1
|
Jin MK, Zhang Q, Xu N, Zhang Z, Guo HQ, Li J, Ding K, Sun X, Yang XR, Zhu D, Su X, Qian H, Zhu YG. Lipid Metabolites as Potential Regulators of the Antibiotic Resistome in Tetramorium caespitum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4476-4486. [PMID: 38382547 DOI: 10.1021/acs.est.3c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.
Collapse
Affiliation(s)
- Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hong-Qin Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Shi X, Eisenhauer N, Peñuelas J, Fu Y, Wang J, Chen Y, Liu S, He L, Lucas-Borja ME, Wang L, Huang Z. Trophic interactions in soil micro-food webs drive ecosystem multifunctionality along tree species richness. GLOBAL CHANGE BIOLOGY 2024; 30:e17234. [PMID: 38469998 DOI: 10.1111/gcb.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.
Collapse
Affiliation(s)
- Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Nico Eisenhauer
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Josep Peñuelas
- CREAF, Centre de Recerca Ecològicai Aplicacions Forestals, Cerdanyola del Vallès, Bellaterra, Catalonia, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Yanrong Fu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jianqing Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Shengen Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Manuel Esteban Lucas-Borja
- Higher Technical School of Agricultural and Forestry Engineering, Castilla-La Mancha University, Albacete, Spain
| | - Liyan Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Jin MK, Zhang Q, Yang YT, Zhao CX, Li J, Li H, Qian H, Zhu D, Zhu YG. Exposure to cypermethrin pesticide disturbs the microbiome and disseminates antibiotic resistance genes in soil and the gut of Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131026. [PMID: 36812731 DOI: 10.1016/j.jhazmat.2023.131026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Worldwide, pyrethroids, such as cypermethrin, are the second most applied group of insecticides, however, their effects on the soil microbiome and non-target soil fauna remain largely unknown. Herein, we assessed the change of bacterial communities and antibiotic resistance genes (ARGs) of soil and in the gut of the model soil species Enchytraeus crypticus using a combination of 16S rRNA gene amplicon sequencing, and high-throughput qPCR of ARGs. Results indicate that cypermethrin exposure enriches potential pathogens (e.g. Bacillus anthracis) in the soil and gut microbiome of E. crypticus, heavily disrupting the latter's microbiome structure, and even disrupts activities of the E. crypticus immune system. The co-occurrence of potential pathogens (e.g. Acinetobacter baumannii), ARGs, and mobile genetic elements (MGEs) revealed the increased risk of pathogenicity as well as antibiotic resistance in potential pathogens. Moreover, structural equation modeling demonstrated that the dissemination of ARGs was not only promoted by MGEs, but also by the ratio of the core to non-core bacterial abundance. Collectively, these results provide an in-depth view of the previously unappreciated environmental risk of cypermethrin on the dissemination of ARGs in the soil and non-target soil fauna.
Collapse
Affiliation(s)
- Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| | - Yu-Tian Yang
- Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hongjie Li
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, China
| |
Collapse
|
4
|
Zhu G, Chao H, Sun M, Jiang Y, Ye M. Toxicity sharing model of earthworm intestinal microbiome reveals shared functional genes are more powerful than species in resisting pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130646. [PMID: 36587599 DOI: 10.1016/j.jhazmat.2022.130646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Earthworm intestinal bacteria and indigenous soil bacteria work closely during various biochemical processes and play a crucial role in maintaining the internal stability of the soil environment. However, the response mechanism of these bacterial communities to external pesticide disturbance is unknown. In this study, soil and earthworm gut contents were metagenomically sequenced after exposure to various concentrations of nitrochlorobenzene (0-1026.7 mg kg-1). A high degree of similarity was found between the microbial community composition and abundance in the worm gut and soil, both of which decreased significantly (P < 0.05) under elevated pesticide stress. The toxicity sharing model (TSM) showed that the toxicity sharing capacity was 97.4-125.7 % and 100.4-130.2 % for Egenes (genes in the worm gut) and Emet(degradation genes in the worm gut) in the earthworm intestinal microbiome, respectively. This indicated that the earthworm intestinal microbiome assisted in relieving the pesticide toxicity of the indigenous soil microbiome. This study showed that the TSM could quantitatively describe the toxic effect of pesticides on the earthworm intestinal microbiome. It provides a new analytical model for investigating the ecological alliance between earthworm intestinal microbiome and indigenous soil microbiome under pesticide stress while contributing a more profound understanding of the potential to use earthworms to mitigate pesticide pollution in soils and develop earthworm-based soil remediation techniques.
Collapse
Affiliation(s)
- Guofan Zhu
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Mao Ye
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Zhu Y, Zhu D, Rillig MC, Yang Y, Chu H, Chen Q, Penuelas J, Cui H, Gillings M. Ecosystem Microbiome Science. MLIFE 2023; 2:2-10. [PMID: 38818334 PMCID: PMC10989922 DOI: 10.1002/mlf2.12054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/01/2024]
Abstract
The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.
Collapse
Affiliation(s)
- Yong‐Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Matthias C. Rillig
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Qing‐Lin Chen
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBellaterraCataloniaSpain
- CREAFCerdanyola del VallèsCataloniaSpain
| | - Hui‐Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco‐environmental SciencesChinese Academy of SciencesBeijingChina
| | - Michael Gillings
- ARC Centre of Excellence for Synthetic Biology, and Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Wang L, Chen X, Yan X, Wang C, Guan P, Tang Z. A response of biomass and nutrient allocation to the combined effects of soil nutrient, arbuscular mycorrhizal, and root-knot nematode in cherry tomato. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
IntroductionThe biomass and nutrient allocation strategies in plants are fundamental for predicting carbon storage and mineral and nutrient cycles in terrestrial ecosystems. However, our knowledge regarding the effects of multiple environmental factors on biomass and nutrient allocation remains limited.MethodsHere we manipulated soil composition (three levels), arbuscular mycorrhizal fungi inoculation (AMF, five levels), and root-knot nematode inoculation (RKN, two levels) using random block design to reveal the effects of these factors on biomass and nutrient allocation strategies of cherry tomato.Results and DiscussionOur results showed that biomass and nutrient allocation were affected by soil composition, AMF and RKN individually or interactively. The biomass and nutrient allocation in cherry tomato shows different adaptation strategies responded to the joint action of three factors. The reduction of soil nutrients increased belowground biomass allocation, and aboveground nitrogen and phosphorus concentration. AMF colonization increased aboveground biomass allocation and reproductive investment and promoted aboveground nitrogen and phosphorus inputs. Cherry tomato can mitigate the stress of RKN infection by investing more biomass and nutrients into belowground organs. Our study showed that plants can adjust their survival strategies by changing biomass and nutrient allocation to adapt to variation in soil abiotic and biotic factors. These findings contribute to our understanding of the adaptive processes of plant biomass and nutrient allocation strategies under multiple environmental factors.
Collapse
|
7
|
Liu Y, Hu B, Chu C. Toward improving nitrogen use efficiency in rice: Utilization, coordination, and availability. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102327. [PMID: 36525788 DOI: 10.1016/j.pbi.2022.102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) fertilizer drives crop productivity and underlies intensive agriculture, but overuse of fertilizers also causes detrimental effects to ecosystem. To cope with this challenge while meeting the ever-growing demand for food, it is critical and urgent to improve nitrogen use efficiency (NUE) of crops. To date, numerous efforts have been made in developing strategies for NUE improvement with different disciplines. Given the intricate and interconnected route of N for delivering its effect, it is necessary to comprehensively understand various procedures and their interplays in determining NUE. In this review, we expand the scope of NUE improvement, not only the N utilization by plants, but also the N coordination with other resources as well as the N availability in the soil, which represent the major dimensions in manipulating NUE. Moreover, both agronomic practices and genetic improvement in facilitating NUE are also included and discussed. Lastly, we provide our perspective in improving the NUE in the future, particularly highlighting the integration of various agronomic and genetic approaches for NUE improvement underlying the sustainable agriculture.
Collapse
Affiliation(s)
- Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Santamaria B, Verbeken A, Haelewaters D. Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. J Fungi (Basel) 2023; 9:163. [PMID: 36836278 PMCID: PMC9968043 DOI: 10.3390/jof9020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Collapse
Affiliation(s)
- Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Centro de Investigaciones Micológicas (CIMi), Universidad Autónoma de Chiriquí, David 0427, Panama
| |
Collapse
|