.02055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/23/2016] [Indexed: 05/26/2023]
Abstract
Next-generation sequencing technologies (NGST) are being used to discover causal mutations in ethyl methanesulfonate (EMS)-mutagenized plant populations. However, the published protocols often deliver too many candidate sites and sometimes fail to find the mutant gene of interest. Accurate identification of the causal mutation from massive background polymorphisms and sequencing deficiencies remains challenging. Here we describe a NGST-based method, named SIMM, that can simultaneously identify the causal mutations in multiple independent mutants. Multiple rice mutants derived from the same parental line were back-crossed, and for each mutant, the derived F2 individuals of the recessive mutant phenotype were pooled and sequenced. The resulting sequences were aligned to the Nipponbare reference genome, and single nucleotide polymorphisms (SNPs) were subsequently compared among the mutants. Allele index (AI) and Euclidean distance (ED) were incorporated into the analysis to reduce noises caused by background polymorphisms and re-sequencing errors. Corrections of sequence bias against GC- and AT-rich sequences in the candidate region were conducted when necessary. Using this method, we successfully identified seven new mutant alleles from Huanghuazhan (HHZ), an elite indica rice cultivar in China. All mutant alleles were validated by phenotype association assay. A pipeline based on Perl scripts for SIMM is publicly available at https://sourceforge.net/projects/simm/.
Collapse
Affiliation(s)
- Wei Yan
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
| | - Jiawei Lu
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
| | - Yiqi Li
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
- College of Life Sciences, Peking UniversityBeijing, China
| | - Hang He
- College of Life Sciences, Peking UniversityBeijing, China
| | - Xiaoyan Tang
- Shenzhen Institute of Molecular Crop DesignShenzhen, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal UniversityGuangzhou, China
| |
Collapse
|
36
|
Song J, Li Z, Liu Z, Guo Y, Qiu LJ. Next-Generation Sequencing from Bulked-Segregant Analysis Accelerates the Simultaneous Identification of Two Qualitative Genes in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:919. [PMID: 28620406 PMCID: PMC5449466 DOI: 10.3389/fpls.2017.00919] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 05/03/2023]
Abstract
Next-generation sequencing (NGS)-based bulked-segregant analysis (BSA) approaches have been proven successful for rapidly mapping genes in plant species. However, most such methods are based on mutants and usually only one gene controlling the mutant phenotype is identified. In this study, NGS-based BSA was employed to map simultaneously two qualitative genes controlling cotyledon color of seed in soybean. Yellow-cotyledon (YC) and green-cotyledon (GC) bulks from progenies of a biparental population (Zhonghuang 30 × Jiyu 102) were sequenced. The SNP-index of each SNP locus in YC and GC bulks was calculated and two genomic regions on chromosomes 1 and 11 harboring, respectively, loci qCC1 and qCC2 were identified by Δ(SNP-index) analysis. These two BSA-seq-derived loci were further validated with SSR markers and fine-mapped. qCC1 was mapped to a 30.7-kb region containing four annotated genes and qCC2 was mapped to a 67.7-kb region with nine genes. These two regions contained, respectively, genes D1 and D2, which had previously been identified by homology-based cloning as being associated with cotyledon color. Sequence analysis of the NGS data also identified a frameshift deletion in the coding region of D1. These results suggested that BSA-seq could accelerate the mapping of loci controlling qualitative traits, even if a trait is controlled by more than one locus.
Collapse
Affiliation(s)
| | | | | | - Yong Guo
- *Correspondence: Li-Juan Qiu, Yong Guo,
| | | |
Collapse
|
37
|
Cheng H, Gao J, Cai H, Zhu J, Huang H. Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. SPRINGERPLUS 2016; 5:1853. [PMID: 27818891 PMCID: PMC5075328 DOI: 10.1186/s40064-016-3523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Forward genetics approaches are not popularly applied in non-model plants due to their complex genomes, long life cycles, backward genetic studies etc. Researchers have to adopt reverse genetic methods to characterize gene functions in non-model plants individually, the efficiency of which is usually low. RESULTS In this study, we report a gain-of-function in Arabidopsis (GAINA) strategy which can be used for batch identification of functional genes in a plant species. This strategy aims to obtain the gain-of-function of rubber tree genes through overexpressing transformation ready full-length cDNA libraries in Arabidopsis. An initial transformation test produced about two thousand independent transgenic Arabidopsis lines, in which multiple obvious aberrant phenotypes were observed, suggesting the gain-of-function of rubber tree genes. The transferred genes were further isolated and identified. One gene identified to be metallothionein-like protein type 3 gene was further transferred into Arabidopsis and reproduced a similar aberrant phenotype. CONCLUSION The GAINA system proves to be an efficient tool for batch identification of functional genes in Hevea brasiliensis, and also applicable in other non-model plants.
Collapse
Affiliation(s)
- Han Cheng
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| | - Jing Gao
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Haibin Cai
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Jianshun Zhu
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Huasun Huang
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| |
Collapse
|
38
|
Tan H, Huang H, Tie M, Tang Y, Lai Y, Li H. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress. PLoS One 2016; 11:e0151105. [PMID: 26954786 PMCID: PMC4783050 DOI: 10.1371/journal.pone.0151105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022] Open
Abstract
Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars—“Dubai bean” and “Ningjiang-3”, which are tolerant and sensitive to chilling, respectively—were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.
Collapse
Affiliation(s)
- Huaqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haitao Huang
- Mianyang Institute of Agricultural Sciences, Mianyang, Sichuan, China
| | - Manman Tie
- Dazhou Institute of Agricultural Sciences, Dazhou, Sichuan, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
39
|
Manzanares C, Yates S, Ruckle M, Nay M, Studer B. TILLING in forage grasses for gene discovery and breeding improvement. N Biotechnol 2016; 33:594-603. [PMID: 26924175 DOI: 10.1016/j.nbt.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/04/2023]
Abstract
Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics.
Collapse
Affiliation(s)
- Chloe Manzanares
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven Yates
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Ruckle
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Michelle Nay
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
40
|
Teotia S, Singh D, Tang X, Tang G. Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends Biotechnol 2016; 34:106-123. [PMID: 26774589 DOI: 10.1016/j.tibtech.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed.
Collapse
Affiliation(s)
- Sachin Teotia
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; School of Biotechnology, Gautam Buddha University, Greater Noida, UP 201312, India; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP 201312, India; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Guiliang Tang
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
41
|
Kumar A, Seetan R, Mergoum M, Tiwari VK, Iqbal MJ, Wang Y, Al-Azzam O, Šimková H, Luo MC, Dvorak J, Gu YQ, Denton A, Kilian A, Lazo GR, Kianian SF. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 2015; 16:800. [PMID: 26475137 PMCID: PMC4609151 DOI: 10.1186/s12864-015-2030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Raed Seetan
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Vijay K Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Muhammad J Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Omar Al-Azzam
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Hana Šimková
- Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Institute of Experimental Botany, Šlechtitelů 31, 783-71, Olomouc, Czech Republic
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Anne Denton
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, ACT2600, Australia
| | - Gerard R Lazo
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
42
|
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K. Brachypodium as an emerging model for cereal-pathogen interactions. ANNALS OF BOTANY 2015; 115:717-31. [PMID: 25808446 PMCID: PMC4373291 DOI: 10.1093/aob/mcv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host-pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. SCOPE Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium-pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal-pathogen interactions. CONCLUSIONS The study of brachypodium-pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Katharina Schneebeli
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - M Mandy Hsia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jennifer N Bragg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - C Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Watt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John P Vogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Robert J Henry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
43
|
Mateo-Bonmatí E, Casanova-Sáez R, Candela H, Micol JL. Rapid identification of angulata leaf mutations using next-generation sequencing. PLANTA 2014; 240:1113-1122. [PMID: 25102851 DOI: 10.1007/s00425-014-2137-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Map-based (positional) cloning has traditionally been the preferred strategy for identifying the causal genes underlying the phenotypes of mutants isolated in forward genetic screens. Massively parallel sequencing technologies are enabling the rapid cloning of genes identified in such screens. We have used a combination of linkage mapping and whole-genome re-sequencing to identify the causal mutations in four loss-of-function angulata (anu) mutants. These mutants were isolated in a screen for mutants with defects in leaf shape and leaf pigmentation. Our results show that the anu1-1, anu4-1, anu9-1 and anu12-1 mutants carry new alleles of the previously characterized SECA2, TRANSLOCON AT THE OUTER MEMBRANE OF CHLOROPLASTS 33 (TOC33), NON-INTRINSIC ABC PROTEIN 14 (NAP14) and CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPR1) genes. Re-sequencing the genomes of fine mapped mutants is a feasible approach that has allowed us to identify a moderate number of candidate mutations, including the one that causes the mutant phenotype, in a nonstandard genetic background. Our results indicate that anu mutations specifically affect plastid-localized proteins involved in diverse processes, such as the movement of peptides through chloroplast membranes (ANU1 and ANU4), metal homeostasis (ANU9) and protein degradation (ANU12).
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Alicante, Spain
| | | | | | | |
Collapse
|
44
|
Pacurar DI, Pacurar ML, Pacurar AM, Gutierrez L, Bellini C. A novel viable allele of Arabidopsis CULLIN1 identified in a screen for superroot2 suppressors by next generation sequencing-assisted mapping. PLoS One 2014; 9:e100846. [PMID: 24955772 PMCID: PMC4067405 DOI: 10.1371/journal.pone.0100846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
Map-based cloning (MBC) is the conventional approach for linking phenotypes to genotypes, and has been successfully used to identify causal mutations in diverse organisms. Next-generation sequencing (NGS) technologies offer unprecedented possibilities to sequence the entire genomes of organisms, thereby in principle enabling direct identification of causal mutations without mapping. However, although mapping-by-sequencing has proven to be a cost effective alternative to classical MBC in particular situations, methods based solely on NGS still have limitations and need to be refined. Aiming to identify the causal mutations in suppressors of Arabidopsis thaliana superroot2 phenotype, generated by ethyl methane sulfonate (EMS) treatment, we combined NGS and classical mapping, to rapidly identify the point mutations and restrict the number of testable candidates by defining the chromosomal intervals containing the causal mutations, respectively. The NGS-assisted mapping approach we describe here facilitates unbiased identification of virtually any causal EMS-generated mutation by overlapping the identification (deep sequencing) and validation (mapping) steps. To exemplify the useful marriage of the two approaches we discuss the strategy used to identify a new viable recessive allele of the Arabidopsis CULLIN1 gene in the non-reference Wassilewskija (Ws-4) accession.
Collapse
Affiliation(s)
- Daniel I. Pacurar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- * E-mail:
| | - Monica L. Pacurar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
- Present address: SweTree Technologies AB, Umeå, Sweden
| | - Andrea M. Pacurar
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
| | - Laurent Gutierrez
- Molecular biology platform (CRRBM), Université de Picardie Jules Verne, Amiens, France
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, French National Institute for Agricultural Research (UMR1318 INRA-AgroParisTech), Versailles, France
| |
Collapse
|
45
|
Xiong DM, Liu Z, Chen H, Xue JT, Yang Y, Chen C, Ye LM. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. J Pharm Anal 2014; 4:190-196. [PMID: 29403882 PMCID: PMC5761124 DOI: 10.1016/j.jpha.2014.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022] Open
Abstract
The HPLC–MS/MS method was developed to profile the dynamics of abscisic acid (ABA) and ABA-glucose ester (ABA-GE) after cloning glycosyltransferase enzyme family gene AtUGT71C5 into Arabidopsis thaliana. By constructing over-expression lines (OE) and down-expression lines (DN), we acquired mutant strains to analyze the function of AtUGT71C5. The multiple-reaction monitoring (MRM) was used for quantitative determination in negative mode. The transition was m/z 263.1→153.0 for ABA ([M–H]+), m/z 425.1→263.0 for ABA-GE ([M–H]+), and m/z 321.0→152.0 for chloramphenicol. The linear range was 0.8684–217.1 ng/mL for ABA and 0.3920–196.0 ng/mL for ABA-GE. The accuracy was 88.0–109.0% for ABA and 86.6–113.0% for ABA-GE; the inter-day and intra-day precisions were less than 5.4% for ABA and 8.9% for ABA-GE, respectively. This method is simple and sensitive enough for determination of ABA and ABA-GE in A. thaliana leaves. All the evidence confirmed the speculation that AtUGT71C5 can mediate abscisic acid homeostasis.
Collapse
Affiliation(s)
- Dong-Mei Xiong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhen Liu
- College of Life Science, Sichuan University, Chengdu 610041, China
| | - Han Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Tao Xue
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li-Ming Ye
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Abstract
EMS mutant analysis is a routine experiment to identify new players in a specific biological process or signaling pathway using forward genetics. It begins with the generation of mutants by treating Arabidopsis seeds with EMS. A mutant with a phenotype of interest (mpi) is obtained by screening plants of the M2 generation under a specific condition. Once the phenotype of the mpi is confirmed in the next generation, map-based cloning is performed to locate the mpi mutation. During the map-based cloning, mpi plants (Arabidopsis Columbia-0 (Col-0) ecotype background) are first crossed with Arabidopsis Landsberg erecta (Ler) ecotype, and the presence or absence of the phenotype in the F1 hybrids indicates whether the mpi is recessive or dominant. F2 plants with phenotypes similar to the mpi, if the mpi is recessive, or those without the phenotype, if the mpi is dominant, are used as the mapping population. As few as 24 such plants are selected for rough mapping. After finding one marker (MA) linked to the mpi locus or mutant phenotype, more markers near MA are tested to identify recombinants. The recombinants indicate the interval in which the mpi is located. Additional recombinants and molecular markers are then required to narrow down the interval. This is an iterative process of narrowing down the mapping interval until no further recombinants or molecular markers are available. The genes in the mapping interval are then sequenced to look for the mutation. In the last step, the wild-type or mutated gene is cloned to generate binary constructs. Complementation or recapitulation provides the most convincing evidence in determining the mutation that causes the phenotype of the mpi. Here, we describe the procedures for generating mutants with EMS and analyzing EMS mutations by map-based cloning.
Collapse
Affiliation(s)
- Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | |
Collapse
|
47
|
Ghosh S, Baloni P, Mukherjee S, Anand P, Chandra N. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2013; 7:132. [PMID: 24308365 PMCID: PMC4234997 DOI: 10.1186/1752-0509-7-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Abstract
Background The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.
Collapse
Affiliation(s)
| | | | | | | | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
48
|
Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int J Mol Sci 2013; 14:20478-91. [PMID: 24129180 PMCID: PMC3821626 DOI: 10.3390/ijms141020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023] Open
Abstract
Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.
Collapse
|
49
|
Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, Yang W, Tian Z. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics 2013; 40:93-6. [PMID: 23439408 DOI: 10.1016/j.jgg.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
|
50
|
Gechev T, Mehterov N, Denev I, Hille J. A Simple and Powerful Approach for Isolation of Arabidopsis Mutants with Increased Tolerance to H2O2-Induced Cell Death. Methods Enzymol 2013; 527:203-20. [DOI: 10.1016/b978-0-12-405882-8.00011-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|