1
|
Schnarr L, Olsson O, Kümmerer K. Biodegradation of flavonoids - Influences of structural features. CHEMOSPHERE 2024; 359:142234. [PMID: 38705418 DOI: 10.1016/j.chemosphere.2024.142234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Flavonoids, a class of natural products with a variety of applications in nutrition, pharmacy and as biopesticides, could substitute more harmful synthetic chemicals that persist in the environment. To gain a better understanding of the biodegradability of flavonoids and the influence of structural features, firstly, the ultimate biodegradation of 19 flavonoids was investigated with the Closed Bottle Test according to the OECD guideline 301 D. Secondly, regarding the fast abiotic degradation reported for several flavonoids with severe concentration decrease within hours and its possible impacts on the processes behind the ultimate biodegradation, primary degradation of 4 selected flavonoids was compared at conditions representing biodegradation, abiotic degradation, and mixed substrates by monitoring the flavonoids' concentrations with HPLC-UV/vis. Our results showed that 17 out of the 19 tested flavonoids were readily biodegradable. Structural features like a hydroxy group at C3, the C2-C3 bond order, a methoxy group in the B ring, and the position of the B ring in regard to the chromene core did not affect biodegradation of the tested flavonoids. Only flavone without any hydroxy groups and morin with an uncommon 2',4' pattern of hydroxy groups were non-readily biodegradable. Monitoring the concentration of 4 selected flavonoids by HPLC-UV/vis revealed that biodegradation occurred faster than abiotic degradation at CBT conditions with no other carbon sources present. The presence of an alternative carbon source tends to increase lag phases and decrease biodegradation rates. At this condition, abiotic degradation contributed to the degradation of unstable flavonoids. Overall, as a first tier to assess the environmental fate, our results indicate low risks for persistence of most flavonoids. Thus, flavonoids could represent benign substitutes for persistent synthetic chemicals.
Collapse
Affiliation(s)
- Lena Schnarr
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education, International Sustainable Chemistry Collaborative Centre (ISC3), Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
2
|
Ncongwane TB, Ndinteh DT, Smit E. Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development. Anal Bioanal Chem 2023; 415:7151-7160. [PMID: 37804326 PMCID: PMC10684624 DOI: 10.1007/s00216-023-04981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Flavonoids are a class of secondary plant metabolites with low molecular weights. Most flavonoids are highly polar and unsuitable for gas chromatographic analyses. Derivatization is commonly used to make them amenable to gas chromatography by altering their physicochemical properties. Although highly effective, derivatization techniques introduce extra preparation steps and often use hazardous chemicals. The aim of this study was to automate derivatization (specifically, silylation) by developing 3D printed microfluidic devices in which derivatization of flavonoids can occur. A microfluidic device was designed and 3D printed using clear polypropylene. Quercetin and other flavonoids (TED 13 and ZTF 1016) isolated from plant extracts were silylated with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) at room temperature both in batch and in continuous flow. All the samples were analyzed using Fourier transform infrared (FTIR) spectroscopy, gas chromatography combined with mass spectrometry (GC-MS), and high-resolution accurate mass spectrometry (HR-MS). Interestingly, the HR-MS results showed that the flow method was about 25 times more efficient than the batch method for quercetin samples. The TED 13 flavonoid was completely derivatized in the flow method compared to the batch method where the reaction was incomplete. Similar results were observed for ZTF 1016, where the flow method resulted in a four times derivatized compound, while the compound was only derivatized once in batch. In conclusion, 3D printed microfluidic devices have been developed and used to demonstrate a semi-automated, inexpensive, and more efficient natural product derivatization method based on continuous flow chemistry as an alternative to the traditional batch method.
Collapse
Affiliation(s)
- Thabang Bernette Ncongwane
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa
| | - Derek Tantoh Ndinteh
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa
| | - Elize Smit
- Center for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Auckland Park, PO Box 524, Johannesburg, South Africa.
| |
Collapse
|
3
|
Yang M, Li J, Zhao C, Xiao H, Fang X, Zheng J. LC-Q-TOF-MS/MS detection of food flavonoids: principle, methodology, and applications. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34672231 DOI: 10.1080/10408398.2021.1993128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flavonoids have been attracting increasing research interest because of their multiple health promoting effects. However, many flavonoids with similar structures are present in foods, often at low concentrations, which increases the difficulty of their separation and identification. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-TOF-MS/MS) has become one of the most widely used techniques for flavonoid detection. LC-Q-TOF-MS/MS can achieve highly efficient separation by LC; it also provides structural information regarding flavonoids by Q-TOF-MS/MS. This review presents a comprehensive summary of the scientific principles and detailed methodologies (e.g., qualitative determination, quantitative determination, and data processing) of LC-Q-TOF-MS/MS specifically for food flavonoids. It also discusses the recent applications of LC-Q-TOF-MS/MS in determination of flavonoid types and contents in agricultural products, changes in their structures and contents during food processing, and metabolism in vivo after consumption. Moreover, it proposes necessary technological improvements and potential applications. This review would facilitate the scientific understanding of theory and technique of LC-Q-TOF-MS/MS for flavonoid detection, and promote its applications in food and health industry.
Collapse
Affiliation(s)
- Minke Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Juan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Province Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Krakowska-Sieprawska A, Rafińska K, Walczak-Skierska J, Kiełbasa A, Buszewski B. Promising Green Technology in Obtaining Functional Plant Preparations: Combined Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids Isolation from Medicago Sativa Leaves. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2724. [PMID: 34064166 PMCID: PMC8196795 DOI: 10.3390/ma14112724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
To elaborate a complete extraction protocol for the enhanced release of biologically active compounds from plant cells, this study aimed to optimize together the parameters of the supercritical fluid extraction (SFE) process (temperature, pressure, and percentage of cosolvent) and enzymatic treatment of plant material (pH, enzyme concentration, time, and temperature) by response surface methodology (RSM). Medicago sativa L. was selected as a plant material due to its richness in phenolics and flavonoids. HPLC-MS/MS analysis allowed evaluating the content of individual bioactive compounds in obtained extracts. The total content of polyphenolic compounds in the extract obtained after two-step optimization was much higher (546 ± 21 µg/g) than in the extract obtained from non-hydrolyzed material (275 ± 23 µg/g) and in the extract obtained by maceration (162 ± 20 µg/g). Furthermore, it was evidenced that extract with the highest content of polyphenolic compounds can support the cellular antioxidant system both as a free radical scavenger and by stimulating the antioxidant enzyme system.
Collapse
Affiliation(s)
- Aneta Krakowska-Sieprawska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Justyna Walczak-Skierska
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| | - Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (K.R.); (A.K.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wilenska 4 St., PL-87100 Torun, Poland;
| |
Collapse
|
5
|
Beszterda M, Frański R. Electrospray ionisation mass spectrometric behaviour of flavonoid 5-O-glucosides and their positional isomers detected in the extracts from the bark of Prunus cerasus L. and Prunus avium L. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:433-439. [PMID: 32929795 DOI: 10.1002/pca.2991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Literature data concerning the electrospray ionisation mass spectrometry (ESI-MS) behaviour of flavonoid 5-O-glycosides are poor and sometimes disputable. Therefore, we decided to analyse the compounds of this kind present in the bark of Prunus cerasus and Prunus avium by using high-performance liquid chromatography HPLC/ESI-MS. OBJECTIVE The aim of this study is to obtain the comprehensive information about the ESI-MS(+/-) behaviour of flavonoid 5-O-glucosides, to compare their behaviour with that of their positional isomers, to confirm that the known susceptibility of flavonoid 5-O-glucosides to hydrolysis may be successfully used for their identification. METHOD The bark from Prunus trees was extracted with pure methanol or, in order to perform hydrolysis and extraction simultaneously, with 5% methanolic solution of hydrochloric acid. The HPLC-ESI-MS analyses were performed using a Waters model 2690 HPLC pump and Waters/Micromass ZQ2000 mass spectrometer. RESULTS Flavonoid 5-O-glycosides were completely hydrolysed under the acid conditions used, in contrast to their positional isomers. In positive ion mode, at low cone voltage, flavonoid 5-O-glycosides yield abundant Y0 + aglycone ions, in contrast to their positional isomers. In the negative ion mode, flavonoid 5-O-glycosides do not yield [Y0 - H]-· fragment ions, in contrast to their positional isomers. When aglycone contains only two hydroxyl groups, the flavonoid 5-O-glycosides can be detected in negative ion mode, whereas their positional isomers do not yield [M - H]- ions. CONCLUSION It has been demonstrated that the susceptibility to hydrolysis of the analysed compounds, the abundances of respective fragment ions formed, and their ESI(-) response allow unambiguous identification of flavonoid 5-O-glycosides and their differentiation from their positional isomers.
Collapse
Affiliation(s)
- Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
7
|
Bian Y, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in the Pretreatment and Analysis of Flavonoids: An Update since 2013. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1801469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Simultaneous determination of formononetin, biochanin A and their active metabolites in human breast milk, saliva and urine using salting-out assisted liquid-liquid extraction and ultra high performance liquid chromatography-electrospray ionization tandem mass spectrum. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122108. [DOI: 10.1016/j.jchromb.2020.122108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
|
9
|
Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives. Biomolecules 2019; 9:biom9110731. [PMID: 31726801 PMCID: PMC6921003 DOI: 10.3390/biom9110731] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Luteolin is a flavonoid often found in various medicinal plants that exhibits multiple biological effects such as antioxidant, anti-inflammatory and immunomodulatory activity. Commercially available medicinal plants and their preparations containing luteolin are often used in the treatment of hypertension, inflammatory diseases, and even cancer. However, to establish the quality of such preparations, appropriate analytical methods should be used. Therefore, the present paper provides the first comprehensive review of the current analytical methods that were developed and validated for the quantitative determination of luteolin and its C- and O-derivatives including orientin, isoorientin, luteolin 7-O-glucoside and others. It provides a systematic overview of chromatographic analytical techniques including thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), liquid chromatography (LC), high performance liquid chromatography (HPLC), gas chromatography (GC) and counter-current chromatography (CCC), as well as the conditions used in the determination of luteolin and its derivatives in plant material.
Collapse
|
10
|
Jandera P, Janás P, Škeříková V, Urban J. Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography. J Sep Sci 2017; 40:1434-1448. [DOI: 10.1002/jssc.201601044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Petr Janás
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Veronika Škeříková
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
11
|
Barsukova ME, Tokareva AI, Buslova TS, Malinina LI, Veselova IA, Shekhovtsova TN. Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|
13
|
Llorent-Martínez EJ, Molina-García L, Ruiz-Medina A, Ortega-Barrales P. Quantitation of Selected Polyphenols in Plant-Based Food Supplements by Liquid Chromatography–Ion Trap Mass Spectrometry. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9858-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Xiao S, Luo K, Wen X, Fan X, Cheng Y. A pre-classification strategy for identification of compounds in traditional Chinese medicine analogous formulas by high-performance liquid chromatography–Mass spectrometry. J Pharm Biomed Anal 2014; 92:82-9. [DOI: 10.1016/j.jpba.2013.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/24/2022]
|