1
|
Rani V, Rana S, Muthamilarasan M, Joshi DC, Gupta R, Singh R, Yadav D. Identification and characterization of Eco-miR 169-EcNF-YA13 gene regulatory network reveal their role in conferring tolerance to dehydration and salinity stress in finger millet. Sci Rep 2025; 15:12338. [PMID: 40210666 PMCID: PMC11985966 DOI: 10.1038/s41598-025-96233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
The finger millet (Eleusine coracana (L.) Gaertn) genome, comprised 166 conserved microRNAs (miRNAs) belonging to 39 families and three novel miRNAs. The miR169 is one of the most conserved miRNA families, while Eco_N1 is a species-specific miRNA prevalent in finger millet. Its members regulate the expression of genes encoding the Nuclear Factor-Y subunit A (NF-YA) via transcript cleavage. However, the role of miRNA genes in regulating the expression of NF-YA transcription factors in finger millet needs to be deciphered. The present study characterized 166 conserved and novel miRNAs (Eco_N1, Eco_N2 and Eco_N3). Further, secondary structures were predicted, and the potential miR genes targeting the NF-YA transcription factors regulating abiotic stress tolerance were analysed. Twenty-three Eco-miR169 members and one Eco_N1 miRNA targeting EcNF-YA13 were identified in the finger millet genome. The presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), and MYB (myeloblastosis) indicates that the target of Eco-miR169 might be involved in abiotic stress responses. The tissue-specific RNA-seq transcriptomic expression pattern of Eco-miR169 showed variable fold of expression in seedlings compared to the control. At the same time, the expression of EcNF-YA13 (target genes of Eco-miR169 members and Eco_N1) presented a downregulated trend under salinity and dehydration conditions compared to the control. Tissue-specific RNA-seq followed by expression analysis confirmed the antagonistic effect of Eco-miR genes on EcNF-YA13. In a nutshell, the results of this study could be utilized as a platform for further exploration and characterization of finger millet Eco-miR169-EcNF-YA13gene regulatory network.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India.
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ibragić S, Dahija S, Karalija E. The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. EPIGENOMES 2025; 9:10. [PMID: 40265377 PMCID: PMC12015926 DOI: 10.3390/epigenomes9020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Plants face a wide range of environmental stresses that disrupt growth and productivity. To survive and adapt, they undergo complex metabolic reprogramming by redirecting carbon and nitrogen fluxes toward the biosynthesis of protective secondary metabolites such as phenylpropanoids, flavonoids, and lignin. Recent research has revealed that these stress-induced metabolic processes are tightly regulated by epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. METHODS This review synthesizes current findings from studies on both model and crop plants, examining the roles of key epigenetic regulators in controlling secondary metabolism under stress. Special focus is placed on dynamic changes in DNA methylation, histone acetylation, and the action of small RNAs such as siRNAs and miRNAs in transcriptional and post-transcriptional regulation. RESULTS Evidence indicates that stress triggers rapid and reversible epigenetic modifications that modulate gene expression linked to secondary metabolic pathways. These modifications not only facilitate immediate metabolic responses but can also contribute to stress memory. In some cases, this memory is retained and transmitted to the next generation, influencing progeny stress responses. However, critical knowledge gaps remain, particularly concerning the temporal dynamics, tissue specificity, and long-term stability of these epigenetic marks in crops. CONCLUSIONS Understanding how epigenetic regulation governs secondary metabolite production offers promising avenues to enhance crop resilience and productivity in the context of climate change. Future research should prioritize dissecting the stability and heritability of these modifications to support the development of epigenetically informed breeding strategies.
Collapse
Affiliation(s)
- Saida Ibragić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
3
|
Balcerowicz M. A cut above: the critical roles of DICER-LIKE genes in Marchantia development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70121. [PMID: 40153255 DOI: 10.1111/tpj.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 03/30/2025]
|
4
|
Jiang B, Li Y, Shi J, Chalasa DD, Zhang L, Wu S, Xu T. Identification and Network Construction of mRNAs, miRNAs, lncRNAs, and circRNAs in Sweetpotato ( Ipomoea batatas L.) Adventitious Roots Under Salt Stress via Whole-Transcriptome RNA Sequencing. Int J Mol Sci 2025; 26:1660. [PMID: 40004124 PMCID: PMC11854956 DOI: 10.3390/ijms26041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Sweetpotato is the seventh largest crop worldwide, and soil salinization is a major environmental stress limiting its yield. Recent studies have shown that noncoding RNAs (ncRNAs) play important regulatory roles in plant responses to abiotic stress. However, ncRNAs in sweetpotato remain largely unexplored. This study analyzed the characteristics of salt-responsive ncRNAs in sweetpotato adventitious roots under salt stress via whole-transcriptome RNA sequencing. The results revealed that 3175 messenger RNAs (mRNAs), 458 microRNAs (miRNAs), 544 long-chain ncRNAs (lncRNAs), and 23 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that most differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were enriched primarily in phenylpropanoid biosynthesis, starch and sucrose metabolism, the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, plant hormone signal transduction, the mRNA surveillance pathway, and ATP-binding cassette (ABC) transporters. Gene Ontology (GO) enrichment analysis revealed that the majority of DEmRNAs, their target DEmiRNAs, and differentially expressed lncRNAs (DElncRNAs) were associated with the cell wall, oxidation-reduction, the plasma membrane, protein phosphorylation, metabolic processes, transcription factor activity, and the regulation of transcription. Additionally, based on the competitive endogenous RNA (ceRNA) hypothesis, we predicted interactions among different RNAs and constructed a salt-responsive ceRNA network comprising 22 DEmiRNAs, 42 DEmRNAs, 27 DElncRNAs, and 10 differentially expressed circRNAs (DEcircRNAs). Some miRNAs, such as miR408, miR169, miR160, miR5139, miR5368, and miR6179, were central to the network, suggesting their crucial roles in the sweetpotato salt response. Our findings provide a foundation for further research into the potential functions of ncRNAs and offer new targets for salt stress resistance improvement through the manipulation of ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoyuan Wu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Tao Xu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
6
|
Zhakypbek Y, Belkozhayev AM, Kerimkulova A, Kossalbayev BD, Murat T, Tursbekov S, Turysbekova G, Tursunova A, Tastambek KT, Allakhverdiev SI. MicroRNAs in Plant Genetic Regulation of Drought Tolerance and Their Function in Enhancing Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2025; 14:410. [PMID: 39942972 PMCID: PMC11820447 DOI: 10.3390/plants14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Adverse environmental conditions, including drought stress, pose a significant threat to plant survival and agricultural productivity, necessitating innovative and efficient approaches to enhance their resilience. MicroRNAs (miRNAs) are recognized as key elements in regulating plant adaptation to drought stress, with a notable ability to modulate various physiological and molecular mechanisms. This review provides an in-depth analysis of the role of miRNAs in drought response mechanisms, including abscisic acid (ABA) signaling, reactive oxygen species (ROS) detoxification, and the optimization of root system architecture. Additionally, it examines the effectiveness of bioinformatics tools, such as those employed in in silico analyses, for studying miRNA-mRNA interactions, as well as the potential for their integration with experimental methods. Advanced methods such as microarray analysis, high-throughput sequencing (HTS), and RACE-PCR are discussed for their contributions to miRNA target identification and validation. Moreover, new data and perspectives are presented on the role of miRNAs in plant responses to abiotic stresses, particularly drought adaptation. This review aims to deepen the understanding of genetic regulatory mechanisms in plants and to establish a robust scientific foundation for the development of drought-tolerant crop varieties.
Collapse
Affiliation(s)
- Yryszhan Zhakypbek
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
| | - Ayaz M. Belkozhayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aygul Kerimkulova
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
| | - Bekzhan D. Kossalbayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh Turkish University, Turkistan 161200, Kazakhstan;
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Toktar Murat
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
- Department of Agronomy and Forestry, Faculty of Agrotechnology, Kozybayev University, Petropavlovsk 150000, Kazakhstan
- Department of Soil Ecology, Kazakh Research Institute of Soil Science and Agrochemistry, Named After U.U. Uspanov, Al-Farabi Ave. 75, Almaty 050060, Kazakhstan
| | - Serik Tursbekov
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
| | - Gaukhar Turysbekova
- Department of Metallurgy and Mineral Processing, Satbayev University, Almaty 050000, Kazakhstan;
| | - Alnura Tursunova
- Kazakh Research Institute of Plant Protection and Quarantine Named After Zhazken Zhiembayev, Almaty 050070, Kazakhstan;
| | - Kuanysh T. Tastambek
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh Turkish University, Turkistan 161200, Kazakhstan;
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Suleyman I. Allakhverdiev
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia;
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey
| |
Collapse
|
7
|
Zhang Z, Zou W, Lin P, Wang Z, Chen Y, Yang X, Zhao W, Zhang Y, Wang D, Que Y, Wu Q. Evolution and Function of MADS-Box Transcription Factors in Plants. Int J Mol Sci 2024; 25:13278. [PMID: 39769043 PMCID: PMC11676252 DOI: 10.3390/ijms252413278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance. Here, we provide a comprehensive overview of the structural features, evolutionary lineage, multifaceted functions, and the role of MADS-box TFs in responding to biotic and abiotic stresses. We particularly emphasize their implications for crop enhancement, especially in light of recent advances in understanding the impact on sugarcane (Saccharum spp.), a vital tropical crop. By consolidating cutting-edge findings, we highlight potential avenues for expanding our knowledge base and enhancing the genetic traits of sugarcane through functional genomics and advanced breeding techniques. This review underscores the significance of MADS-box TFs in achieving improved yields and stress resilience in agricultural contexts, positioning them as promising targets for future research in crop science.
Collapse
Affiliation(s)
- Zihao Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peixia Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Zixun Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Ye Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wanying Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Yuanyuan Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Dongjiao Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
8
|
Wei G, Xu M, Shi X, Wang Y, Shi Y, Wang J, Feng L. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Int J Biol Macromol 2024; 279:135266. [PMID: 39244114 DOI: 10.1016/j.ijbiomac.2024.135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Rosa rugosa is renowned for its fragrant essential oils (EOs) including the primary volatile compounds such as terpenes (geraniol and citronellol) and 2-phenylethanol. While the role of miRNAs in plant secondary metabolism has been explored, their involvement in EOs metabolism remains largely unknown. Sequencing of the petals of R. rugosa identified 383 conserved miRNAs and 625 novel miRNAs including 53 miRNAs differentially expressed in a strong fragrance variety R. rugosa 'White Purple Branch'. Degradome sequencing predicted 1969 targets enriched in GO terms involved in the negative regulation of macromolecule metabolic process. Furthermore, 122 targets of differentially expressed miRNAs were enriched in phenylalanine metabolism and other KEGG pathways. A post-transcriptional regulation network of 52 miRNAs and 70 miRNA-transcription factor modules target terpene and 2-phenylethanol biosynthesis pathways. Six interactions including miR535f-RrHMGR, NOV146-RrNUDX1, miR166l-RrHY5 and miR156c-RrSPL2 were validated using RNA ligase-mediated RACE. Sequence alignment revealed that the NOV146-RrNUDX1 was conserved in the Rosa genus. Moreover, weaker silencing of RrNUDX1 by NOV146 contributed to the stronger fragrance of R. rugosa. These findings offer a comprehensive understanding of the post-transcriptional regulation involved in essential oil biosynthesis and identify candidate miRNAs for further genetic improvement of EO yields in R. rugosa.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengmeng Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Ju J, Yang J, Wei J, Yuan W, Li Y, Li D, Ling P, Ma Q, Wang C, Dai M, Su J. GhASHH1.A and GhASHH2.A Improve Tolerance to High and Low Temperatures and Accelerate the Flowering Response to Temperature in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:11321. [PMID: 39457102 PMCID: PMC11508336 DOI: 10.3390/ijms252011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The trithorax group (TrxG) complex is an important protein in the regulation of plant histone methylation. The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) gene family, as important family members of the TrxG complex, has been shown to regulate tolerance to abiotic stress and growth and development in many plants. In this study, we identified nine GhASH1s in upland cotton. Bioinformatics analysis revealed that GhASH1s contain a variety of cis-acting elements related to stress resistance and growth and development. The transcriptome expression profiles revealed that GhASHH1.A and GhASHH2.A genes expression were upregulated in flower organs and in response to external temperature stress. The results of virus-induced gene silencing (VIGS) indicated that GhASHH1.A and GhASHH2.A genes silencing reduced the ability of cotton to adapt to temperature stress and delayed the development of the flowering phenotype. We also showed that the silencing of these two target genes did not induce early flowering at high temperature (32 °C), suggesting that GhASHH1.A and GhASHH2.A might regulate cotton flowering in response to temperature. These findings provide genetic resources for future breeding of early-maturing and temperature-stress-tolerant cotton varieties.
Collapse
Affiliation(s)
- Jisheng Ju
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Junning Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Jiazhi Wei
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Wenmin Yuan
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Ying Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Dandan Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Pingjie Ling
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Maohua Dai
- Hebei Provincial Key Laboratory of Crop Drought Resistance Research, Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| |
Collapse
|
10
|
Wang X, Yu S, Li B, Liu Y, He Z, Zhang Q, Zheng Z. A microRNA396b-growth regulating factor module controls castor seed size by mediating auxin synthesis. PLANT PHYSIOLOGY 2024; 196:916-930. [PMID: 39140314 DOI: 10.1093/plphys/kiae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Castor (Ricinus communis L.) is an importance crop cultivated for its oil and economic value. Seed size is a crucial factor that determines crop yield. Gaining insight into the molecular regulatory processes of seed development is essential for the genetic enhancement and molecular breeding of castor. Here, we successfully fine-mapped a major QTL related to seed size, qSS3, to a 180 kb interval on chromosome 03 using F2 populations (DL01×WH11). A 17.6-kb structural variation (SV) was detected through genomic comparison between DL01 and WH11. Analysis of haplotypes showed that the existence of the complete 17.6 kb structural variant may lead to the small seed characteristic in castor. In addition, we found that qSS3 contains the microRNA396b (miR396b) sequence, which is situated within the 17.6 kb SV. The results of our experiment offer additional evidence that miR396-Growth Regulating Factor 4 (GRF4) controls seed size by impacting the growth and multiplication of seed coat and endosperm cells. Furthermore, we found that RcGRF4 activates the expression of YUCCA6 (YUC6), facilitating the production of IAA in seeds and thereby impacting the growth of castor seeds. Our research has discovered a crucial functional module that controls seed size, offering a fresh understanding of the mechanism underlying seed size regulation in castor.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Song Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Yueying Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhibiao He
- Tongliao Academy of Agricultural Sciences, Tongliao 028015, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
12
|
Li S, Zhao Z, Lu Q, Li M, Dai X, Shan M, Liu Z, Bai MY, Xiang F. miR394 modulates brassinosteroid signaling to regulate hypocotyl elongation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:645-657. [PMID: 38761364 DOI: 10.1111/tpj.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.
Collapse
Affiliation(s)
- Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhongjuan Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Mingru Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xuehuan Dai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Mengqi Shan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhenhua Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
13
|
Yu X, Lin X, Zhou T, Cao L, Hu K, Li F, Qu S. Host-induced gene silencing in wild apple germplasm Malus hupehensis confers resistance to the fungal pathogen Botryosphaeria dothidea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1174-1193. [PMID: 38430515 DOI: 10.1111/tpj.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 01/22/2024] [Indexed: 03/04/2024]
Abstract
Host-induced gene silencing (HIGS) is an inherent mechanism of plant resistance to fungal pathogens, resulting from cross-kingdom RNA interference (RNAi) mediated by small RNAs (sRNAs) delivered from plants into invading fungi. Introducing artificial sRNA precursors into crops can trigger HIGS of selected fungal genes, and thus has potential applications in agricultural disease control. To investigate the HIGS of apple (Malus sp.) during the interaction with Botryosphaeria dothidea, the pathogenic fungus causing apple ring rot disease, we evaluated whether apple miRNAs can be transported into and target genes in B. dothidea. Indeed, miR159a from Malus hupehensis, a wild apple germplasm with B. dothidea resistance, silenced the fungal sugar transporter gene BdSTP. The accumulation of miR159a in extracellular vesicles (EVs) of both infected M. hupehensis and invading B. dothidea suggests that this miRNA of the host is transported into the fungus via the EV pathway. Knockout of BdSTP caused defects in fungal growth and proliferation, whereas knockin of a miR159a-insensitive version of BdSTP resulted in increased pathogenicity. Inhibition of miR159a in M. hupehensis substantially enhanced plant sensitivity to B. dothidea, indicating miR159a-mediated HIGS against BdSTP being integral to apple immunity. Introducing artificial sRNA precursors targeting BdSTP and BdALS, an acetolactate synthase gene, into M. hupehensis revealed that double-stranded RNAs were more potent than engineered MIRNAs in triggering HIGS alternative to those natural of apple and inhibiting infection. These results provide preliminary evidence for cross-kingdom RNAi in the apple-B. dothidea interaction and establish HIGS as a potential disease control strategy in apple.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Fangzhu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
14
|
Cai R, Chen X, Khan S, Li H, Tan J, Tian Y, Zhao S, Yin Z, Jin D, Guo J. Aspongopus chinensis Dallas induces pro-apoptotic and cell cycle arresting effects in hepatocellular carcinoma cells by modulating miRNA and mRNA expression. Heliyon 2024; 10:e27525. [PMID: 38500987 PMCID: PMC10945178 DOI: 10.1016/j.heliyon.2024.e27525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Aspongopus chinensis Dallas is a traditional Chinese medicinal insect with several anticancer properties can inhibit cancer cell growth, by inhibiting cell division, autophagy and cell cycle. However, the precise therapeutics effects and mechanisms of this insect on liver cancer are still unknown. This study examined the inhibitory influence of A. chinensis on the proliferation of hepatocellular carcinoma (HCC) cells and explore the underlying mechanism using high-throughput sequencing. The results showed that A. chinensis substantially reduced the viability of Hep G2 cells. A total of 33 miRNAs were found to be upregulated, while 43 miRNAs were downregulated. Additionally, 754 mRNAs were upregulated and 863 mRNAs were downregulated. Significant enrichment of differentially expressed genes was observed in signaling pathways related to tumor cell growth, cell cycle regulation, and apoptosis. Differentially expressed miRNAs exhibited a targeting relationship with various target genes, including ARC, HSPA6, C11orf86, and others. Hence, cell cycle and apoptosis were identified by flow cytometry. These findings indicate that A. chinensis impeded cell cycle advancement, halted the cell cycle in the G0/G1 and S stages, and stimulated apoptosis. Finally, mouse experiments confirmed that A. chinensis significantly inhibits tumor growth in vivo. Therefore, our findings indicate that A. chinensis has a notable suppressive impact on the proliferation of HCC cells. The potential mechanism of action could involve the regulation of mRNA expression via miRNA, ultimately leading to cell cycle arrest and apoptosis. The results offer a scientific foundation for the advancement and application of A. chinensis in the management of HCC.
Collapse
Affiliation(s)
- Renlian Cai
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xumei Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Samiullah Khan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Haiyin Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ying Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shuai Zhao
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhiyong Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianjun Guo
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
15
|
Guan C, Li W, Wang G, Yang R, Zhang J, Zhang J, Wu B, Gao R, Jia C. Transcriptomic analysis of ncRNAs and mRNAs interactions during drought stress in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111930. [PMID: 38007196 DOI: 10.1016/j.plantsci.2023.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Switchgrass (Panicum virgatum L.) plays a pivotal role as a bioenergy feedstock in the production of cellulosic ethanol and contributes significantly to enhancing ecological grasslands and soil quality. The utilization of non-coding RNAs (ncRNAs) has gained momentum in deciphering the intricate genetic responses to abiotic stress in various plant species. Nevertheless, the current research landscape lacks a comprehensive exploration of the responses of diverse ncRNAs, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), to drought stress in switchgrass. In this study, we employed whole transcriptome sequencing to comprehensively characterize the expression profiles of both mRNA and ncRNAs during episodes of drought stress in switchgrass. Our analysis identified a total of 12,511 mRNAs, 59 miRNAs, 38 circRNAs, and 368 lncRNAs that exhibited significant differential expression between normal and drought-treated switchgrass leaves. Notably, the majority of up-regulated mRNAs displayed pronounced enrichment within the starch and sucrose metabolism pathway, as validated through KEGG analysis. Co-expression analysis illuminated that differentially expressed (DE) lncRNAs conceivably regulated 1308 protein-coding genes in trans and 7110 protein-coding genes in cis. Furthermore, both cis- and trans-target mRNAs of DE lncRNAs exhibited enrichment in four common KEGG pathways. The intricate interplay between lncRNAs and circRNAs with miRNAs via miRNA response elements was explored within the competitive endogenous RNA (ceRNA) network framework. As a result, we constructed elaborate regulatory networks, including lncRNA-novel_miRNA480-mRNA, lncRNA-novel_miRNA304-mRNA, lncRNA/circRNA-novel_miRNA122-PvSS4, and lncRNA/circRNA-novel_miRNA14-PvSS4, and subsequently validated the functionality of the target gene, starch synthase 4 (PvSS4). Furthermore, through the overexpression of PvSS4, we ascertained its capacity to enhance drought tolerance in yeast. However, it is noteworthy that PvSS4 did not exhibit any discernible impact under salt stress conditions. These findings, as presented herein, not only contribute substantively to our understanding of ceRNA networks but also offer a basis for further investigations into their potential functions in response to drought stress in switchgrass.
Collapse
Affiliation(s)
- Cong Guan
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Wei Li
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing 100193, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Ruimei Yang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; College of Grassland Science and Technology, China Agricultural University, No.2 Yuan Mingyuan West Road, Beijing 100193, China
| | - Jinglei Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Jinhong Zhang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Bo Wu
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Run Gao
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China
| | - Chunlin Jia
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Science, Jinan 250100, China; Key Laboratory of East China Urban Agriculture, Ministry of Agriculture, Jinan 250100, China; Shandong Engineering Research Center of Ecological and Horticultural Plant Breeding, Jinan 250100, China.
| |
Collapse
|
16
|
Jadhao KR, Kale SS, Chavan NS, Janjal PH. Genome-wide analysis of the SPL transcription factor family and its response to water stress in sunflower (Helianthus annuus). Cell Stress Chaperones 2023; 28:943-958. [PMID: 37938528 PMCID: PMC10746691 DOI: 10.1007/s12192-023-01388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
SPL (SQUAMOSA promoter binding proteins-like) are plant-specific transcription factors that play essential roles in a variety of developmental processes as well as the ability to withstand biotic and abiotic stresses. To date, numerous species have been investigated for the SPL gene family, but so far, no SPL family genes have been thoroughly identified and characterized in the sunflower (Helianthus annuus). In this study, 25 SPL genes were identified in the sunflower genome and were unevenly distributed on 11 chromosomes. According to phylogeny analysis, 59 SPL genes from H. annuus, O. sativa, and A. thaliana were clustered into seven groups. Furthermore, the SPL genes in groups-I and II were demonstrated to be potential targets of miR156. Synteny analysis showed that 7 paralogous gene pairs exist in HaSPL genes and 26 orthologous gene pairs exist between sunflower and rice, whereas 21 orthologous gene pairs were found between sunflower and Arabidopsis. Segmental duplication appears to have played a vital role in the expansion processes of sunflower SPL genes, and because of selection pressure, all duplicated genes have undergone purifying selection. Tissue-specific gene expression analysis of the HaSBP genes proved their diverse spatiotemporal expression patterns, which were predominantly expressed in floral organs and differentially expressed in stem, axil, and root tissues. The expression pattern of HaSPL genes under water stress showed broad involvement of HaSPLs in the response to flood and drought stresses. This genome-wide identification investigation provides detailed information on the sunflower SPL transcription factor gene family and establishes a strong platform for future research on sunflower responses to abiotic stress tolerance.
Collapse
Affiliation(s)
- Kundansing R Jadhao
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India.
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Nilesh S Chavan
- Department of Microbiology and Environmental Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Pandharinath H Janjal
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India
| |
Collapse
|
17
|
Yang W, Chen Y, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. MicroRNA2871b of Dongxiang Wild Rice ( Oryza rufipogon Griff.) Negatively Regulates Cold and Salt Stress Tolerance in Transgenic Rice Plants. Int J Mol Sci 2023; 24:14502. [PMID: 37833950 PMCID: PMC10572564 DOI: 10.3390/ijms241914502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cold and salt stresses are major environmental factors that constrain rice production. Understanding their mechanisms is important to enhance cold and salt stress tolerance in rice. MicroRNAs (miRNAs) are a class of non-coding RNAs with only 21-24 nucleotides that are gene regulators in plants and animals. Previously, miR2871b expression was suppressed by cold stress in Dongxiang wild rice (DXWR, Oryza rufipogon Griff.). However, its biological functions in abiotic stress responses remain elusive. In the present study, miR2871b of DWXR was overexpressed to investigate its function under stress conditions. When miR2871b of DWXR was introduced into rice plants, the transgenic lines were more sensitive to cold and salt stresses, and their tolerance to cold and salt stress decreased. The increased expression of miR2871b in rice plants also increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA); however, it markedly decreased the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the contents of proline (Pro) and soluble sugar (SS). These data suggested that miR2871b of DXWR has negative regulatory effects on cold and salt stress tolerance. Meanwhile, 412 differentially expressed genes (DEGs) were found in rice transgenic plants using transcriptome sequencing, among which 266 genes were up-regulated and 146 genes were down-regulated. Furthermore, the upstream cis-acting elements and downstream targets of miR2871b were predicted and analyzed, and several critical acting elements (ABRE and TC-rich repeats) and potential target genes (LOC_Os03g41200, LOC_Os07g47620, and LOC_Os04g30260) were obtained. Collectively, these results generated herein further elucidate the vital roles of miR2871b in regulating cold and salt responses of DXWR.
Collapse
Affiliation(s)
- Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (W.Y.); (Y.C.); (R.G.); (Y.C.); (Y.Z.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Yue E, Rong F, Liu Z, Ruan S, Lu T, Qian H. Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice. J Environ Sci (China) 2023; 130:149-162. [PMID: 37032032 DOI: 10.1016/j.jes.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/19/2023]
Abstract
Identifying key regulators related to cadmium (Cd) tolerance and accumulation is the main factor for genetic engineering to improve plants for bioremediation and ensure crop food safety. MicroRNAs (miRNAs), as fine-tuning regulators of genes, participate in various abiotic stress processes. MiR535 is an ancient conserved non-coding small RNA in land plants, positively responding to Cd stress. We investigated the effects of knocking out (mir535) and overexpressing miR535 (mir535 and OE535) under Cd stress in rice plants in this study. The mir535 plants showed better Cd tolerance than wild type (WT), whereas the OE535 showed the opposite effect. Cd accumulated approximately 71.9% and 127% in the roots of mir535 and OE535 plants, respectively, compared to WT, after exposure to 2 µmol/L Cd. In brown rice, the total Cd accumulation of OE535 and mir535 was about 78% greater and 35% lower than WT. When growing in 2 mg/kg Cd of soil, the Cd concentration was significantly lower in mir535 and higher in OE535 than in the WT; afterward, we further revealed the most possible target gene SQUAMOSA promoter binding-like transcription factor 7(SPL7) and it negatively regulates Nramp5 expression, which in turn regulates Cd metabolism. Therefore, the CRISPR/Cas9 technology may be a valuable strategy for creating new rice varieties to ensure food safety.
Collapse
Affiliation(s)
- Erkui Yue
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fuxi Rong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Hainan 572000, China
| | - Songlin Ruan
- Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
19
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
20
|
Payne D, Li Y, Govindan G, Kumar A, Thomas J, Addo-Quaye CA, Pereira A, Sunkar R. High Daytime Temperature Responsive MicroRNA Profiles in Developing Grains of Rice Varieties with Contrasting Chalkiness. Int J Mol Sci 2023; 24:11631. [PMID: 37511395 PMCID: PMC10380806 DOI: 10.3390/ijms241411631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.
Collapse
Affiliation(s)
- David Payne
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yongfang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anuj Kumar
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles A Addo-Quaye
- Department of Computer Science and Cybersecurity, Metropolitan State University, Saint Paul, MN 55106, USA
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
21
|
Fgaier S, Aarrouf J, Lopez-Lauri F, Lizzi Y, Poiroux F, Urban L. Effect of high salinity and of priming of non-germinated seeds by UV-C light on photosynthesis of lettuce plants grown in a controlled soilless system. FRONTIERS IN PLANT SCIENCE 2023; 14:1198685. [PMID: 37469782 PMCID: PMC10352585 DOI: 10.3389/fpls.2023.1198685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
High salinity results in a decrease in plant photosynthesis and crop productivity. The aim of the present study was to evaluate the effect of UV-C priming treatments of lettuce seeds on photosynthesis of plants grown at high salinity. Non-primed and primed seeds were grown in an hydroponic system, with a standard nutrient solution, either supplemented with 100 mM NaCl (high salinity), or not (control). Considering that leaf and root K+ concentrations remained constant and that chlorophyll fluorescence parameters and root growth were not affected negatively in the high salinity treatment, we conclude that the latter was at the origin of a moderate stress only. A substantial decrease in leaf net photosynthetic assimilation (Anet) was however observed as a consequence of stomatal and non-stomatal limitations in the high salinity treatment. This decrease in Anet translated into a decrease in growth parameters; it may be attributed partially to the high salinity-associated increase in leaf concentration in abscisic acid and decrease in stomatal conductance. Priming by UV-C light resulted in an increase in total photosynthetic electron transport rate and Anet in the leaves of plants grown at high salinity. The increase of the latter translated into a moderate increase in growth parameters. It is hypothesized that the positive effect of UV-C priming on Anet and growth of the aerial part of lettuce plants grown at high salinity, is mainly due to its stimulating effect on leaf concentration in salicylic acid. Even though leaf cytokinins' concentration was higher in plants from primed seeds, maintenance of the cytokinins-to-abscisic acid ratio also supports the idea that UV-C priming resulted in protection of plants exposed to high salinity.
Collapse
Affiliation(s)
- Salah Fgaier
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Jawad Aarrouf
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Félicie Lopez-Lauri
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Yves Lizzi
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Florine Poiroux
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Laurent Urban
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| |
Collapse
|
22
|
Li L, Guo N, Liu T, Yang S, Hu X, Shi S, Li S. Genome-wide identification and characterization of long non-coding RNA in barley roots in response to Piriformospora indica colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111666. [PMID: 36858207 DOI: 10.1016/j.plantsci.2023.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is very limited information about long noncoding RNAs (lncRNAs) found in barley. It remains unclear whether barley lncRNAs are responsive to Piriformospora indica (P. indica) colonization.We found that barley roots exhibited fast development and that large roots branched after P. indica colonization. Genome-wide high-throughput RNA-seq and bioinformatic analysis showed that 4356 and 5154 differentially expressed LncRNAs (DELs) were found in response to P. indica at 3 and 7 days after colonization (dai), respectively, and 2456 DELs were found at 7 dai compared to 3 dai. Based on the coexpression correlation of lncRNAmRNA, we found that 98.6% of lncRNAs were positively correlated with 3430 mRNAs at 3 dai and 7 dai. Further GO analysis showed that 30 lncRNAs might be involved in the regulation of gene transcription; 23 lncRNAs might participate in cell cycle regulation. Moreover, the metabolite analysis indicated that chlorophyll a, sucrose, protein, gibberellin, and auxin were in accordance with the results of the transcriptome, and the respective lncRNAs were positively correlated with these target RNAs. Gene silencing suggested that lncRNA TCONS_00262342 is probably a key regulator of GA3 synthesis pathway, which participates in P. indica and barley interactions. We concluded that acting as a molecular material basis and resource, lncRNAs respond to P. indica colonization by regulating metabolite content in barley and coordinate the complex regulatory process of higher life by constructing highly positive correlations with their target mRNAs.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Nannan Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tiance Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinting Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Si Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
23
|
Das S, Singh D, Meena HS, Jha SK, Kumari J, Chinnusamy V, Sathee L. Long term nitrogen deficiency alters expression of miRNAs and alters nitrogen metabolism and root architecture in Indian dwarf wheat (Triticum sphaerococcum Perc.) genotypes. Sci Rep 2023; 13:5002. [PMID: 36973317 PMCID: PMC10043004 DOI: 10.1038/s41598-023-31278-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The important roles of plant microRNAs (miRNAs) in adaptation to nitrogen (N) deficiency in different crop species especially cereals (rice, wheat, maize) have been under discussion since last decade with little focus on potential wild relatives and landraces. Indian dwarf wheat (Triticum sphaerococcum Percival) is an important landrace native to the Indian subcontinent. Several unique features, especially high protein content and resistance to drought and yellow rust, make it a very potent landrace for breeding. Our aim in this study is to identify the contrasting Indian dwarf wheat genotypes based on nitrogen use efficiency (NUE) and nitrogen deficiency tolerance (NDT) traits and the associated miRNAs differentially expressed under N deficiency in selected genotypes. Eleven Indian dwarf wheat genotypes and a high NUE bread wheat genotype (for comparison) were evaluated for NUE under control and N deficit field conditions. Based on NUE, selected genotypes were further evaluated under hydroponics and miRNome was compared by miRNAseq under control and N deficit conditions. Among the identified, differentially expressed miRNAs in control and N starved seedlings, the target gene functions were associated with N metabolism, root development, secondary metabolism and cell-cycle associated pathways. The key findings on miRNA expression, changes in root architecture, root auxin abundance and changes in N metabolism reveal new information on the N deficiency response of Indian dwarf wheat and targets for genetic improvement of NUE.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Hari S Meena
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-NBPGR, New Delhi, India
| | | | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-IARI, New Delhi, India.
| |
Collapse
|
24
|
Chen P, Wei Q, Yao Y, Wei J, Qiu L, Zhang B, Liu H. Inoculation with Azorhizobium caulinodans ORS571 enhances plant growth and salt tolerance of switchgrass (Panicum virgatum L.) seedlings. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:35. [PMID: 36864528 PMCID: PMC9983177 DOI: 10.1186/s13068-023-02286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is an important biofuel crop that may contribute to replacing petroleum fuels. However, slow seedling growth and soil salinization affect the growth and development of switchgrass. An increasing number of studies have shown that beneficial microorganisms promote plant growth and increase tolerance to salinity stress. However, the feasibility of inoculating switchgrass with Azorhizobium caulinodans ORS571 to enhance the growth and salt tolerance of its seedlings is unclear. Our previous study showed that A. caulinodans ORS571 could colonize wheat (Triticum aestivum L.) and thereby promote its growth and development and regulate the gene expression levels of microRNAs (miRNAs). RESULTS In this study, we systematically studied the impact of A. caulinodans ORS571 on switchgrass growth and development and the response to salinity stress; we also studied the underlying mechanisms during these biological processes. Inoculation with A. caulinodans ORS571 significantly alleviated the effect of salt stress on seedling growth. Under normal conditions, A. caulinodans ORS571 significantly increased fresh plant weight, chlorophyll a content, protein content, and peroxidase (POD) activity in switchgrass seedlings. Under salt stress, the fresh weight, dry weight, shoot and root lengths, and chlorophyll contents were all significantly increased, and some of these parameters even recovered to normal levels after inoculation with A. caulinodans ORS571. Soluble sugar and protein contents and POD and superoxide dismutase (SOD) activities were also significantly increased, contrary to the results for proline. Additionally, A. caulinodans ORS571 may alleviate salt stress by regulating miRNAs. Twelve selected miRNAs were all upregulated to different degrees under salt stress in switchgrass seedlings. However, the levels of miR169, miR171, miR319, miR393, miR535, and miR854 were decreased significantly after inoculation with A. caulinodans ORS571 under salt stress, in contrast to the expression level of miR399. CONCLUSION This study revealed that A. caulinodans ORS571 increased the salt tolerance of switchgrass seedlings by increasing their water content, photosynthetic efficiency, osmotic pressure maintenance, and reactive oxygen species (ROS) scavenging abilities and regulating miRNA expression. This work provides a new, creative idea for improving the salt tolerance of switchgrass seedlings.
Collapse
Affiliation(s)
- Pengyang Chen
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiannan Wei
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yifei Yao
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jiaqi Wei
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Li Qiu
- grid.144022.10000 0004 1760 4150College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Huawei Liu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Bojórquez-Orozco AM, Arce-Leal ÁP, Montes RAC, Santos-Cervantes ME, Cruz-Mendívil A, Méndez-Lozano J, Castillo AG, Rodríguez-Negrete EA, Leyva-López NE. Differential Expression of miRNAs Involved in Response to Candidatus Liberibacter asiaticus Infection in Mexican Lime at Early and Late Stages of Huanglongbing Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:1039. [PMID: 36903899 PMCID: PMC10005081 DOI: 10.3390/plants12051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.
Collapse
Affiliation(s)
- Ana Marlenne Bojórquez-Orozco
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Ángela Paulina Arce-Leal
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Ricardo A. Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - María Elena Santos-Cervantes
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- CONACYT—Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Araceli G. Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Edgar A. Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| |
Collapse
|
26
|
Hu S, Hu Y, Mei H, Li J, Xuan W, Jeyaraj A, Zhao Z, Zhao Y, Han R, Chen X, Li X. Genome-wide analysis of long non-coding RNAs (lncRNAs) in tea plants ( Camellia sinensis) lateral roots in response to nitrogen application. FRONTIERS IN PLANT SCIENCE 2023; 14:1080427. [PMID: 36909382 PMCID: PMC9998519 DOI: 10.3389/fpls.2023.1080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants.
Collapse
Affiliation(s)
- Shunkai Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yimeng Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anburaj Jeyaraj
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rui Han
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuan Chen
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghui Li
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Expression Profile of Selected Genes Involved in Na+ Homeostasis and In Silico miRNA Identification in Medicago sativa and Medicago arborea under Salinity Stress. STRESSES 2023. [DOI: 10.3390/stresses3010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The accumulation of ions due to increased salinity in the soil is one of the major abiotic stressors of cultivated plants that negatively affect their productivity. The model plant, Medicago truncatula, is the only Medicago species that has been extensively studied, whereas research into increased salinity adaptation of two important forage legumes, M. sativa and M. arborea, has been limited. In the present study, the expression of six genes, namely SOS1, SOS3, NHX2, AKT, AVP and HKT1 was monitored to investigate the manner in which sodium ions are blocked and transferred to the various plant parts. In addition, in silico miRNA analysis was performed to identify miRNAs that possibly control the expression of the genes studied. The following treatments were applied: (1) salt stress, with initial treatment of 50 mM NaCl and gradual acclimatization every 10 days, (2) salt shock, with continuous application of 100 mM NaCl concentration and (3) no application of NaCl. Results showed that M. arborea appeared to overexpress and activate all available mechanisms of resistance in conditions of increased salinity, while M. sativa acted in a more targeted way, overexpressing the HKT1 and AKT genes that contribute to the accumulation of sodium ions, particularly in the root. Regarding miRNA in silico analysis, five miRNAs with significant complementarity to putative target genes, AKT1, AVP and SOS3 were identified and served as a first step in investigating miRNA regulatory networks. Further miRNA expression studies will validate these results. Our findings contribute to the understanding of the molecular mechanisms underlying salt-responsiveness in Medicago and could be used in the future for generating salt-tolerant genotypes in crop improvement programs.
Collapse
|
28
|
Silva VNB, da Silva TLC, Ferreira TMM, Neto JCR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, Valadares LF, de Sousa CAF, Júnior MTS. Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:1-21. [PMID: 36947413 PMCID: PMC9883379 DOI: 10.1007/s43657-022-00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00061-2.
Collapse
Affiliation(s)
- Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
| | | | | | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690‐900 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| |
Collapse
|
29
|
Sly-miR398 Participates in Cadmium Stress Acclimation by Regulating Antioxidant System and Cadmium Transport in Tomato ( Solanum lycopersicum). Int J Mol Sci 2023; 24:ijms24031953. [PMID: 36768277 PMCID: PMC9915548 DOI: 10.3390/ijms24031953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Cadmium (Cd) pollution is one of the major threats in agricultural production, and can cause oxidative damage and growth limitation in plants. MicroRNA398 (miR398) is involved in plant resistance to different stresses, and the post-transcriptional regulation of miR398 on CSDs plays a key role. Here, we report that miR398 was down-regulated in tomato in response to Cd stress. Simultaneously, CSD1 and SOD were up-regulated, with CSD2 unchanged, suggesting CSD1 is involved in miR398-induced regulation under Cd stress. In addition, the role of miR398 in Cd tolerance in tomato was evaluated using a transgenic line overexpressing MIR398 (miR398#OE) in which the down-expression of miR398 was disrupted. The results showed that Cd stress induced more significant growth inhibition, oxidative damage, and antioxidant enzymes disorder in miR398#OE than that in wild type (WT). Moreover, higher Cd concentration in the shoot and xylem sap, and net Cd influx rate, were observed in miR398#OE, which could be due to the increased Cd uptake genes (IRT1, IRT2, and NRAMP2) and decreased Cd compartmentalization gene HMA3. Overall, our results indicate that down-regulated miR398 plays a protective role in tomato against Cd stress by modulating the activity of antioxidant enzymes and Cd uptake and translocation.
Collapse
|
30
|
Kapadia C, Datta R, Mahammad SM, Tomar RS, Kheni JK, Ercisli S. Genome-Wide Identification, Quantification, and Validation of Differentially Expressed miRNAs in Eggplant ( Solanum melongena L.) Based on Their Response to Ralstonia solanacearum Infection. ACS OMEGA 2023; 8:2648-2657. [PMID: 36687045 PMCID: PMC9851032 DOI: 10.1021/acsomega.2c07097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a type of short noncoding RNA molecule (21-23 nucleotides), mediate repressive gene regulation through RNA silencing at the posttranscriptional level and play an important role in the defense response to abiotic and biotic stresses. miRNAs of the plant system have been studied in model crops for their diverse regulatory role while less is known about their significance in other plants whose genome and transcriptome data are scarce in the database, including eggplant (Solanum melongena L.). In the present study, a next-generation sequencing platform was used for the sequencing of miRNA, and real-time quantitative PCR for miRNAs was used to validate the gene expression patterns of miRNAs in Solanum melongena plantlets infected with the bacterial wilt-causing pathogen Ralstonia solanacearum (R. solanacearum). Sequence analyses showed the presence of 375 miRNAs belonging to 29 conserved families. The miR414 is highly conserved miRNA across the plant system while miR5658 and miR5021 were found exclusively in Arabidopsis thaliana surprisingly, these miRNAs were found in eggplants too. The most abundant families were miR5658 and miR414. Ppt-miR414, hvu-miR444b, stu-miR8020, and sly miR5303 were upregulated in Pusa purple long (PPL) (susceptible) at 48 h postinfection, followed by a decline after 96 h postinfection. A similar trend was obtained in ath-miR414, stu-mir5303h, alymiR847-5p, far-miR1134, ath-miR5021, ath-miR5658, osa-miR2873c, lja-miR7530, stu-miR7997c, and gra-miR8741 but at very low levels after infection in the susceptible variety, indicating their negative role in the suppression of host immunity. On the other hand, osa-miR2873c was found to be slightly increased after 96 hpi from 48 hpi. Most of the miRNAs under study showed relatively lower expression in the resistant variety Arka Nidhi after infection than in the susceptible variety. These results shed light on a deeper regulatory role of miRNAs and their targets in regulation of the plant response to bacterial infection. The present experiment and their results suggested that the higher expression of miRNA leads to a decline in host mRNA and thus shows susceptibility.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Saiyed Mufti Mahammad
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rukam Singh Tomar
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Jasmin Kumar Kheni
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
31
|
Xu P, Li Q, Liang W, Hu Y, Chen R, Lou K, Zhan L, Wu X, Pu J. A tissue-specific profile of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia lactiflora Pall. by transcriptome, small RNAs and degradome sequencing. PLoS One 2023; 18:e0279992. [PMID: 36701382 PMCID: PMC9879538 DOI: 10.1371/journal.pone.0279992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Paeonia lactiflora Pall. (Paeonia) has aroused many concerns due to its extensive medicinal value, in which monoterpene glucoside paeoniflorin and its derivatives are the active chemical components. However, little is known in the molecular mechanism of monoterpenoids biosynthesis, and the regulation network between small RNAs and mRNAs in monoterpenoids biosynthesis has not been investigated yet. Herein, we attempted to reveal the tissue-specific regulation network of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia by combining mRNA and miRNA expression data with degradome analysis. In all, 289 miRNAs and 30177 unigenes were identified, of which nine miRNAs from seven miRNA families including miR396, miR393, miR835, miR1144, miR3638, miR5794 and miR9555 were verified as monoterpenoids biosynthesis-related miRNAs by degradome sequencing. Moreover, the co-expression network analysis showed that four monoterpenoids-regulating TFs, namely AP2, MYBC1, SPL12 and TCP2, were putatively regulated by five miRNAs including miR172, miR828, miR858, miR156 and miR319, respectively. The present study will improve our knowledge of the molecular mechanisms of the paeoniaflorin and monoterpenoids biosynthesis mediated by miRNA to a new level, and provide a valuable resource for further study on Paeonia.
Collapse
Affiliation(s)
- Pan Xu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Quanqing Li
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Weiqing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yijuan Hu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Rubing Chen
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kelang Lou
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Lianghui Zhan
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xiaojun Wu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinbao Pu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
32
|
Zhang Y, Xiao T, Yi F, Yu J. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111492. [PMID: 36243168 DOI: 10.1016/j.plantsci.2022.111492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs play critical roles in growth, development and abiotic stress responses. SimR396d is a miRNA whose expression level is much higher in foxtail millet roots than other tissues. Whether SimR396d is involved in foxtail millet root growth and response to abiotic stress is still unknown. Here, we demonstrate that SimiR396d modulates both drought response and root growth in foxtail millet. The expression of SimiR396d is induced by PEG treatment. Overexpression of SimiR396d enhances drought tolerance and root length, while knockdown SimiR396d expression using target mimics of SimiR396d (MIM396) resulted in reduced drought tolerance and shortened root length. Furthermore, we identified and confirmed a plant-specific transcription factor, growth-regulating factor 1 (SiGRF1), as a direct target of SimiR396d. Overexpression of SiGRF1 in foxtail millet resulted in suppressed root growth and reduced sensitivity to drought stress. Moreover, ethylene signaling is necessary for SimiR396d and SiGRF1 to participate in the regulation of plant root growth. These results revealed a pivotal role of SimiR396d in drought tolerance and root growth in foxtail millet. SimiR396d-SiGRF1 regulatory module provides a strategy to improve drought-stress resistance of crop.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tong Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Wan J, Meng S, Wang Q, Zhao J, Qiu X, Wang L, Li J, Lin Y, Mu L, Dang K, Xie Q, Tang J, Ding D, Zhang Z. Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2022; 22:563. [PMID: 36460977 PMCID: PMC9719116 DOI: 10.1186/s12870-022-03959-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Rice is a salt-sensitive crop. Complex gene regulatory cascades are likely involved in salinity stress in rice roots. microRNA168 (miR168) is a conserved miRNA among different plant species. It in-directly regulates the expression of all miRNAs by targeting gene ARGONAUTE1(AGO1). Short Tandem Target Mimic (STTM) technology is an ideal approach to study miRNA functions by in-activating mature miRNA in plants. RESULTS In this study, rice miR168 was inactivated by STTM. The T3 generation seedlings of STTM168 exhibited significantly enhanced salt resistance. Direct target genes of rice miR168 were obtained by in silico prediction and further confirmed by degradome-sequencing. PINHEAD (OsAGO1), which was previously suggested to be a plant abiotic stress response regulator. RNA-Seq was performed in root samples of 150mM salt-treated STTM168 and control seedlings. Among these screened 481 differentially expressed genes within STTM168 and the control, 44 abiotic stress response related genes showed significant difference, including four known salt-responsive genes. CONCLUSION Based on sequencing and qRT-PCR, a "miR168-AGO1-downstream" gene regulation model was proposed to be responsible for rice salt stress response. The present study proved miR168-AGO1 cascade to play important role in rice salinity stress responding, as well as to be applied in agronomic improvement in further.
Collapse
Affiliation(s)
- Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Liangfa Wang
- Hebi Academy of Agricultural Sciences, 458030, Hebi, China
| | - Juan Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, 550006, Guiyang, China
| | - Yuan Lin
- Hebi Academy of Agricultural Sciences, 458030, Hebi, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Kuntai Dang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Qiankun Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
- The Shennong laboratory, 450002, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
34
|
Roopa Sowjanya P, Shilpa P, Patil GP, Babu DK, Sharma J, Sangnure VR, Mundewadikar DM, Natarajan P, Marathe AR, Reddy UK, Singh VN. Reference quality genome sequence of Indian pomegranate cv. 'Bhagawa' ( Punica granatum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:947164. [PMID: 36186044 PMCID: PMC9521485 DOI: 10.3389/fpls.2022.947164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
Pomegranate is an important fruit crop for ensuring livelihood and nutrition security in fragile semi-arid regions of the globe having limited irrigation resources. This is a high-value, nutritionally rich, and export-oriented agri-commodity that ensures high returns on investment to growers across the world. Although it is a valuable fruit crop, it has received only a limited genomics research outcome. To fast-track the pomegranate improvement program, de novo whole-genome sequencing of the main Indian cultivar 'Bhagawa' was initiated by the Indian Council of Agricultural Research-National Research Center on Pomegranate (ICAR-NRCP). We have demonstrated that a combination of commercially available technologies from Illumina, PacBio, 10X Genomics, and BioNano Genomics could be used efficiently for sequencing and reference-grade de novo assembly of the pomegranate genome. The research led to a final reference-quality genome assembly for 'Bhagawa' of 346.08 Mb in 342 scaffolds and an average N50 of 16.12 Mb and N90 of 1088.62 Kb. This assembly covered more than 98% of the estimated pomegranate genome size, 352.54 Mb. The LTR assembly index (LAI) value of 10 and 93.68% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score over the 1,440 ortholog genes of the completed pomegranate genome indicates the quality of the assembled pomegranate genome. Furthermore, 29,435 gene models were discovered with a mean transcript length of 2,954 bp and a mean coding sequence length 1,090 bp. Four transcript data samples of pomegranate tissues were mapped over the assembled 'Bhagawa' genome up to 95% significant matches, indicating the high quality of the assembled genome. We have compared the 'Bhagawa' genome with the genomes of the pomegranate cultivars 'Dabenzi' and 'Taishanhong.' We have also performed whole-genome phylogenetic analysis using Computational Analysis of Gene Family Evolution (CAFE) and found that Eucalyptus grandis and pomegranate diverged 64 (60-70) million years ago. About 1,573 protein-coding resistance genes identified in the 'Bhagawa' genome were classified into 32 domains. In all, 314 copies of miRNA belonging to 26 different families were identified in the 'Bhagawa' genome. The reference-quality genome assembly of 'Bhagawa' is certainly a significant genomic resource for accelerated pomegranate improvement.
Collapse
Affiliation(s)
| | | | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | |
Collapse
|
35
|
Xing Z, Huang T, Zhao K, Meng L, Song H, Zhang Z, Xu X, Liu S. Silencing of Sly-miR171d increased the expression of GRAS24 and enhanced postharvest chilling tolerance of tomato fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1006940. [PMID: 36161008 PMCID: PMC9500411 DOI: 10.3389/fpls.2022.1006940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The role of Sly-miR171d on tomato fruit chilling injury (CI) was investigated. The results showed that silencing the endogenous Sly-miR171d effectively delayed the increase of CI and electrolyte leakage (EL) in tomato fruit, and maintained fruit firmness and quality. After low temperature storage, the expression of target gene GRAS24 increased in STTM-miR171d tomato fruit, the level of GA3 anabolism and the expression of CBF1, an important regulator of cold resistance, both increased in STTM-miR171d tomato fruit, indicated that silencing the Sly-miR171d can improve the resistance ability of postharvest tomato fruit to chilling tolerance.
Collapse
Affiliation(s)
- Zengting Xing
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Taishan Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Songbai Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
36
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
37
|
Guo L, Shen J, Zhang C, Guo Q, Liang H, Hou X. Characterization and bioinformatics analysis of ptc-miR396g-5p in response to drought stress of Paeonia ostii. Noncoding RNA Res 2022; 7:150-158. [PMID: 35799773 PMCID: PMC9240715 DOI: 10.1016/j.ncrna.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/31/2022] Open
Abstract
Drought is one of the main abiotic stress factors affecting yield of Paeonia ostii. In this study, we conducted bioinformatics and differential expression analyses of P. ostii ‘Feng Dan’ ptc-miR396g-5p in leaf samples under different drought stress. ptc-miR396g-5p belongs to the miR396 family. Among the 271 plant species registered in the miRBase database, at least one miR396 member was found in 48 Angiospermae species, 3 in Gymnospermae species, and 1 in Pteridophy. Mature sequence alignment showed that P. ostii ‘Feng Dan’ ptc-miR396g-5p had high sequence similarity with miR396 from other species. Secondary structure prediction showed that the precursor sequence of ‘Feng Dan’ ptc-miR396g-5p could form a stable stem-loop structure, and the mature sequence was located on the 5′ arm of the secondary structure. Phylogenetic tree analysis showed that ‘Feng Dan’ was closely related to 20 species such as Glycine max, Medicago truncatula, Populus trichocarpa, Citrus sinensis, Vitis vinifera, and Theobroma cacao. The predicted target gene of the ‘Feng Dan’ ptc-miR396g-5p encodes a Signal Transducer and Activator of Transcription (STAT) transcription factor. The negative correlation of expression between the miRNA and its target gene was confirmed by qRT-PCR. Our data indicate that ‘Feng Dan’ ptc-miR396g-5p′s expression decreases under drought, leading to an expression increase of the STAT transcription factor.
Collapse
|
38
|
Jiang J, Zhu H, Li N, Batley J, Wang Y. The miR393-Target Module Regulates Plant Development and Responses to Biotic and Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23169477. [PMID: 36012740 PMCID: PMC9409142 DOI: 10.3390/ijms23169477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant’s responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Haotian Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Na Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (J.B.); (Y.W.)
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (J.B.); (Y.W.)
| |
Collapse
|
39
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
41
|
Panda AK, Rawal HC, Jain P, Mishra V, Nishad J, Chowrasia S, Sarkar AK, Sen P, Naik SK, Mondal TK. Identification and analysis of miRNAs-lncRNAs-mRNAs modules involved in stem-elongation of deepwater rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13736. [PMID: 35716004 DOI: 10.1111/ppl.13736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Deepwater is an abiotic stress that limits rice cultivation worldwide due to recurrent floods. The miRNAs and lncRNAs are two non-coding RNAs emerging as major regulators of gene expressions under different abiotic stresses. However, the regulation of these two non-coding RNAs under deepwater stress in rice is still unexplored. In this study, small RNA-seq and RNA-seq from internode and node tissues were analyzed to predict deepwater stress responsive miRNAs and lncRNAs, respectively. Additionally, a competitive endogenous RNA (ceRNA) study revealed about 69 and 25 lncRNAs acting as endogenous target mimics (eTM) with the internode and node miRNAs, respectively. In ceRNA analyses, some of the key miRNAs such as miR1850.1, miR1848, and IN-nov-miR145 were upregulated while miR159e was downregulated, and their respective eTM lncRNAs and targets were found to have opposite expressions. Moreover, we have transiently expressed one module (IN-nov-miR145-Cc-TCONS_00011544-Os11g36430.3) in tobacco leaves. The integrated analysis has identified differentially expressed (DE) miRNAs, lncRNAs and their target genes, and the complex regulatory network, which might lead to stem elongation under deepwater stress. In this novel attempt to identify and characterize miRNAs and lncRNAs under deepwater stress in rice, we have provided, probably for the first time, a reference platform to study the interactions of these two non-coding RNAs with respective target genes through transient expression analyses.
Collapse
Affiliation(s)
- Alok Kumar Panda
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
- Department of Botany, Ravenshaw University, Cuttack, Odisha, India
| | - Hukam C Rawal
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, New Delhi, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, New Delhi, India
| | - Jyoti Nishad
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Soni Chowrasia
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, New Delhi, India
| | - Priyabrata Sen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | | |
Collapse
|
42
|
Tirumalai V, Narjala A, Swetha C, Sundar GVH, Sujith TN, Shivaprasad PV. Cultivar-specific miRNA-mediated RNA silencing in grapes. PLANTA 2022; 256:17. [PMID: 35737180 DOI: 10.1007/s00425-022-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In-depth comparative degradome analysis of two domesticated grape cultivars with diverse secondary metabolite accumulation reveals differential miRNA-mediated targeting. Small (s)RNAs such as micro(mi)RNAs and secondary small interfering (si) often work as negative switches of gene expression. In plants, it is well known that miRNAs target and cleave mRNAs that have high sequence complementarity. However, it is not known if there are variations in miRNA-mediated targeting between subspecies and cultivars that have been subjected to vast genetic modifications through breeding and other selections. Here, we have used PAREsnip2 tool for analysis of degradome datasets derived from two contrasting domesticated grape cultivars having varied fruit color, habit and leaf shape. We identified several interesting variations in sRNA targeting using degradome and 5'RACE analysis between two contrasting grape cultivars that was further correlated using RNA-seq analysis. Several of the differences we identified are associated with secondary metabolic pathways. We propose possible means by which sRNAs might contribute to diversity in secondary metabolites and other development pathways between two domesticated cultivars of grapes.
Collapse
Affiliation(s)
- Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - G Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - T N Sujith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
43
|
The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23126365. [PMID: 35742808 PMCID: PMC9223653 DOI: 10.3390/ijms23126365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play essential roles in plants by modulating the expression of genes at the transcriptional or post-transcriptional level. In recent years, ncRNAs have been recognized as crucial regulators for growth and development in forest trees, and ncRNAs that respond to various abiotic stresses are now under intense study. In this review, we summarized recent advances in the understanding of abiotic stress-responsive microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in forest trees. Furthermore, we analyzed the intersection of miRNAs, and epigenetic modified ncRNAs of forest trees in response to abiotic stress. In particular, the abiotic stress-related lncRNA/circRNA-miRNA-mRNA regulatory network of forest trees was explored.
Collapse
|
44
|
Imran M, Liu T, Wang Z, Wang M, Liu S, Gao X, Wang A, Liu S, Tian Z, Zhang M. Nested miRNA Secondary Structure Is a Unique Determinant of miR159 Efficacy in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:905264. [PMID: 35720551 PMCID: PMC9201385 DOI: 10.3389/fpls.2022.905264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are 20- to 24-nucleotide small RNAs, and whenever a pri-miRNA precursor includes another miRNA precursor, and both of these precursors may generate independent non overlapping mature miRNAs, we called them nested miRNAs. However, the functional and regulatory roles of nested miRNA structures in plants are still unknown. In this study, the Arabidopsis nested miR159a structure, which consists of two nested miRNAs, miR159a.1, and miR159a.2, was used as a model to determine miRNA-mediated gene silencing in plants. Complementation analysis of nested miR159a structures revealed that the miR159a structure can differentially complement the mir159ab phenotype, and a duplex nested structure in the tail end region of the pre-miR159a fold back may have a possible dominant function, indicating the importance of the flanking sequence of the stem in the cleavage of the mature miRNA. Furthermore, continuously higher expression of the miR159a.2 duplex in the severe leaf curl phenotype indicates that miR159a.2 is functional in Arabidopsis and suggests that in plants, a miRNA precursor may encode multiple regulatory small RNAs. Taken together, our study demonstrates that the nested miR159a structure regulated by duplex mutations of miR159a has a unique pattern and provides novel insight into silencing efficacy of Arabidopsis miR159a.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xinyan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songfeng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Singroha G, Kumar S, Gupta OP, Singh GP, Sharma P. Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Front Genet 2022; 13:811732. [PMID: 35495170 PMCID: PMC9053670 DOI: 10.3389/fgene.2022.811732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Abstract
The toxic effects of salinity on agricultural productivity necessitate development of salt stress tolerance in food crops in order to meet the escalating demands. Plants use sophisticated epigenetic systems to fine-tune their responses to environmental cues. Epigenetics is the study of heritable, covalent modifications of DNA and histone proteins that regulate gene expression without altering the underlying nucleotide sequence and consequently modify the phenotype. Epigenetic processes such as covalent changes in DNA, histone modification, histone variants, and certain non-coding RNAs (ncRNA) influence chromatin architecture to regulate its accessibility to the transcriptional machinery. Under salt stress conditions, there is a high frequency of hypermethylation at promoter located CpG sites. Salt stress results in the accumulation of active histones marks like H3K9K14Ac and H3K4me3 and the downfall of repressive histone marks such as H3K9me2 and H3K27me3 on salt-tolerance genes. Similarly, the H2A.Z variant of H2A histone is reported to be down regulated under salt stress conditions. A thorough understanding of the plasticity provided by epigenetic regulation enables a modern approach to genetic modification of salt-resistant cultivars. In this review, we summarize recent developments in understanding the epigenetic mechanisms, particularly those that may play a governing role in the designing of climate smart crops in response to salt stress.
Collapse
|
46
|
Chang H, Zhang H, Zhang T, Su L, Qin QM, Li G, Li X, Wang L, Zhao T, Zhao E, Zhao H, Liu Y, Stacey G, Xu D. A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans. FRONTIERS IN PLANT SCIENCE 2022; 13:860791. [PMID: 35463453 PMCID: PMC9021755 DOI: 10.3389/fpls.2022.860791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Although growing evidence shows that microRNA (miRNA) regulates plant growth and development, miRNA regulatory networks in plants are not well understood. Current experimental studies cannot characterize miRNA regulatory networks on a large scale. This information gap provides an excellent opportunity to employ computational methods for global analysis and generate valuable models and hypotheses. To address this opportunity, we collected miRNA-target interactions (MTIs) and used MTIs from Arabidopsis thaliana and Medicago truncatula to predict homologous MTIs in soybeans, resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method was developed to identify 483 soybean miRNA-target regulatory modules (MTRMs). Furthermore, we collected soybean miRNA expression data and corresponding gene expression data in response to abiotic stresses. By clustering these data, 37 MTRMs related to abiotic stresses were identified, including stress-specific MTRMs and shared MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response, iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs and miRNA-GO networks under different stresses, and provides miRNA targeting hypotheses for experimental analyses. The method can be applied to other biological processes and other plants to elucidate miRNA co-regulation mechanisms.
Collapse
Affiliation(s)
- Haowu Chang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Hao Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Tianyue Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Lingtao Su
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Qing-Ming Qin
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Guihua Li
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Xueqing Li
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Li Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Tianheng Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Enshuang Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Hengyi Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Yuanning Liu
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Division of Plant Sciences and Technology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
47
|
Tiwari S, Nutan KK, Deshmukh R, Sarsu F, Gupta KJ, Singh AK, Singla-Pareek SL, Pareek A. Seedling-stage salinity tolerance in rice: Decoding the role of transcription factors. PHYSIOLOGIA PLANTARUM 2022; 174:e13685. [PMID: 35419814 DOI: 10.1111/ppl.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Rice is an important staple food crop that feeds over half of the human population, particularly in developing countries. Increasing salinity is a major challenge for continuing rice production. Though rice is affected by salinity at all the developmental stages, it is most sensitive at the early seedling stage. The yield thus depends on how many seedlings can withstand saline water at the stage of transplantation, especially in coastal farms. The rapid development of "omics" approaches has assisted researchers in identifying biological molecules that are responsive to salt stress. Several salinity-responsive quantitative trait loci (QTL) contributing to salinity tolerance have been identified and validated, making it essential to narrow down the search for the key genes within QTLs. Owing to the impressive progress of molecular tools, it is now clear that the response of plants toward salinity is highly complex, involving multiple genes, with a specific role assigned to the repertoire of transcription factors (TF). Targeting the TFs for improving salinity tolerance can have an inbuilt advantage of influencing multiple downstream genes, which in turn can contribute toward tolerance to multiple stresses. This is the first comparative study for TF-driven salinity tolerance in contrasting rice cultivars at the seedling stage that shows how tolerant genotypes behave differently than sensitive ones in terms of stress tolerance. Understanding the complexity of salt-responsive TF networks at the seedling stage will be helpful to alleviate crop resilience and prevent crop damage at an early growth stage in rice.
Collapse
Affiliation(s)
- Shalini Tiwari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Fatma Sarsu
- General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | | | - Anil K Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
48
|
Rehman S, Rashid A, Manzoor MA, Li L, Sun W, Riaz MW, Li D, Zhuge Q. Genome-Wide Evolution and Comparative Analysis of Superoxide Dismutase Gene Family in Cucurbitaceae and Expression Analysis of Lagenaria siceraria Under Multiple Abiotic Stresses. Front Genet 2022; 12:784878. [PMID: 35211150 PMCID: PMC8861505 DOI: 10.3389/fgene.2021.784878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD) is an important enzyme that serves as the first line of defense in the plant antioxidant system and removes reactive oxygen species (ROS) under adverse conditions. The SOD protein family is widely distributed in the plant kingdom and plays a significant role in plant growth and development. However, the comprehensive analysis of the SOD gene family has not been conducted in Cucurbitaceae. Subsequently, 43 SOD genes were identified from Cucurbitaceae species [Citrullus lanatus (watermelon), Cucurbita pepo (zucchini), Cucumis sativus (cucumber), Lagenaria siceraria (bottle gourd), Cucumis melo (melon)]. According to evolutionary analysis, SOD genes were divided into eight subfamilies (I, II, III, IV, V, VI, VII, VIII). The gene structure analysis exhibited that the SOD gene family had comparatively preserved exon/intron assembly and motif as well. Phylogenetic and structural analysis revealed the functional divergence of Cucurbitaceae SOD gene family. Furthermore, microRNAs 6 miRNAs were predicted targeting 3 LsiSOD genes. Gene ontology annotation outcomes confirm the role of LsiSODs under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Promoter regions of the SOD family revealed that most cis-elements were involved in plant development, stress response, and plant hormones. Evaluation of the gene expression showed that most SOD genes were expressed in different tissues (root, flower, fruit, stem, and leaf). Finally, the expression profiles of eight LsiSOD genes analyzed by qRT-PCR suggested that these genetic reserves responded to drought, saline, heat, and cold stress. These findings laid the foundation for further study of the role of the SOD gene family in Cucurbitaceae. Also, they provided the potential for its use in the genetic improvement of Cucurbitaceae.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Arif Rashid
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | | | - Lingling Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| |
Collapse
|
49
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
50
|
Kumar S, Abass Ahanger M, Alshaya H, Latief Jan B, Yerramilli V. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|