1
|
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.201801134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry Sharif University of Technology Tehran Iran
| | - Roma Tauler
- Department of Environmental Chemistry IDAEA-CSIC 08034 Barcelona Spain
| |
Collapse
|
2
|
Versatile analytical methodology for evaluation of drug-like properties of potentially multi-targeting anticancer metallodrugs. ANAL SCI 2022; 38:627-632. [DOI: 10.1007/s44211-022-00076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/24/2021] [Indexed: 11/01/2022]
|
3
|
Current and emerging mass spectrometry methods for the preclinical development of metal-based drugs: a critical appraisal. Anal Bioanal Chem 2021; 414:95-102. [PMID: 34642780 DOI: 10.1007/s00216-021-03718-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
This Trends article highlights the multiple ways in which the state-of-the-art molecular mass spectrometry can support the preclinical development of novel metal-based anticancer drugs. Examples from the recent literature-beyond routine characterization applications-are presented to illustrate what analytical and experimental design challenges are to be addressed to facilitate the translation of promising drug candidates to clinical practice.
Collapse
|
4
|
de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020; 49:16004-16033. [PMID: 33030464 DOI: 10.1039/d0dt02478c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the Covid-19 outbreak, this review brings together historical and current literature efforts towards the development of antiviral metallodrugs. Classical compounds such as CTC-96 and auranofin are discussed in depth, as pillars for future metallodrug development. From the recent literature, both cell-based results and biophysical assays against potential viral biomolecule targets are summarized here. The comprehension of the biomolecular targets and their interactions with coordination compounds are emphasized as fundamental strategies that will foment further development of metal-based antivirals. We also discuss other possible and unexplored methods for unveiling metallodrug interactions with biomolecules related to viral replication and highlight the specific challenges involved in the development of antiviral metallodrugs.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP - 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
6
|
Xu X, Wang H, Li H, Sun H. Metalloproteomic Approaches for Matching Metals to Proteins: The Power of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). CHEM LETT 2020; 49:697-704. [DOI: 10.1246/cl.200155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Xiaohan Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
7
|
Foteeva LS, Kuznetsova OV, Keppler BK. How versatile is the use of ultrafiltration to study biointeractions of therapeutic metallodrugs? Anal Biochem 2020; 598:113697. [PMID: 32224145 DOI: 10.1016/j.ab.2020.113697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 11/28/2022]
Abstract
For a representative number of approved or investigational anticancer metallodrugs varying in lipophilicity, unspecific adsorption onto ultracentrifugal filter units was studied. It was found that for fairly hydrophilic compounds, such as cisplatin and oxaliplatin, the binding to filters does not substantially affect their amount measured (by ICP-MS) after ultrafiltration (>95%). In the case of metal complexes with moderate lipophilicity (log P > -0.1), adsorption effects turn out to be substantial. This might impede using ultrafiltration for studying the transformations of such drugs in human serum, unless they are rapidly converted into the protein adducts. The adsorption-suppressing effect of proteins was proved for indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] whose recovery from the filters was 61 and 14% in free and HSA-bound form, respectively.
Collapse
Affiliation(s)
- Lidia S Foteeva
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| | - Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| |
Collapse
|
8
|
Batchelor LK, Ortiz D, Dyson PJ. Histidine Targeting Heterobimetallic Ruthenium(II)–Gold(I) Complexes. Inorg Chem 2019; 58:2501-2513. [DOI: 10.1021/acs.inorgchem.8b03069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Ortiz
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Seregina IF, Osipov K, Bol’shov MA, Filatova DG, Lanskaya SY. Matrix Interference in the Determination of Elements in Biological Samples by Inductively Coupled Plasma–Mass Spectrometry and Methods for Its Elimination. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819020114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 2018; 1052:1-9. [PMID: 30685026 DOI: 10.1016/j.aca.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
Abstract
Interactions of gold nanoparticles (AuNPs) with live cells are known to exert a great impact on their functions, including cell signalling, genomic, proteomic, and metabolomic processes. Modern analytical techniques applied to studying nanoparticle-cell interactions are to improve our understanding of the mode of action of AuNPs, which is essential for their approval in disease therapeutics. Such methods may vary depending on what step of particle internalization is in question, i.e., cellular uptake, intracellular transport (accompanying by changes in the chemical state), translocation to different cell compartments, interaction with relevant subcellular structures and localization. This review focuses on the implementation and critical assessment of advanced analytical methodologies to investigate the cellular processing of AuNPs. Also addressed is a sought-after issue of accounting in in-vitro studies for a chemical form in which the AuNPs enter the cell in vivo.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Svetlana S Aleksenko
- Saratov State Agrarian University, Teatralnaya Sq. 1, 410012, Saratov, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei R Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland; Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
11
|
Applications of liquid chromatography-inductively coupled plasma-mass spectrometry in the biosciences: A tutorial review and recent developments. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Tauler R, Parastar H. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2018; 61:e201801134. [DOI: 10.1002/anie.201801134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Roma Tauler
- IDAEA-CSIC Environmental Chemistry Jordi Girona 18-26 08034 Barcelona SPAIN
| | | |
Collapse
|
13
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Foteeva L, Matczuk M, Timerbaev A. Analytical methodology for determination of interactions between metallodrugs and DNA: A critical examination. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
|
16
|
Caterino M, Petruk AA, Vergara A, Ferraro G, Marasco D, Doctorovich F, Estrin DA, Merlino A. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules. Dalton Trans 2016; 45:12206-14. [DOI: 10.1039/c6dt01685e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ariel A. Petruk
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Alessandro Vergara
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages
- Napoli
- Italy
- Department of Pharmacy
- University of Naples Federico II
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Dario A. Estrin
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
17
|
Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine. Talanta 2015; 144:275-82. [DOI: 10.1016/j.talanta.2015.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/23/2022]
|
18
|
Sikora A, Maciejewska AM, Poznański J, Pilżys T, Marcinkowski M, Dylewska M, Piwowarski J, Jakubczak W, Pawlak K, Grzesiuk E. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent. Mutat Res 2015; 778:52-60. [PMID: 26114961 DOI: 10.1016/j.mrfmmm.2015.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
Abstract
An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.
Collapse
Affiliation(s)
- Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Pilżys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wioletta Jakubczak
- Department of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Pawlak
- Department of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
19
|
Wang Y, Wang H, Li H, Sun H. Metallomic and metalloproteomic strategies in elucidating the molecular mechanisms of metallodrugs. Dalton Trans 2015; 44:437-447. [PMID: 25376598 DOI: 10.1039/c4dt02814g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metals play a critical role in life processes, and metal-based drugs nowadays have been commonly used for therapeutic and diagnostic purposes. However, severe side-effects and acquired drug resistance are the major issues needing to be resolved prior to more effective metallodrugs being developed, which requires a full understanding of the underlying molecular mechanisms. Metallomic and metalloproteomic approaches have received growing attention and have been implemented in inorganic medicinal chemistry and chemical biology in the endeavor to expand our knowledge of the pharmacological profiles, potential targets and functional pathways of metallodrugs. This perspective summarizes some recent progress in using metallomic and metalloproteomic strategies to elucidate the mechanisms of action of representative anticancer and antimicrobial metal-based drugs and agents.
Collapse
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| | | | | | | |
Collapse
|
20
|
Matczuk M, Kupiec M, Legat J, Pawlak K, Timerbaev AR, Jarosz M. A shotgun metalloproteomic approach enables identification of proteins involved in the speciation of a ruthenium anticancer drug in the cytosol of cancer cells. Analyst 2015; 140:3492-9. [DOI: 10.1039/c5an00426h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of a versatile analytical methodology for characterization of the cancer cytosol species formed between ruthenium originating from a Ru(iii) drug and cellular proteins.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Monika Kupiec
- Chair of Analytical Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Joanna Legat
- Chair of Analytical Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Katarzyna Pawlak
- Chair of Analytical Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- 119991 Moscow
- Russian Federation
| | - Maciej Jarosz
- Chair of Analytical Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
21
|
Hagège A, Huynh TNS, Hébrant M. Separative techniques for metalloproteomics require balance between separation and perturbation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Jarosz M, Matczuk M, Pawlak K, Timerbaev AR. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug. Anal Chim Acta 2014; 851:72-7. [DOI: 10.1016/j.aca.2014.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 01/04/2023]
|
23
|
Tamasi G, Carpini A, Valensin D, Messori L, Pratesi A, Scaletti F, Jakupec M, Keppler B, Cini R. {Ru(CO)x}-core complexes with selected azoles: Synthesis, X-ray structure, spectroscopy, DFT analysis and evaluation of cytotoxic activity against human cancer cells. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.05.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Ossipov K, Scaffidi-Domianello YY, Seregina IF, Galanski MS, Keppler BK, Timerbaev AR, Bolshov MA. Inductively coupled plasma mass spectrometry for metallodrug development: albumin binding and serum distribution of cytotoxic cis- and trans-isomeric platinum(II) complexes. J Inorg Biochem 2014; 137:40-5. [PMID: 24803025 DOI: 10.1016/j.jinorgbio.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/31/2023]
Abstract
Binding to plasma proteins is one of the major metabolic pathways of metallodrugs. In the case of platinum-based anticancer drugs, it is the interaction with serum albumin that affects most strongly their in vivo behavior. Since both the configuration, i.e. cis-trans-isomerism, and the nature of leaving groups have an effect on the reactivity of Pt(II) coordination compounds toward biomolecules, a set of cis- and trans-configured complexes with halide leaving groups (Cl(-), Br(-), and I(-)) and 2-propanone oxime as carrier ligands was chosen for this study. Binding experiments were performed both with albumin and human serum and the Pt content in ultrafiltrates was quantified using inductively coupled plasma mass spectrometry. In order to shed light on the binding mechanism, the albumin binding constant (KHSA) and the octanol-water partition coefficient (P) were experimentally determined and relationships between log KHSA and log P were explored. The correlation was found significant only for cis-configured platinum complexes (R(2)=0.997 and standard deviation=0.02), indicating a certain contribution of the nonspecific binding which is largely dominated by the lipophilicity of compounds. In contrast, for trans-complexes a specific molecular recognition element plays a significant role. The participation of albumin in drug distribution in blood serum was assessed using an equilibrium distribution model and by comparing the percentage binding in the albumin and serum-protein fractions. Irrespective of the compound polarity, albumin contributes from 85 to 100% to the overall binding in serum.
Collapse
Affiliation(s)
- Konstantin Ossipov
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | | | - Irina F Seregina
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia.
| | - Mikhail A Bolshov
- Division of Analytical Chemistry, Chemistry Department, Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190 Troitsk (Moscow Region), Russia
| |
Collapse
|
25
|
How useful is ICP-MS for determining PK properties of metal-based drugs? Bioanalysis 2014; 6:273-6. [DOI: 10.4155/bio.13.333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Timerbaev AR. Recent progress of ICP-MS in the development of metal-based drugs and diagnostic agents. J. ANAL. AT. SPECTROM. 2014; 29:1058-1072. [DOI: 10.1039/c3ja50394a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Critical analysis of current capabilities, limitations, and trends of ICP-MS applied to the development of metal-based medicines is conducted.
Collapse
Affiliation(s)
- Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Russian Academy of Sciences
- Moscow, Russia
| |
Collapse
|
27
|
Matczuk M, Prządka M, Aleksenko SS, Czarnocki Z, Pawlak K, Timerbaev AR, Jarosz M. Metallomics for drug development: a further insight into intracellular activation chemistry of a ruthenium(iii)-based anticancer drug gained using a multidimensional analytical approach. Metallomics 2014; 6:147-53. [DOI: 10.1039/c3mt00252g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Messori L, Marzo T, Gabbiani C, Valdes AA, Quiroga AG, Merlino A. Peculiar features in the crystal structure of the adduct formed between cis-PtI2(NH3)2 and hen egg white lysozyme. Inorg Chem 2013; 52:13827-9. [PMID: 24256441 DOI: 10.1021/ic402611m] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reactivity of cis-diamminediiodidoplatinum(II), cis-PtI2(NH3)2, the iodo analogue of cisplatin, with hen egg white lysozyme (HEWL) was investigated by electrospray ionization mass spectrometry and X-ray crystallography. Interestingly, the study compound forms a stable 1:1 protein adduct for which the crystal structure was solved at 1.99 Å resolution. In this adduct, the Pt(II) center, upon release of one ammonia ligand, selectively coordinates to the imidazole of His15. Both iodide ligands remain bound to platinum, with this being a highly peculiar and unexpected feature. Notably, two equivalent modes of Pt(II) binding are possible that differ only in the location of I atoms with respect to ND1 of His15. The structure of the adduct was compared with that of HEWL-cisplatin, previously described; differences are stressed and their important mechanistic implications discussed.
Collapse
Affiliation(s)
- Luigi Messori
- Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Kubáň P, Timerbaev AR. Inorganic analysis using CE: Advanced methodologies to face old challenges. Electrophoresis 2013; 35:225-33. [DOI: 10.1002/elps.201300302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Petr Kubáň
- Department of Bioanalytical Instrumentation; CEITEC - Masaryk University; Brno Czech Republic
| | - Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
30
|
Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry. Anal Chim Acta 2013; 785:22-6. [PMID: 23764439 DOI: 10.1016/j.aca.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022]
Abstract
The application of an inductively coupled plasma mass spectrometry (ICP-MS) assay for quantifying in vitro binding of a gallium-based anticancer drug, tris(8-quinolinolato)gallium(III), to serum albumin and transferrin and in human serum is described. The distribution of the drug between the protein-rich and protein-free fractions was assessed via ICP-MS measurement of total gallium in ultrafiltrates. Comparative kinetic studies revealed that the drug exhibits a different reactivity toward individual proteins. While the maximum possible binding to albumin (~10%) occurs practically immediately, interaction with transferrin has a step-like character and the equilibrium state (with more than 50% binding) is reached for about 48 h. Drug transformation into the bound form in serum, also very fast, results in almost quantitative binding (~95%). The relative affinity of protein-drug binding was characterized in terms of the association constants ranging from 10(3) to 10(4)M(-1). In order to further promote clinical testing of the gallium drug, the ICP-MS method was applied for direct quantification of gallium in human serum spiked with the drug. The detection limit for gallium was found to be as low as 20 ng L(-1). The repeatability was better than 8% (as RSD) and the achieved recoveries were in the range 99-103%.
Collapse
|
31
|
Aleksenko SS, Matczuk M, Lu X, Foteeva LS, Pawlak K, Timerbaev AR, Jarosz M. Metallomics for drug development: an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(iii) drug bound to holo-transferrin in simulated cancer cytosol. Metallomics 2013; 5:955-63. [DOI: 10.1039/c3mt00092c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
33
|
|
34
|
Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. J Biol Inorg Chem 2012; 17:1293-302. [PMID: 23132507 DOI: 10.1007/s00775-012-0952-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
Protein metalation processes are crucial for the mechanism of action of several anticancer metallodrugs and warrant deeper characterisation. We have explored the reactions of three cytotoxic gold(III) compounds-namely [(bipy(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where bipy(2Me) is 6,6'-dimethyl-2,2'-bipyridine) (Auoxo6), [(phen(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where phen(2Me) is 2,9-dimethyl-1,10-phenanthroline) (Au(2)phen) and [(bipy(dmb)-H)Au(OH)][PF(6)] [where bipy(dmb)-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine] (Aubipyc)-with two representative model proteins, i.e. horse heart cytochrome c and hen egg white lysozyme, through UV-visible absorption spectroscopy and electrospray ionisation mass spectrometry (ESI MS) to characterise the inherent protein metalation processes. Notably, Auoxo6 and Au(2)phen produced stable protein adducts where one or more "naked" gold(I) ions are protein-coordinated; very characteristic is the case of cytochrome c, which upon reaction with Auoxo6 or Au(2)phen preferentially forms "tetragold" adducts with four protein-bound gold(I) ions. In turn, Aubipyc afforded monometalated protein adducts where the structural core of the gold(III) centre and its +3 oxidation state are conserved. Auranofin yielded protein derivatives containing the intact auranofin molecule. Additional studies were performed to assess the role played by a reducing environment in protein metalation. Overall, the approach adopted provides detailed insight into the formation of metallodrug-protein derivatives and permits trends, peculiarities and mechanistic details of the underlying processes to be highlighted. In this respect, electrospray ionisation mass spectrometry is a very straightforward and informative research tool. The protein metalation processes investigated critically depend on the nature of both the metal compound and the interacting protein and also on the solution conditions used; thus, predicting with accuracy the nature and the amounts of the adducts formed for a given metallodrug-protein pair is currently extremely difficult.
Collapse
|
35
|
Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 2012; 113:778-812. [PMID: 23057472 DOI: 10.1021/cr300199v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russian Federation.
| |
Collapse
|
36
|
Meermann B, Sperling M. Hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals: developments and applications. Anal Bioanal Chem 2012; 403:1501-22. [DOI: 10.1007/s00216-012-5915-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
37
|
Timerbaev AR. Determination of metal species in biological samples: From speciation analysis to metallomics. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s106193481202013x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Anawar HM. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 2012; 88:30-42. [DOI: 10.1016/j.talanta.2011.11.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|