1
|
Zhang X, Gao M, Zhang C, Peng B. Enzymatic processes for animal hide/skin collagen fiber purification processing: Recent progress, challenges and recommendations. BIORESOURCE TECHNOLOGY 2025; 418:131955. [PMID: 39643060 DOI: 10.1016/j.biortech.2024.131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Collagen fiber purification is the most important pretreatment process in the recycling of animal hide/skin, by-products of meat production, and can be utilized to produce value-added materials. Traditional animal hide/skin resource utilization technologies face serious challenges in the aspect of production efficiency and environmental sustainability. Enzymatic collagen fiber purification processing is thought to be one of the most promising technologies that can minimize the use of chemicals and energy, reduce CO2-eq emissions, and achieve sustainable development of animal hide/skin reutilization. However, enzymatic processes have not been well accepted for industrial-scale applications in factories so far. In this review, recent progress and challenges of enzymatic collagen fiber purification processing were comprehensively overviewed in the aspect of the key mechanisms and technologies of enzyme application. Recommendations for the direction of enzyme selection and development were put forward, which is expected to pave the way for the industrial-scale application of enzymes in animal hide/skin collagen fiber purification processing.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Mengchu Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Shandong Lonct Enzymes Co., Ltd., Linyi 276400, PR China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Wang Z, Guo L, Tian J, Han Y, Zhai D, Cui L, Zhang P, Zhang X, Yang S, Zhang L. Aversatile MOF as an electrochemical/fluorescence/colorimetric signal probe for the tri-modal detection of MMP-9 secretion in the extracellular matrix to identify the efficacy of chemotherapeutic drugs. Anal Chim Acta 2024; 1315:342798. [PMID: 38879217 DOI: 10.1016/j.aca.2024.342798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.
Collapse
Affiliation(s)
- Zihua Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lulu Guo
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Jing Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Yue Han
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Dandan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Lan Cui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Pengshuai Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Xiwei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China
| | - Shuoye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
3
|
Lu X, Ding L, Song H, Yu W, Dong C, Ren J. In situ quantitative measurements on MMP-9 activity in single living cells by single molecule fluorescence correlation spectroscopy. Analyst 2023; 148:752-761. [PMID: 36633105 DOI: 10.1039/d2an01925f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor progression. It is of great significance to establish a sensitive in situ assay strategy for MMP-9 activity in single living cells. Here a novel in situ single molecule spectroscopy method based on the fluorescence correlation spectroscopy (FCS) technique was proposed for measuring the MMP-9 activity at different locations within single living cells, using a fluorescent specific peptide and a reference dye as dual probes. The measurement principle is based on the decrease of the ratiometric translational diffusion time of dual probes in the detection volume due to the peptide cleavage caused by MMP-9. The peptide probe was designed to be composed of an MMP-9 cleavage and cell-penetrating peptide sequence that was labeled with a fluorophore and conjugated with a streptavidin (SAV) molecule. The ratiometric translational diffusion time was used as the measurement parameter to eliminate the effect of intracellular uncertain viscosity. The linear relationship between the ratiometric diffusion time and MMP-9 activity was established, and applied to the determination of enzymatic activity in cell lysates as well as the evaluation of the inhibitory effects of different inhibitors on MMP-9. More importantly, the method was successfully used to dynamically determine MMP-9 activity in single living cells or under the stimulation with phorbol 12-myristate 13-acetate (PMA) and inhibitors.
Collapse
Affiliation(s)
- Xintong Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Luoyu Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Haohan Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Wenxin Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
4
|
Doddawad V, Shivananda S, Kalabharathi HL, Shetty A, Sowmya S, Sowmya HK. Matrix metalloproteinases in oral cancer: A catabolic activity on extracellular matrix components. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_10_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Cai Y, Dong T, Zhang X, Liu A. Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors. Anal Chem 2022; 94:18099-18106. [PMID: 36515251 DOI: 10.1021/acs.analchem.2c04767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To regulate nanostructure synthesis is of crucial importance for developing various applications, including catalysis, bioanalysis, and optical devices. Herein, the morphology and peroxidase (POD)-mimicking activity of peptide-templated copper nanoassemblies (Cu NAs) are regulable with peptide types. The Cu NAs templated with peptide containing single cysteine are uniform nanoclusters with strong POD-like activity. However, the Cu NAs templated with peptide containing two cysteines are fusiform-like with very weak POD-like activity. Unexpectedly, the POD-like activity of Cu NAs templated with peptide containing two cysteines with lysine between the cysteines is significantly enhanced when trypsin is incubated, which is unchanged for the Cu NAs templated with peptide containing two cysteines without lysine between the cysteines. The remarkably enhanced POD-mimicking activity originates from trypsin specifically shearing the peptide bond on the lysine, thereby allowing the aggregated Cu NAs to unravel into individual nanoclusters. Therefore, a robust colorimetric sensing platform was constructed for sensitive and selective detection of trypsin, which showed a linear concentration range of 3-1000 nM and a detection limit of 0.82 nM (S/N = 3). More interestingly, featured by trypsin inhibitor restraining trypsin activity, it enabled us to screen trypsin inhibitors as well. Subsequently, the developed assay was applied to detect trypsin in serum samples with good accuracy and reproducibility. Thus, this strategy shows great potential application in the clinic for diagnosis of trypsin-indicating diseases as well as the screening of trypsin inhibitor-based anti-cancer drugs.
Collapse
Affiliation(s)
- Yuanyuan Cai
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao 266071, China.,School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Rd, Qingdao 266071, China
| | - Tao Dong
- School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Rd, Qingdao 266071, China
| | - Xin Zhang
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Rd, Qingdao 266071, China
| |
Collapse
|
6
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. Angew Chem Int Ed Engl 2022; 61:e202112218. [PMID: 34806284 PMCID: PMC9303468 DOI: 10.1002/anie.202112218] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/02/2022]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112218. [PMID: 38505642 PMCID: PMC10946914 DOI: 10.1002/ange.202112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 03/21/2024]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
8
|
Zhou S, Cui P, Sheng J, Zhang X, Jiang P, Ni X, Cao K, Qiu L. A novel assay for the determination of PreScission protease by capillary electrophoresis. Biophys Chem 2022; 281:106696. [PMID: 34954553 DOI: 10.1016/j.bpc.2021.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The detection of protease activity in the body plays a significant role in the early diagnosis of diseases. However, enzymes inevitably come into contact with various complex biological fluids in the body during the flow, which greatly increases the detection difficulty. Therefore, protease detection in vivo has great challenges. Herein, we report a new assay for detecting protease using capillary electrophoresis inside a capillary with semicircular bends. We first designed a peptide substrate, and then the peptide was self-assembled with quantum dots to form a QDs-peptide substrate. The capillary was bent to semicircular-shaped turns and served as a micro-reactor to allow protease and substrate react in it. Due to the different electrophoretic velocity, the protease and the substrate were mixed inside the bent capillary with sequential injections and the cleavage of the substrate can be detected using capillary electrophoresis combined with Förster resonance energy transfer technology. This novel assay will greatly expand the detection of enzyme activity in vivo.
Collapse
Affiliation(s)
- Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Jingyu Sheng
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, PR China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China.
| | - Kai Cao
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| |
Collapse
|
9
|
Gao M, Zhang X, Tian Y, Zhang C, Peng B. Development and validation of a label-free method for measuring the collagen hydrolytic activity of protease. Bioprocess Biosyst Eng 2021; 44:2525-2539. [PMID: 34405273 DOI: 10.1007/s00449-021-02624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Collagen is the most abundant fibrous structural protein, and therefore, the quantitative evaluation of the effect of protease on collagen has a profound influence on enzyme application. In this research, unlabeled native bovine hide powder was utilized to detect collagen hydrolytic activity of the protease. The optimum conditions of the determination method were as follows: 30 mg/mL substrate concentration, 30 min reaction time, and 2-9 U/mL enzyme concentration. Then, several typical industrial protease preparations were chosen to measure collagenolytic activities at different temperatures and pH values, whose change trends were quite distinct from those of proteolytic activity assay method based on casein or dye-labeled hide powder substrate. Especially, in the pH 5-7, casein hydrolytic activities of these proteases showed sharper peaks with relative activity from 6% to 100%, whereas, their collagen hydrolytic activities based on native hide powder exhibited 30-100% with broader peaks. And collagen hydrolytic activities resulted from using dye-labeled substrate reached a lower optimum pH value than that of other methods. Besides, the results of these measurements displayed a moderate degree of reproducibility. This method is more reasonable than the protease assay method using casein or labeled hide powder as the substrate in many fields.
Collapse
Affiliation(s)
- Mengchu Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yongxin Tian
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chunxiao Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China.,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Biyu Peng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China. .,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Kirchhain A, Zubrienė A, Kairys V, Vivaldi F, Bonini A, Biagini D, Santalucia D, Matulis D, Di Francesco F. Biphenyl substituted lysine derivatives as recognition elements for the matrix metalloproteinases MMP-2 and MMP-9. Bioorg Chem 2021; 115:105155. [PMID: 34303036 DOI: 10.1016/j.bioorg.2021.105155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are an important factor in cancer progression and metastasis, especially gelatinases MMP-2 and MMP-9. A simple methodology for their detection and monitoring is highly desirable. Molecular probes have been very widely and successfully applied to study the activity of MMPs in cellular processes in vitro. We thus synthesized a small compound library of MMP-2 and MMP-9 binding probes based on drug molecules and endowed with free amine groups for the functionalization of transducer surfaces. In this study, we combined experimental results obtained by a kinetic fluorogenic peptide substrate cleavage assay with molecular modeling studies in order to assess the ability of the probe to bind to their target enzymes. The synthesized biphenyl substituted lysine derivatives showed IC50-values in the low nanomolar concentration range against MMP-2 (ligands 3a-d: 3 nM to 8 µM, ligands 4a-d: 45 nM to 350 µM) and low micromolar range against MMP-9 (ligands 3a-d: 350 nM to 60 µM, ligands 4a-d: 5 µM to 600 µM), with a selectivity up to more than 160-fold for MMP-2. The experimental results correlated well with molecular modelling with FleXAID and X-score functions. We showed that in our compound series, the side chain remained far away from the S1' cavity and the ligand for all the docked minima. Ligands 4a-d with their free amine group on the side chain may thus be bound to transducer surfaces for the fabrication of sensors, while retaining their activity against their target enzymes.
Collapse
Affiliation(s)
- Arno Kirchhain
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy.
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Federico Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Andrea Bonini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Denise Biagini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Delio Santalucia
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Fabio Di Francesco
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| |
Collapse
|
11
|
Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis. Anal Bioanal Chem 2021; 414:147-165. [PMID: 34091712 DOI: 10.1007/s00216-021-03416-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
The role of the extracellular matrix (ECM) remodeling in tumorigenesis and metastasis is becoming increasingly clear. Cancer development requires that tumor cells recruit a tumor microenvironment permissive for further tumor growth. This is a dynamic process that takes place by a cross-talk between tumor cells and ECM. As a consequence, molecules derived from the ECM changes associated to cancer are released into the bloodstream, representing potential biomarkers of tumor development. This article highlights the importance of developing and improving bioanalytical methods for the detection of ECM remodeling-derived components, as a step forward to translate the basic knowledge about cancer progression into the clinical practice.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
12
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
13
|
Sharma R, Kumar V, Logani A, Chawla A, Mir RA, Sharma S, Kalaivani M. Association between concentration of active MMP-9 in pulpal blood and pulpotomy outcome in permanent mature teeth with irreversible pulpitis - a preliminary study. Int Endod J 2020; 54:479-489. [PMID: 33128238 DOI: 10.1111/iej.13437] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the correlation between the concentration of active-matrix metalloproteinases-9 (aMMP-9) in pulpal blood and the outcome of pulpotomy in mature permanent teeth with symptomatic irreversible pulpitis (SIP). METHODOLOGY Forty permanent molar teeth with a clinical diagnosis of SIP and normal apical tissues with periapical index (PAI) score ≤ 2 and ten permanent teeth (8 molars and two premolars) with a diagnosis of normal pulp that required root canal treatment for prosthetic reasons from patients between the ages of 15-35 years were recruited. All clinical procedures were performed under local anaesthesia and rubber dam isolation. After access opening, the coronal pulp tissue was amputated up to the canal orifice. A 100 μL volume of the pulpal blood was collected using a micropipette and transported to the laboratory. Sodium hypochlorite (2.5 %) was used as a haemostatic agent, and mineral trioxide aggregate (MTA) was used as the pulp capping material. The tooth was restored with composite at the same visit. Teeth with normal pulps were treated with single-visit root canal treatment. Patients with pulpotomy were recalled at 6 and 12 months. Outcome assessment of teeth with pulpotomy was carried out at 12 months and was categorized as success (asymptomatic patients with PAI score ≤ 2) or failure (symptomatic patients or PAI score ≥ 3). Quantification of aMMP-9 in pulpal blood was achieved using a fluorometric assay. The following statistical analyses were performed to assess the data: t-test, Fisher's exact test, kappa coefficient, non-parametric test, Wilcoxon rank-sum test, Spearman rank correlation test and receiver operating characteristic curve (ROC). RESULT The success rate of pulpotomy was 88 % at 12-months. There was a significant difference between the median concentrations of aMMP-9 in pulpal blood of teeth with normal pulps (52 (12-96) ng mL-1 :) and SIP (193.3 (25.8-607.7) ng mL-1 :) (P = 0.0003) and successful (132.3 (25.8-548.3) ng mL-1 :) and failed cases (512.4 (334.8-607.7 ng mL-1 :) (P = 0.0015) of MTA pulpotomy. A significant association was established between aMMP-9 concentration and outcome of pulpotomy. The area under the receiver operating characteristics curve (0.9484, 95%CI) suggested excellent discriminatory power of aMMP-9 concentration in pulpal blood to predict the pulpotomy outcome. CONCLUSION The pulpal blood concentration of aMMP-9 was significantly associated with the outcome of pulpotomy in teeth with symptomatic irreversible pulpitis, where it may be used as a potential prognostic biomarker.
Collapse
Affiliation(s)
- R Sharma
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - V Kumar
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - A Logani
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - A Chawla
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - R A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - S Sharma
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - M Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCDM. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod 2020; 45:e31. [PMID: 32839712 PMCID: PMC7431940 DOI: 10.5395/rde.2020.45.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were “matrix metalloproteinases”, “collagen”, and “dentin” and “hybrid layer”. MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
Collapse
Affiliation(s)
- Izadora Quintela Souza de Moraes
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Antonio Thomás da Silva
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Lilian Maria Santos Silva de Lira
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Isabel Cristina Celerino de Moraes Porto
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| |
Collapse
|
15
|
Cho YJ, Park JH, Chung GY, Shin HS. Facile Identification and Isolation of Protease Using SDS-PAGE and Zymography. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Kirchhain A, Poma N, Salvo P, Tedeschi L, Melai B, Vivaldi F, Bonini A, Franzini M, Caponi L, Tavanti A, Di Francesco F. Biosensors for measuring matrix metalloproteinases: An emerging research field. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
HPLC-MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis. J Pharm Biomed Anal 2017; 150:137-143. [PMID: 29223062 DOI: 10.1016/j.jpba.2017.11.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
Abstract
A quantitative analysis of zinc endopeptidases matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 3 (MMP3) from human blood serum are presented. Both matrix metalloproteinases (MMP) are present in human blood serum and can be used as biomarkers for different diseases. The analysis was performed using LC-MS/MS with a triple quadrupole mass spectrometer, based on two specific peptides of each MMP in comparison with an enzyme-linked immunosorbent assay (ELISA). While the conditions for the LC-MS/MS analysis of MMP9 peptides were previously reported for bronchoalveolar lavage fluid, the analysis of MMP3 peptides was newly quantified for human blood serum herein for the first time. For MMP3, the linear behaviour was determined in the concentration range from 1.0-200.0ng/mL (R2=0.997) with an LLOD of 0.5ng/mL. For MMP9, linearity was determined in the concentration range from 6.5-65.0ng/mL (R2=0.995) with an LLOD of 2.0ng/mL.
Collapse
|
18
|
Wu Y, Nizam MN, Ding X, Xu FJ. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomater Sci Eng 2017; 4:2018-2025. [DOI: 10.1021/acsbiomaterials.7b00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Yu Z, Zhou L, Zhang T, Shen R, Li C, Fang X, Griffiths G, Liu J. Sensitive Detection of MMP9 Enzymatic Activities in Single Cell-Encapsulated Microdroplets as an Assay of Cancer Cell Invasiveness. ACS Sens 2017; 2:626-634. [PMID: 28723167 DOI: 10.1021/acssensors.6b00731] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) are typically up-regulated in cancer cells, and play a critical role in assisting metastasis by the breakdown of the extracellular matrix. Here we report an effective strategy for cell invasiveness assay by integrating MMP9 functional activity analysis with single cell-encapsulated microdroplets. A flow focusing capillary microfluidic device has been assembled using "off-the-shelf" fluidic components for high-throughput generation of microdroplets. Tumor cells, MMP9 specific peptides, and other cofactors can be loaded into the device and encapsulated into individual droplets as dynamic microreactors for proteolytic cleavage of the substrate. This design allows for rapid and robust detection of MMP9 enzymatic activities by fluorescent signals in a few minutes. It represents the first demonstration of quantifying MMP9 enzymatic activities at the single cell level with a high throughput performance. This new technique promises functional evaluation of cancer cell invasiveness for important diagnostic or prognostic applications.
Collapse
Affiliation(s)
- Zhao Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ting Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Chenxi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xu Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Gareth Griffiths
- Imagen Therapeutics Ltd, Suite
4D Citylabs, Nelson Street, Manchester M13 9NQ, United Kingdom
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
20
|
Ricci S, D'Esposito V, Oriente F, Formisano P, Di Carlo A. Substrate-zymography: a still worthwhile method for gelatinases analysis in biological samples. Clin Chem Lab Med 2017; 54:1281-90. [PMID: 26641968 DOI: 10.1515/cclm-2015-0668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Matrix metallo-proteinases (MMPs) are a family of zinc-dependent endopeptidases, capable of degrading all the molecular components of extracellular matrix. A class of MMPs is gelatinases which includes gelatinase A or MMP-2 (72 kDa) and gelatinase B or MMP-9 (92 kDa), which have been shown to play critical roles in pathophysiology of many human disease and, in particular, cancer progression. For these reasons they obtained a great interest as potential non-invasive biomarker in providing useful clinical information in cancer diagnosis and therapy. A sensitive and unexpensive method for analysis of gelatinases is the gelatine zymography, which allows to measure the relative amounts of active and inactive enzymes in body fluids and tissue extracts. The procedure involves the electrophoretic separation of proteins under denaturing but non reducing conditions through a polyacrylamide gel containing a synthetic substrate (gelatin). The aim of this mini-review has been to describe the general principles of gelatine zymography technique, underling the main advantages and disadvantages. Even though an improvement of this method is necessary for a better applicability in laboratory medicine, gelatine zymography represents the most convenient method to detect the activity of the different gelatinases from a wide range of biological samples.
Collapse
|
21
|
Wu Y, Wang A, Ding X, Xu FJ. Versatile Functionalization of Poly(methacrylic acid) Brushes with Series of Proteolytically Cleavable Peptides for Highly Sensitive Protease Assay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:127-135. [PMID: 27959488 DOI: 10.1021/acsami.6b12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of new materials for fast and sensitive protease assay is in demand for timely diagnosis of diseases, such as cardiovascular disease, cancers, and Alzheimer disease. Herein, poly(methacrylic acid) (PMAA) brushes were synthesized from the surfaces of silica nanoparticles via surface-initiated atom transfer radical polymerization (ATRP), and functionalized with series of proteolytically cleavable peptides for highly sensitive protease assay. Upon the proteolytic cleavage of the peptides, a short peptide fragment with fluorescent tag (GGK-FITC) is released to the solution, which can be easily detected with a benchtop fluorescence microscope. The grafting densities of PMAA brushes and peptides can be readily tuned by controlling the monomer concentrations of sodium methacrylate in the ATRP reaction. Because of the three-dimensional architecture of PMAA brushes, the loading amount of peptides can reach 21.4% of the total weight of functionalized silica particles (22.4 peptides/nm2), which is much higher than direct immobilization on silica nanoparticles without polymer brushes. Because of the high loading density of peptides, the limit of detection (LOD) of trypsin can reach 1.4 pM in buffer solution or 2.6 nM in nondiluted serum. By rational design of peptide substrates, the peptide-functionalized PMAA brushes can be readily expanded to detect other proteases, such as matrix metalloproteinase-2 (MMP-2), a virtual biomarker for many cancers, with an LOD of 1.1 pM. The proteolytically cleavable peptide-functionalized PMAA brushes offer a starting point for fast and sensitive protease assay.
Collapse
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, §Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, and ⊥Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
22
|
Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release 2016; 240:323-331. [PMID: 26773768 PMCID: PMC4936964 DOI: 10.1016/j.jconrel.2016.01.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
As the most abundant protein in mammals and a major structural component in extracellular matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our body. Persistent disruption to the balance between collagen production and degradation can cause a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an overproduction of collagen which can cause excessive collagen accumulation in organs, common to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. Therefore, the ability to monitor the state of collagen is crucial for determining the presence and progression of numerous diseases. This review discusses the implications of collagen remodeling and its detection methods with specific focus on targeting native collagens as well as denatured collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
Collapse
Affiliation(s)
- Hendra Wahyudi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda A Reynolds
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Nossier AI, Mohammed OS, Fakhr El-Deen RR, Zaghloul AS, Eissa S. Gelatin-modified gold nanoparticles for direct detection of urinary total gelatinase activity: Diagnostic value in bladder cancer. Talanta 2016; 161:511-519. [PMID: 27769440 DOI: 10.1016/j.talanta.2016.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
Matrix metalloproteinases (MMPs), in particularly gelatinases (MMP-2 and MMP-9) were reported as urinary markers of bladder cancer. In this work, we developed a simple colorimetric gold nanoparticle (AuNP) assay for rapid and sensitive detection of urinary total gelatinase activity based on the surface plasmon resonance (SPR) property of AuNPs. Gelatin-modified AuNPs were stably suspended in solution even upon addition of an aggregation inducer as 6-mercaptohexan-1-ol (6-MCH). Gelatinases digest gelatin capping. Subsequently, addition of 6-MCH leads to AuNPs aggregation with red to blue color shift. In a pilot study, results of the developed AuNP assay were consistent with zymography for qualitative detection of urinary total gelatinase activity. The sensitivity and specificity of both assays were 80% and 90.9% respectively. The absorption ratios, A625/A530 of the reacted AuNP solutions were used to quantify the total gelatinase concentration. The best cut off value was 0.01895ng/μg protein, at which the sensitivity was 87.5% and the specificity was 86.4%. The developed AuNP assay is simple, low-cost and can aid non-invasive diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Ahmed I Nossier
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Ola S Mohammed
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University (girls), Cairo, Egypt
| | - Rasha R Fakhr El-Deen
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | | | - Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
24
|
Lazaro J, Izzo V, Meaume S, Davies A, Lobmann R, Uccioli L. Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence. J Wound Care 2016; 25:277-87. [DOI: 10.12968/jowc.2016.25.5.277] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- J.L. Lazaro
- University Podiatry Clinic, College of Medicine, Complutense University, Madrid, Spain
| | - V. Izzo
- Department of Systems Medicine - University of Tor Vergata - Roma, Italia
| | - S. Meaume
- Rothschild University Hospital, APHP, Paris, France
| | - A.H. Davies
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College School of Medicine, Charing Cross Hospital, London, UK
| | - R. Lobmann
- Department of Endocrinology, Diabetology and Geriatrics – Klinikum Bürgerhospital, Stuttgart, Germany
| | - L. Uccioli
- Department of Systems Medicine - University of Tor Vergata - Roma, Italia
| |
Collapse
|
25
|
Ding X, Yang KL. Quantitative serine protease assays based on formation of copper(ii)–oligopeptide complexes. Analyst 2015; 140:340-5. [DOI: 10.1039/c4an01731e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of a copper(ii)–oligopeptide complex is exploited for real-time detection of serine proteases.
Collapse
Affiliation(s)
- Xiaokang Ding
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
26
|
Wang Q, Yu Q, Lin Q, Duan Y. Emerging salivary biomarkers by mass spectrometry. Clin Chim Acta 2015; 438:214-21. [PMID: 25195008 DOI: 10.1016/j.cca.2014.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
|
27
|
Ghoorchian A, Chilkoti A, López GP. Simple assay for proteases based on aggregation of stimulus-responsive polypeptides. Anal Chem 2014; 86:6103-10. [PMID: 24832919 DOI: 10.1021/ac5012574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unregulated changes in protease activity are linked to many diseases including cancer. Fast, accurate, and low-cost assays for detection of these changes are being explored for early diagnosis and monitoring of these diseases and can also be used as platforms for the discovery of new drugs. We report a new methodology for the simple detection and quantification of protease activity in buffer and human serum. The assay is based on recombinant diblock polypeptides that undergo temperature- or salt-triggered micellization in water. The coronae of the micelles are linked to the water-insoluble cores by a peptide substrate that is cleaved in the presence of the target protease. Protease cleavage of the diblock polypeptide triggers the aggregation of the core-forming segment, leading to a change in solution optical density, which can be used to detect the presence of, and to quantify the concentration of, protease. We used matrix metalloproteinase-1 (MMP-1) as a model protease and found peptide aggregation time to be proportional to enzyme concentration over a range from endogenous MMP-1 level in human serum (∼3 ng/mL) to 100 ng/mL (0.15-5 nM) in 40% human serum and 1-100 ng/mL in buffer. The assay does not require any intermediate steps or sophisticated data analysis, and the modular design of the assay system is amenable to straightforward adaptation for the detection of a wide range of proteases.
Collapse
Affiliation(s)
- Ali Ghoorchian
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University , Durham, North Carolina 27708, United States
| | | | | |
Collapse
|
28
|
Dixit N, Settle JK, Ye Q, Berrie CL, Spencer P, Laurence JS. Grafting MAP peptide to dental polymer inhibits MMP-8 activity. J Biomed Mater Res B Appl Biomater 2014; 103:324-31. [PMID: 24889674 DOI: 10.1002/jbm.b.33205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022]
Abstract
Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.
Collapse
Affiliation(s)
- Namrata Dixit
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045-7609
| | | | | | | | | | | |
Collapse
|
29
|
Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 2013; 34:497-507. [DOI: 10.1016/j.tips.2013.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 11/22/2022]
|
30
|
Jiang F, Zhang JJ, Zhang JR, Zhu JJ. Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9. Analyst 2013; 138:1962-5. [DOI: 10.1039/c3an00006k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|