1
|
Kontrec D, Jurin M, Jakas A, Roje M. New Levan-Based Chiral Stationary Phases: Synthesis and Comparative HPLC Enantioseparation of (±)- trans-β-Lactam Ureas in the Polar Organic Mode. Molecules 2024; 29:2213. [PMID: 38792075 PMCID: PMC11124272 DOI: 10.3390/molecules29102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this paper, the preparation of three new polysaccharide-type chiral stationary phases (CSPs) based on levan carbamates (3,5-dimethylphenyl, 4-methylphenyl, and 1-naphthyl) is described. The enantioseparation of (±)-trans-β-lactam ureas 1a-h was investigated by high-performance liquid chromatography (HPLC) on six different chiral columns (Chiralpak AD-3, Chiralcel OD-3, Chirallica PST-7, Chirallica PST-8, Chirallica PST-9, and Chirallica PST-10) in the polar organic mode, using pure methanol (MeOH), ethanol (EtOH), and acetonitrile (ACN). Apart from the Chirallica PST-9 column (based on levan tris(1-naphthylcarbamate), the columns exhibited a satisfactory chiral recognition ability for the tested trans-β-lactam ureas 1a-h.
Collapse
Affiliation(s)
| | - Mladenka Jurin
- Laboratory for Chiral Technologies, Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (D.K.); (A.J.)
| | | | - Marin Roje
- Laboratory for Chiral Technologies, Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia; (D.K.); (A.J.)
| |
Collapse
|
2
|
Adachi K, Azakami H, Yamauchi M, Koshoji M, Yamamoto A, Tanaka S. Cyclodextrin-Assisted Surface-Enhanced Photochromic Phenomena of Tungsten(VI) Oxide Nanoparticles for Label-Free Colorimetric Detection of Phenylalanine. ACS OMEGA 2024; 9:18957-18972. [PMID: 38708261 PMCID: PMC11064177 DOI: 10.1021/acsomega.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024]
Abstract
Herein are presented the results of experiments designed to evaluate the effectiveness of host-guest interactions in improving the sensitivity of colorimetric detection based on surface-enhanced photochromic phenomena of tungsten(VI) oxide (WO3) nanocolloid particles. The UV-induced photochromic coloration of WO3 nanocolloid particles in the presence of aromatic α-amino acid (AA), l-phenylalanine (Phe) or l-2-phenylglycine (Phg), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCDx) in an aqueous system was investigated using UV-vis absorption spectrometry. The characteristics of the adsorption modes and configurations of AAs on the WO3 surface have also been identified by using a combination of adsorption isotherm analysis and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). A distinct linear relationship was observed between the concentration of AAs adsorbed on the WO3 nanocolloid particles and the initial photochromic coloration rate in the corresponding UV-irradiated colloidal WO3 in aqueous media, indicating that a simple and sensitive quantification of AAs can be achieved from UV-induced WO3 photochromic coloration without any complicated preprocessing. The proposed colorimetric assay in the Phe/TMβCDx/WO3 ternary aqueous system had a linear range of 1 × 10-8 to 1 × 10-4 mol dm-3 for Phe detection, with a limit of detection of 8.3 × 10-9 mol dm-3. The combined results from UV-vis absorption, ATR-FTIR, and adsorption isotherm experiments conclusively indicated that the TMβCDx-complexed Phe molecules in the Phe/TMβCDx/WO3 ternary aqueous system are preferentially and strongly inner-sphere adsorbed on the WO3 surface, resulting in a more significant surface-enhanced photochromic phenomenon. The findings in this study provided intriguing insights into the design and development of the "label-free" colorimetric assay system based on the surface-enhanced photochromic phenomenon of the WO3 nanocolloid probe.
Collapse
Affiliation(s)
- Kenta Adachi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hiro Azakami
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Miyuki Yamauchi
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Moeka Koshoji
- Department
of Chemistry, Faculty of Science, Yamaguchi
University, Yamaguchi 753-8512, Japan
| | - Asami Yamamoto
- Department
of Environmental Science & Engineering, Graduate School of Science
& Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Shohei Tanaka
- Department
of Chemistry, Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
3
|
Fan J, Chen M, Liu C, Li J, Yu A, Zhang S. A free carboxyl-decorated metal-organic framework with 3D helical chirality for highly enantioselective recognition. Talanta 2024; 268:125255. [PMID: 37844431 DOI: 10.1016/j.talanta.2023.125255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
With the judicious selection of a designed polycarboxylate derived from L-phenylalanine, (S)-5-(((1-carboxy-2-phenylethyl)amino)methyl)isophthalic acid (H3L), a novel homochiral metal-organic framework decorated with a free carboxyl, {[Cu2(HL)2(bipy)]∙2H2O}n (Cu-MOF), has been designed and synthesized in a solvothermal process. The result of single crystal X-ray diffraction analysis showed that Cu-MOF had the character of a three-dimensional structure with helical chirality. As we expected, in Cu-MOF, one accessible free carboxylic acid group on H3L pointed toward the spiral channels, and the other two -COOH groups were utilized in bonding. The enantioseparation performance of Cu-MOF was thoroughly investigated and the results showed that Cu-MOF can specifically recognize S-1-(1-naphthyl) ethanol (S-NE) with enantiomeric excess (ee) value of 99.35 %, which was much higher than the other three racemates. The appropriate size together with suitable interaction sites played an important role in enantioseparations. Inspired by the excellent chiral recognition effects towards S-NE, the chiral recognition mechanism was experimentally clarified. A fully agreement observed in 13C CP MAS NMR analysis as well as the X-ray photoelectron spectroscopy (XPS) determination revealed that a strong hydrogen bonding interaction forces existed between the hydroxyl of the optical S-NE and the decorated -COOH in the chiral framework. The control experiment further identified the decisive role of the uncoordinated carboxyl group in Cu-MOF. In addition, the strong intermolecular off-set π-π interactions between the phenyl ring involved with the coordinated COO- groups in Cu-MOF and the naphthyl ring of S-NE, was the another important factor for the specifical enantioseparation of S-enantiomer. On the basis of strong intermolecular hydrogen bonding, NE racemates were enantioselective discriminated and enantiomeric purity can be determined by means of Raman scattering spectroscopy.
Collapse
Affiliation(s)
- Jiayi Fan
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Miao Chen
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Chunyan Liu
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Jinfan Li
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China.
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
4
|
Alhawiti AS. Design of molecularly imprinted resin material with sulfonic acid functionalization for enantioseparation of (±)-cathine. Chirality 2023; 35:766-778. [PMID: 37227057 DOI: 10.1002/chir.23594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
In the current work, an enantioselective imprinting technique was used to develop a very selective adsorbent for the (+)-cathine ((+)-Cat) enantiomer. The phenolic sulfonamide produced from 2,4-dihydroxybenzenesulfonic acid (HBS) and (+)-Cat ((+)-Cat-HBS) was initially synthesized by triphenylphosphene activation and subsequently involved in condensation polymerization with resorcinol in the presence of formaldehyde under acidic conditions. Alkaline sulfonamide bond-breaking was subsequently employed to separate the (+)-Cat template from the polymer, and the resulting imprinted resin ((+)-CIP) displayed high selectivity for the (+)-Cat, with a capacity of 225 ± 2 mg/g. Studies of selectivity also showed that the (+)-Cat enantiomer was preferred over its counterpart because of the development of configurationally matching receptors. In addition, the produced resin was used for the enantioresolution of (±)-Cat racemate by column method, yielding a loading supernatant solution with an enantiomeric excess of (+)-Cat 50% and a recovery eluant solution with an excess of (-)-Cat 85%.
Collapse
Affiliation(s)
- Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Yuan S, Zhao L, Wang F, Tan L, Wu D. Recent advances of optically active helical polymers as adsorbents and chiral stationary phases for chiral resolution. J Sep Sci 2023; 46:e2300363. [PMID: 37480172 DOI: 10.1002/jssc.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Fangqin Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Szabó ZI, Boda F, Fiser B, Dobó M, Szőcs L, Tóth G. Chiral Separation of Oxazolidinone Analogs by Capillary Electrophoresis Using Anionic Cyclodextrins as Chiral Selectors: Emphasis on Enantiomer Migration Order. Molecules 2023; 28:molecules28114530. [PMID: 37299005 DOI: 10.3390/molecules28114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Comparative chiral separations of enantiomeric pairs of four oxazolidinone and two related thio-derivatives were performed by capillary electrophoresis, using cyclodextrins (CDs) as chiral selectors. Since the selected analytes are neutral, the enantiodiscrimination capabilities of nine anionic CD derivatives were determined, in 50 mM phosphate buffer pH = 6. Unanimously, the most successful chiral selector was the single isomeric heptakis-(6-sulfo)-β-cyclodextrin (HS-β-CD), which resulted in the highest enantioresolution values out of the CDs applied for five of the six enantiomeric pairs. The enantiomer migration order (EMO) was the same for two enantiomeric pairs, irrespective of the CD applied. However, several examples of EMO reversals were obtained in the other cases. Interestingly, changing from randomly substituted, multi-component mixtures of sulfated-β-CD to the single isomeric chiral selector, enantiomer migration order reversal occurred for two enantiomeric pairs and similar observations were made when comparing heptakis-(2,3-di-O-methyl-6-O-sulfo)-β-CD, (HDMS-β-CD) with HS-β-CD. In several cases, cavity-size-dependent, and substituent-dependent EMO reversals were also observed. Minute differences in the structure of the analytes were also responsible for several cases of EMO reversal. The present study offers a complex overview of the chiral separation of structurally related oxazolidinones, and thio-analogs, highlighting the importance of the adequate choice of chiral selector in this group of compounds, where enantiomeric purity is of utmost importance.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
- Sz-imfidum Ltd., Lunga nr. 504, 525401 Covasna, Romania
| | - Francisc Boda
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Egyetemváros, H-3515 Miskolc, Hungary
- Ferenc Rákóczi II. Transcarpathian Hungarian Institute, 90200 Beregszász, Transcarpathia, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-149 Łódź, Poland
| | - Máté Dobó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| | - Levente Szőcs
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| |
Collapse
|
8
|
You H, Chen B, Fang L, Lin T, Xu P, Chu C, Tong S. Analytical enantioseparation of N-alkyl drugs by reversed-phase liquid chromatography with carboxymethyl-β-cyclodextrin as mobile phase additive. Chirality 2023; 35:58-66. [PMID: 36345792 DOI: 10.1002/chir.23516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Carboxymethyl-β-cyclodextrins (CM-β-CDs) with five kinds of degrees of substitution were synthesized and characterized. Analytical enantioseparation of six basic drugs containing N-alkyl groups, including pheniramine, chlorpheniramine, labetalol, propranolol, venlafaxine, and trans-paroxol, was achieved by reversed-phase high-performance liquid chromatography (RP-HPLC) using the synthesized CM-β-CD as chiral mobile phase additives. Key influence factors were optimized, including organic modifier, pH value, CM-β-CD with different degrees of substitution, and concentration of CM-β-CD. The mobile phase was composed of methanol and 10 mmol L-1 of phosphate buffer pH 4.0 containing 10 mmol L-1 of CM-β-CD. Peak resolution for six racemic drugs was gradually increased with an increasing degree of substitution of the synthesized CM-β-CD. The stoichiometric ratio and binding constants for the inclusion complex formed by CM-β-CD and enantiomer were determined, which showed that the stoichiometric ratio for each inclusion complex was 1:1.
Collapse
Affiliation(s)
- Haibo You
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ben Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Liqun Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Tingting Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
9
|
Kaya C, Birgül K, Bülbül B. Fundamentals of chirality, resolution, and enantiopure molecule synthesis methods. Chirality 2023; 35:4-28. [PMID: 36366874 DOI: 10.1002/chir.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The chirality of molecules is a concept that explains the interactions in nature. We may observe the same formula but different organizations revolving around the chiral center. Since Pasteur's meticulous observation of sodium ammonium tartrate crystals' structure, scientists have discovered many features of chiral molecules. The number of newly approved single enantiomeric drugs increases every year and takes place in the market. Thus, separation or resolution methods of racemic mixtures are of continued importance in the efficacy of drugs, installation of affordable production processes, and convenient synthetic chemistry practice. This article presents the asymmetric synthesis approaches and the classification of direct resolution methods of chiral molecules.
Collapse
Affiliation(s)
- Cem Kaya
- Department of Pharmacy, Haydarpasa Numune Training and Research Hospital, İstanbul, Turkey.,Department of Pharmaceutical Chemistry, School of Pharmacy, Altınbaş University, İstanbul, Turkey
| | - Kaan Birgül
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Turkey
| | - Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Düzce, Turkey
| |
Collapse
|
10
|
Liu J, Zhang J, Zhu D, Zhu X, Du Y, Ma X, Feng Z, Sun X, Xu H. Establishment and Molecular Modeling Study of Cyclodextrin-Based Synergistic Enantioseparation Systems with Three New Amino Acid Chiral Ionic Liquids as Additives in Capillary Electrophoresis. J Chromatogr Sci 2022; 60:984-990. [PMID: 35662327 DOI: 10.1093/chromsci/bmac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Chiral ionic liquids (CILs) have attracted more and more attention due to their superior performance as chiral additives in capillary electrophoresis. In this work, based on the cyclodextrin (CD) derivatives and three new amino acid CILs (trifluoroacetate-L-Hydroxyproline, nitric acid-L-Hydroxyproline and trifluoroacetate-L-threonine), the new synergistic systems were established for chiral drug separation. In contrast to the traditional single glucosyl-β-CD (Glu-β-CD) separation system, the CIL/Glu-β-CD synergistic systems achieved improved resolution of three model drug racemates. Some experimental variables, such as CIL concentration, Glu-β-CD concentration, buffer pH, applied voltage, and the type and proportion of organic modifier, were optimized in the trifluoroacetate-L-Hydroxyproline/Glu-β-CD synergistic system. In addition, the recognition process in the synergistic system was studied through the molecular modeling method.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dongyang Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hui Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
11
|
Chen B, Lin T, You H, Fang L, Chu C, Yang J, Tong S. Preparation of Sulfobutylether-β-cyclodextrin Bonded Fe3O4/SiO2 Core-Shell Nanoparticles and its Application in Enantioselective Liquid-Liquid Extraction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wu D, Tan L, Ma C, Pan F, Cai W, Li J, Kong Y. Competitive Self-Assembly Interaction between Ferrocenyl Units and Amino Acids for Entry into the Cavity of β-Cyclodextrin for Chiral Electroanalysis. Anal Chem 2022; 94:6050-6056. [PMID: 35389624 DOI: 10.1021/acs.analchem.2c00777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At present, chiral electroanalysis of nonelectroactive chiral compounds still remains a challenge because they cannot provide an electrochemical signal by themselves. Here, a strategy based on a competitive self-assembly interaction of a ferrocene (Fc) unit and the testing isomers entering into the cavity of β-cyclodextrin (β-CD) was carried out for chiral electroanalysis. First of all, the Fc derivative was directly bridged to silica microspheres, followed by inclusion into the cavity of β-CD. As expected, once it was modified onto the surface of a carbon working electrode as an electrochemical sensor, SiO2@Fc-CD-WE, its differential pulse voltammetry signal would markedly decrease compared with the uncovered Fc. Next, when l- and d-isomers of amino acids that included histidine, threonine, phenylalanine, and glutamic acid were examined using SiO2@Fc-CD-WE, it showed an enantioselective entry of amino acids into the cavity of β-cyclodextrin instead of Fc, resulting in the release of Fc with signal enhancement. For histidine, glutamic acid, and threonine, l-isomers showed a higher peak current response compared with d-isomers. The peak current ratios between l- and d-isomers were 2.88, 1.21, and 1.40, respectively. At the same time, the opposite phenomenon occurred for phenylalanine with a peak current ratio of 3.19 between d- and l-isomers. In summary, we are assured that the recognition strategy based on the supramolecular interaction can enlarge the detection range of chiral compounds by electrochemical analysis.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lilan Tan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
13
|
Chen B, You H, Fang L, Lin T, Xu P, Chu C, Tong S. Enantioseparation of Five Racemic N-alkyl Drugs by Reverse Phase HPLC Using Sulfobutylether-β-cyclodextrin as Chiral Mobile Phase Additive. J Sep Sci 2022; 45:1847-1855. [PMID: 35322921 DOI: 10.1002/jssc.202200004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022]
Abstract
Analytical enantioseparations of five N-alkyl drugs, fluoxetine hydrochloride, labetalol, venlafaxine hydrochloride, trans-paroxol and atropine sulfate, were investigated by RP-HPLC with sulfobutylether-β-cyclodextrin as chiral mobile phase additive. Effects of various factors such as composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. Apparent formation constant between methanol, acetonitrile and sulfobutylether-β-cyclodextrin were determined to be 2.90 × 10-3 and 1.00 × 10-4 L mmol-1 under 25 °C using UV-spectrophotometry. Van't Hoff plots were used to investigate thermodynamic parameters for enantiomers-stationary phase interaction and formation of inclusion complex. Two retention models were employed individually for evaluation of inclusion complexation between five racemates and sulfobutylether-β-cyclodextrin. The second model with complex adsorption was more accord with the retention behavior of fluoxetine hydrochloride, labetalol and venlafaxine hydrochloride enantiomers, while the first model was more consistent with the retention behaviors of trans-paroxol and atropine sulfate. In the selected mobile phase, stoichiometric ratio for both of inclusion complex was found to be 1:1. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haibo You
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Liqun Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Tingting Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
14
|
Sairanova NI, Gainullina YY. A Chiral Stationary Phase Based on Guanine Conglomerates Obtained under Viedma Ripening Conditions. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Fejős I, Kalydi E, Kukk EL, Seggio M, Malanga M, Béni S. Single Isomer N-Heterocyclic Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis. Molecules 2021; 26:5271. [PMID: 34500704 PMCID: PMC8434369 DOI: 10.3390/molecules26175271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
In order to better understand the chiral recognition mechanisms of positively charged cyclodextrin (CD) derivatives, the synthesis, the pKa determination by 1H nuclear magnetic resonance (NMR)-pH titration and a comparative chiral capillary electrophoretic (CE) study were performed with two series of mono-substituted cationic single isomer CDs. The first series of selectors were mono-(6-N-pyrrolidine-6-deoxy)-β-CD (PYR-β-CD), mono-(6-N-piperidine-6-deoxy)-β-CD (PIP-β-CD), mono-(6-N-morpholine-6-deoxy)-β-CD (MO-β-CD) and mono-(6-N-piperazine-6-deoxy)-β-CD (PIPA-β-CD), carrying a pH-adjustable moiety at the narrower rim of the cavity, while the second set represented by their quaternarized, permanently cationic counterparts: mono-(6-N-(N-methyl-pyrrolidine)-6-deoxy)-β-CD (MePYR-β-CD), mono-(6-N-(N-methyl-piperidine)-6-deoxy)-β-CD (MePIP-β-CD), mono-(6-N-(N-methyl-morpholine)-6-deoxy)-β-CD (MeMO-β-CD) and mono-(6-N-(4,4-N,N-dimethyl-piperazine)-β-CD (diMePIPA-β-CD). Based on pH-dependent and selector concentration-dependent comparative studies of these single isomer N-heterocyclic CDs presented herein, it can be concluded that all CDs could successfully be applied as chiral selectors for the enantiodiscrimination of several negatively charged and zwitterionic model racemates. The substituent-dependent enantiomer migration order reversal of dansylated-valine using PIP-β-CD contrary to PYP-β-CD, MO-β-CD and PIPA-β-CD was also studied by 1H- and 2D ROESY NMR experiments.
Collapse
Affiliation(s)
- Ida Fejős
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (I.F.); (E.K.); (E.L.K.)
| | - Eszter Kalydi
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (I.F.); (E.K.); (E.L.K.)
| | - Edit Luca Kukk
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (I.F.); (E.K.); (E.L.K.)
| | - Mimimorena Seggio
- ChemPhotoLab, Department of Drug Sciences and Health, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy;
| | - Milo Malanga
- CycloLab Cyclodextrin R&D Ltd., Illatos út 7, H-1097 Budapest, Hungary;
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (I.F.); (E.K.); (E.L.K.)
| |
Collapse
|
16
|
Xu W, Li X, Wang L, Li S, Chu S, Wang J, Li Y, Hou J, Luo Q, Liu J. Design of Cyclodextrin-Based Functional Systems for Biomedical Applications. Front Chem 2021; 9:635507. [PMID: 33681149 PMCID: PMC7931691 DOI: 10.3389/fchem.2021.635507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cyclodextrins (CDs) are a family of α-1,4-linked cyclic oligosaccharides that possess a hydrophobic cavity and a hydrophilic outer surface with abundant hydroxyl groups. This unique structural characteristic allows CDs to form inclusion complexes with various guest molecules and to functionalize with different substituents for the construction of novel sophisticated systems, ranging from derivatives to polymers, metal-organic frameworks, hydrogels, and other supramolecular assemblies. The excellent biocompatibility, selective recognition ability, and unique bioactive properties also make these CD-based functional systems especially attractive for biomedical applications. In this review, we highlight the characteristics and advantages of CDs as a starting point to design different functional materials and summarize the recent advances in the use of these materials for bioseparation, enzymatic catalysis, biochemical sensing, biomedical diagnosis and therapy.
Collapse
Affiliation(s)
- Wanjia Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shengnan Chu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiachun Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zeng Y, Wang Y, Liang Z, Jiao Z. The study of chiral recognition on ibuprofen enantiomers by a fluorescent probe based on β-cyclodextrin modified ZnS:Mn quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119002. [PMID: 33035885 DOI: 10.1016/j.saa.2020.119002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a fluorescence method for chiral detection of ibuprofen and its enantiomer was developed. The L-cystenine-capped ZnS:Mn quantum dots were synthesized and functionalized with β-cyclodextrin (β-CD-QDs). The β-CD-QDs exhibited different quenching effect to the S-(+)-ibuprofen and the R-(-)-ibuprofen based on the advantage of the inclusion complex of cyclodextrin. It was found that the quenching of β-CD-QDs by S-(+)-ibuprofen was due to the formation of inclusion complex through both static quenching and photoinduced electron transfer, but only slight quenching with the R-(-)-ibuprofen. The stability constants derived from Hildebrand-Benesi method and absorption titration experiments were applied to determine the stability constants of the formed complexes, the double reciprocal plots suggest that a conclusion complex with a ratio of 1:1 was formed between β-CD-QDs and S-(+)-ibuprofen, but did not with the R-(-)-ibuprofen. The fluorescence intensity of the β-CD-QDs was linearly dependent on the concentration of the S-(+)-IBP in the range of 0-0.5 nmol/L with an limit of detection of 0.29 nmol/L.
Collapse
Affiliation(s)
- Yanyan Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yueting Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhihui Liang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhe Jiao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
18
|
Jameson CJ, Wang X, Murad S. Molecular dynamics simulations of enantiomeric separations as an interfacial process in
HPLC. AIChE J 2021. [DOI: 10.1002/aic.17143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cynthia J. Jameson
- Department of Chemistry University of Illinois at Chicago Chicago Illinois USA
| | - Xiaoyu Wang
- Department of Chemical and Biological Engineering Illinois Institute of Technology Chicago Illinois USA
| | - Sohail Murad
- Department of Chemical and Biological Engineering Illinois Institute of Technology Chicago Illinois USA
| |
Collapse
|
19
|
Ke J, Yang K, Bai X, Luo H, Ji Y, Chen J. A novel chiral polyester composite membrane: Preparation, enantioseparation of chiral drugs and molecular modeling evaluation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2020; 224:121794. [PMID: 33379023 DOI: 10.1016/j.talanta.2020.121794] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Since chiral recognition mechanism based on molecularly imprinted polymers immerged, it has assisted countless chemical and electrochemical analytical sample preparation techniques. It has done this by enhancing the enatioseparation abilities of these techniques. The preparation and optimization of chiral molecularly imprinted polymers (CMIPs) are two favored methods in the separation and sensor fields. This review aims to present an overview of advances in the preparation and application of CMIPs in analytical approaches in different available formats (eg. column, monolithic column, cartridge, membrane, nanomaterials, pipette tip and stir bar sorptive) over the last decade. In addition, progress in the preparation and development of CMIPs-based sensor fields have been also discussed. Finally, the main application challenges of CMIPs are also summarily explained, as well as upcoming prospects in the field.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, Akademiska stråket 1, S-171 64, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Akademiska stråket 1, S-171 77, Stockholm, Sweden.
| |
Collapse
|
21
|
Application of chiral chromatography in radiopharmaceutical fields: A review. J Chromatogr A 2020; 1632:461611. [PMID: 33086153 DOI: 10.1016/j.chroma.2020.461611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Chiral column chromatography (CCC) is a revolutionary analytical methodology for the enantioseparation of novel positron emission tomography (PET) tracers in the primary stages of drug development. Due to the different behaviors of tracer enantiomers (e.g. toxicity, metabolism and side effects) in administrated subjects, their separation and purification is a challenging endeavor. Over the last three decades, different commercial chiral columns have been applied for the enantioseparation of PET-radioligand (PET-RL) or radiotracers (PET-RT), using high-performance liquid chromatography (HPLC). The categorization and reviewing of them is a vital topic. This review presents a brief overview of advances, applications, and future prospectives of CCC in radiopharmaceutical approaches. In addition, the effective chromatographic parameters and degravitation trends to enhance enantioseparation resolution are addressed. Moreover, the application and potential of chiral super fluidical chromatography (CSFC) as an alternative for enantioseparation in the field of radiopharmaceutical is discussed. Finally, the crucial application challenges of CCC are explained and imminent tasks are suggested.
Collapse
|
22
|
Gus’kov VY, Gainullina YY, Musina RI, Zaripova AI, Pavlova IN. The emergence of chirality in cyanuric acid conglomerates by Viedma ripening: Surface characterization, chirality assessment and applications in chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1723030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Shuang Y, Liao Y, Zhang T, Li L. Preparation and evaluation of an ethylenediamine dicarboxyethyl diamido-bridged bis(β-cyclodextrin)-bonded chiral stationary phase for high performance liquid chromatography. J Chromatogr A 2020; 1619:460937. [PMID: 32063276 DOI: 10.1016/j.chroma.2020.460937] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/25/2022]
Abstract
An ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-cyclodextrin) was firstly synthesized through the reaction of 6-deoxy-6-amino-β-cyclodextrin (NH2-CD) with ethylenediaminetetraacetic dianhydride. Then it was bonded onto the surface of silica gel SBA-15 to obtain an ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-CD)-bonded chiral stationary phase (EBCDP). The structures of the bridged bis(β-CD) and EBCDP were characterized by infrared spectroscopy, mass spectrometry, elemental analysis and thermogravimetric analysis, accordingly. The chiral chromatographic performances of EBCDP were systematically evaluated by separating 28 racemic analytes in the reversed-phase or polar organic mode, including eight flavanones, eight bolckers, five dansyl-amino acids, three DL-amino acids and four other common drugs. As a result, the relatively high enantioselectivity of EBCDP was observed in comparison with a native β-CD-CSP (CDSP). All selected analytes were separated on EBCDP, of which 20 analytes had resolutions up to baseline, 2'-hydroxyflavanone and arotinolol had resolutions up to 4.35 and 2.05 in about 30 min, respectively, whereas CDSP only separated 11 analytes with low resolutions (0.55~1.69). Moreover, EBCDP was able to utilize the complexation of the bridging linker (ethylenediamine dicarboxyethyl diamide group, EDTA-based) to realize direct separations of DL-amino acids with a mobile phase containing copper ion (Cu2+), which was similar to the chiral ligand exchange chromatography. Unlike the native cyclodextrin with small cavity (~242 Å3), the bridged bis(β-CD) combined two β-CD units with a bridging linker, having a well-organized "pseudo-cavity" as an organic whole to encapsulate more analytes, which made EBCDP have broad-spectrum applications in chiral separations.
Collapse
Affiliation(s)
- Yazhou Shuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuqin Liao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Tianci Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Laisheng Li
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
24
|
Hu S, Zhang M, Li F, Breadmore MC. β-Cyclodextrin-copper (II) complex as chiral selector in capillary electrophoresis for the enantioseparation of β-blockers. J Chromatogr A 2019; 1596:233-240. [DOI: 10.1016/j.chroma.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022]
|
25
|
Zhang J, Zhang GH, Wang XC, Bai ZW, Chen W. Synthesis and evaluation of novel chiral stationary phases based on N‑cyclobutylcarbonyl chitosan derivatives. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Functional Cyclodextrin-Clicked Chiral Stationary Phases for Versatile Enantioseparations by HPLC. Methods Mol Biol 2019. [PMID: 31069733 DOI: 10.1007/978-1-4939-9438-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The urgent demand for pure biological and pharmaceutical enantiomers has brought together great efforts in developing chiral techniques. High-performance liquid chromatography employing chiral stationary phases (CSPs) has evolved as a powerful tool for both chiral analysis and manufacture of pure enantiomers. Herein, we describe a facile method to prepare a phenylcarbamate cyclodextrin (CD)-based CSPs via azide/alkyne click chemistry. The functionalities of CD rims are altered to mediate the enantioseparation performance in multimode high-performance liquid chromatography.
Collapse
|
27
|
Triptycene-based stationary phases for gas chromatographic separations of positional isomers. J Chromatogr A 2019; 1599:223-230. [PMID: 31000208 DOI: 10.1016/j.chroma.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
Abstract
This work presents the investigation of two triptycene-based materials (TP-3OB and TP-3Im) as the stationary phases for gas chromatographic (GC) separations. The TP-3OB and TP-3Im capillary columns fabricated by static coating exhibited column efficiency of 3000-3500 plates/m for n-dodecane at 120 °C. Also, their McReynolds constants and Abraham system constants were determined to characterize their polarity and molecular interactions with analytes. On the basis of the unique 3D TP architecture, the TP-3OB and TP-3Im stationary phases exhibited complementary high-resolution performance for analytes of a wide ranging polarity, including alkylbenzenes, alkylnaphthalenes, halobenzenes, phenols and anilines, respectively. Moreover, the TP-based columns exhibited good repeatability and reproducibility on the retention times of analytes with the relative standard deviation (RSD) values in the range of 0.01-0.14% for run-to-run, 0.11-0.47% for day-to-day and 0.68-4.7% for column-to-column, respectively. Additionally, their applications for the determination of isomer impurities in the commercial reagents of o-dichlorobenzene, p-/m-diethylbenzene, o-toluidine and 2,3-/3,5-xylidine proved their good potential for practical analysis. This work demonstrates the promising future of the triptycene-based stationary phases for chromatographic separations.
Collapse
|
28
|
Folprechtová D, Kalíková K, Kozlík P, Tesařová E. The degree of substitution affects the enantioselectivity of sulfobutylether-β-cyclodextrin chiral stationary phases. Electrophoresis 2019; 40:1972-1977. [DOI: 10.1002/elps.201800471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Denisa Folprechtová
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
29
|
Abstract
As one of the commonly used chiral separation materials, cyclodextrin-based chiral stationary phases (CD-CSP) have been developed rapidly in the past 30 years. A large number of CD-CSPs have been designed and applied for enantioseparation in high-performance liquid chromatography (HPLC). The development of novel CD-CSPs focuses on two aspects: the immobilization chemistry and the functionalization of the CD skeleton. Although such studies are not regarded as the prime research topic in analytical chemistry, there are still many recent works pushing this research forward tardily. In this chapter, the fabrication procedure of a triazole-bridged duplex CD-CSP and its application to HPLC enantioseparations is described.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Chemical Engineering, Chengde Petroleum College, Chengde, Hebei, People's Republic of China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China.
| |
Collapse
|
30
|
Chen C, Liu W, Hong T. Novel approaches for biomolecule immobilization in microscale systems. Analyst 2019; 144:3912-3924. [DOI: 10.1039/c9an00212j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This manuscript reviews novel approaches applied for biomolecule immobilization in microscale systems.
Collapse
Affiliation(s)
- Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Tingting Hong
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
31
|
Scriba GKE, Jáč P. Cyclodextrins as Chiral Selectors in Capillary Electrophoresis Enantioseparations. Methods Mol Biol 2019; 1985:339-356. [PMID: 31069743 DOI: 10.1007/978-1-4939-9438-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to their structural variability and their commercial availability, cyclodextrins are the most frequently used chiral selectors in capillary electrophoresis. A variety of migration modes can be realized depending on the characteristics of the cyclodextrins and the analytes. The basic considerations regarding the development of a chiral CE method employing cyclodextrins as chiral selectors are briefly discussed. The presented examples illustrate the separation modes of an acidic and a basic analyte with native and charged cyclodextrin derivatives as a function of the pH of the background electrolyte and the concentration of the cyclodextrin.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany
| | - Pavel Jáč
- Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
32
|
Synthesis of a Novel Chiral Stationary Phase by (R)-1,1′-Binaphthol and the Study on Mechanism of Chiral Recognition. Symmetry (Basel) 2018. [DOI: 10.3390/sym10120704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(R)-6-Acrylic-BINOL CSP, a novel chiral stationary phase was prepared by (R)-Binaphthol (R-BINOL) by introducing the acrylic group into the 6-position of (R)-BINOL before bonding it to the surface of silica gel. The structure of the CSP was characterized by IR, SEM, and element analysis. This new material was tested for its potential as a CSP for HPLC under normal phase conditions, especially for conjugated compounds. Six solutes were chosen to evaluate the chiral separation ability of the novel CSP. The effects of the mobile phase and temperature on enantioseparation were studied, and the chiral recognition mechanism was also discussed. The results showed that the space adaptability and π-π stacking between the solutes and the CSP affected the retention and enantioseparation. The Van’t Hoff curve indicated that under the experimental conditions, the separation mechanism of six solutes did not change, which were all enthalpy driven.
Collapse
|
33
|
Separation performance of a star-shaped truxene-based stationary phase functionalized with peripheral 3,4-ethylenedioxythiophene moieties for capillary gas chromatography. J Chromatogr A 2018; 1578:67-75. [DOI: 10.1016/j.chroma.2018.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/28/2018] [Accepted: 09/29/2018] [Indexed: 01/22/2023]
|
34
|
Nagy G, Chouinard CD, Attah IK, Webb IK, Garimella SVB, Ibrahim YM, Baker ES, Smith RD. Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophoresis 2018; 39:3148-3155. [PMID: 30168603 DOI: 10.1002/elps.201800294] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Enantiomeric molecular evaluations remain an enormous challenge for current analytical techniques. To date, derivatization strategies and long separation times are generally required in these studies, and the development and implementation of new approaches are needed to increase speed and distinguish currently unresolvable compounds. Herein, we describe a method using chiral cyclodextrin adducts and structures for lossless ion manipulations (SLIM) and serpentine ultralong path with extended routing (SUPER) ion mobility (IM) to achieve rapid, high resolution separations of d and l enantiomeric amino acids. In the analyses, a chiral cyclodextrin is added to each sample. Two cyclodextrins were found to complex each amino acid molecule (i.e. potentially sandwiching the amino acid in their cavities) and forming host-guest noncovalent complexes that were distinct for each d and l amino acid pair studied and thus separable with IM in SLIM devices. The SLIM was also used to accumulate much larger ion populations than previously feasible for evaluation and therefore allow enantiomeric measurements of higher sensitivity, with gains in resolution from our ultralong path separation capabilities, than previously reported by any other IM-based approach.
Collapse
Affiliation(s)
- Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| | | | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| | | | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA
| |
Collapse
|
35
|
Greño M, Marina ML, Castro-Puyana M. Effect of the combined use of γ-cyclodextrin and a chiral ionic liquid on the enantiomeric separation of homocysteine by capillary electrophoresis. J Chromatogr A 2018; 1568:222-228. [DOI: 10.1016/j.chroma.2018.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
36
|
Gao B, Li Y, Chen L. Surface molecularly imprinted material for enantiomeric resolution of ibuprofen: Preparation and study on chiral recognition and resolution property. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1383253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Baojiao Gao
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Yanbin Li
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| | - Lulu Chen
- Department of Chemical Engineering, North University of China, Taiyuan, P. R. China
| |
Collapse
|
37
|
Huang XY, Quan KJ, Pei D, Liu JF, Di DL. The development of biphasic chiral recognition in chiral separation. Chirality 2018; 30:974-981. [PMID: 29864196 DOI: 10.1002/chir.22975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
In chiral separation, enantioseparation factor is an important parameter which influences the resolution of enantiomers. In this current overview, a biphasic chiral recognition method is introduced to the readers. This method can significantly improve the enantioseparation factor in two-phase solvent through adding lipophilic and hydrophilic chiral selectors which have opposite chiral recognition ability to organic and aqueous phases, respectively. This overview presents the development and applications of biphasic chiral recognition in liquid-liquid extraction and counter current chromatography. It mainly focuses on the topics of mechanism, advantages and limitations, applications, and key factors of biphasic chiral recognition. In addition, the future outlook on development of biphasic chiral recognition also has been discussed in this overview.
Collapse
Affiliation(s)
- Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Kai-Jun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS. High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst 2018; 143:374-391. [PMID: 29200216 PMCID: PMC5768458 DOI: 10.1039/c7an01469d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last few decades have witnessed the development of many high-performance separation methods that use biologically related binding agents. The combination of HPLC with these binding agents results in a technique known as high performance affinity chromatography (HPAC). This review will discuss the general principles of HPAC and related techniques, with an emphasis on their use for the analysis of biological compounds and pharmaceutical agents. Various types of binding agents for these methods will be considered, including antibodies, immunoglobulin-binding proteins, aptamers, enzymes, lectins, transport proteins, lipids, and carbohydrates. Formats that will be discussed for these methods range from the direct detection of an analyte to indirect detection based on chromatographic immunoassays, as well as schemes based on analyte extraction or depletion, post-column detection, and multi-column systems. The use of biological agents in HPLC for chiral separations will also be considered, along with the use of HPAC as a tool to screen or study biological interactions. Various examples will be presented to illustrate these approaches and their applications in fields such as biochemistry, clinical chemistry, and pharmaceutical research.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhu Q, Scriba GK. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods – recent developments. J Pharm Biomed Anal 2018; 147:425-438. [DOI: 10.1016/j.jpba.2017.06.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
40
|
Al-Burtomani SKS, Suliman FO. Experimental and theoretical study of the inclusion complexes of epinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril. NEW J CHEM 2018. [DOI: 10.1039/c7nj04766e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and molecular dynamics techniques suggested that stable complexes of epinephrine with 18C6, βCD and CB7 might enhance aggregation.
Collapse
|
41
|
Huang XY, Pei D, Liu JF, Di DL. A review on chiral separation by counter-current chromatography: Development, applications and future outlook. J Chromatogr A 2018; 1531:1-12. [DOI: 10.1016/j.chroma.2017.10.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
42
|
|
43
|
Halay E, Bozkurt S. Enantioselective recognition of carboxylic acids by novel fluorescent triazine-based thiazoles. Chirality 2017; 30:275-283. [PMID: 29210117 DOI: 10.1002/chir.22792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Hydrogen bonding and π-π interactions take special part in the enantioselectivity task. In this regard, because of having both hydrogen acceptor and hydrogen donor groups, melamine derivatives become more of an issue for enantioselectivity. In the light of such information, triazine-based chiral, fluorescence active novel thiazole derivatives L1 and L2 were designed and synthesized from (S)-(-)-2-amino-1-butanol and (1S,2R)-(+)-2-amino-1,2-diphenylethanol. The structural establishment of these compounds was made by spectroscopic methods such as FTIR, 1 H, and 13 C NMR. While the solution of these compounds in DMSO did not show any fluorescence emission, it was observed that the emission increased 44-fold for L1 and 55-fold for L2 in 95% water, similar to the aggregation-induced emission (AIE) characterized compounds. In this regard, enantioselective capabilities of these compounds against carboxylic acids were tested, and in experiments carried out at a ratio of 40/60 DMSO/H2 O, it was determined that R-2ClMA increased the fluorescence emission of L1 chiral receptor by 2.59 times compared to S-isomer.
Collapse
Affiliation(s)
- Erkan Halay
- Scientific Analysis Technological Application and Research Center (UBATAM), Usak University, Usak, Turkey.,Department of Chemistry and Chemical Processing Technologies, Banaz Vocational School, Usak University, Usak, Turkey
| | - Selahattin Bozkurt
- Scientific Analysis Technological Application and Research Center (UBATAM), Usak University, Usak, Turkey.,Vocational School of Health Services, Usak University, Usak, Turkey
| |
Collapse
|
44
|
Crego AL, Mateos M, Nozal L. Recent contributions for improving sensitivity in chiral CE. Electrophoresis 2017; 39:67-81. [PMID: 28960403 DOI: 10.1002/elps.201700293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023]
Abstract
The flexibility and versatility of the chiral CE are unrivaled and the same instrumentation can be used to separate a diverse range of analytes, both large and small molecules, whether charged or uncharged. However, one of the disadvantages is generally thought to be the poor sensitivity of ultraviolet (UV) detection, which is the most popular among CE detectors. This review focuses on methodologies and applications regarding improvements of sensitivity in chiral CE published in the last 2 years (June 2015 until May 2017). This contribution continues to update this series of biannual reviews, first published in Electrophoresis in 2006. The main body of the review brings a survey of publications organized according to different approaches to detect a low amount of analytes, either by sample treatment procedures or by in-capillary sample preconcentration techniques, both using UV detection, or even by employing detection systems more sensitive than UV absorption, such as LIF or MS. This review provides comprehensive tables listing the new approaches in sensitive chiral CE with categorizing by the fundamental mechanism to enhance the sensitivity, which provide relevant information on the strategies employed. The concluding remarks in the final part of the review evaluate present state of art and the trends for sensitivity enhancement in chiral CE.
Collapse
Affiliation(s)
- Antonio Luis Crego
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Faculty of Biology, Environmental Sciences, and Chemistry, University of Alcalá, Madrid, Spain
| | - María Mateos
- Institute of Applied Chemistry and Biotechnology, University of Alcalá, Madrid, Spain
| | - Leonor Nozal
- Institute of Applied Chemistry and Biotechnology, University of Alcalá, Madrid, Spain
| |
Collapse
|
45
|
Lin C, Fan J, Liu W, Chen X, Ruan L, Zhang W. A new single-urea-bound 3,5-dimethylphenylcarbamoylated β-cyclodextrin chiral stationary phase and its enhanced separation performance in normal-phase liquid chromatography. Electrophoresis 2017; 39:348-355. [DOI: 10.1002/elps.201700273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Chun Lin
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- School of Logistics; Beijing Normal University; Zhuhai Campus, Zhuhai P. R. China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| | - Wenna Liu
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| | - Xiaodong Chen
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- Guangdong Yanjie Pharmatech Co. Ltd.; Guangzhou P. R. China
| | - Lijun Ruan
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
- Guangdong Yanjie Pharmatech Co. Ltd.; Guangzhou P. R. China
| | - Weiguang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou P. R. China
| |
Collapse
|
46
|
|
47
|
Prochowicz D, Kornowicz A, Lewiński J. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chem Rev 2017; 117:13461-13501. [DOI: 10.1021/acs.chemrev.7b00231] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Prochowicz
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arkadiusz Kornowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
48
|
Li L, Wu C, Ma Y, Zhou S, Li Z, Sun T. Effectively enhancing the enantioseparation ability of β-cyclodextrin derivatives by de novo design and molecular modeling. Analyst 2017; 142:3699-3706. [PMID: 28849820 DOI: 10.1039/c7an00986k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rational engineering of native β-CD as an ideal chiral selector for a definite analyte in capillary electrophoresis represents a challenge in separation science. Herein, a rational and systematic strategy that combines the de novo design and molecular modeling is firstly described to expedite the manipulation and selection of effective selector for enantioseparation in capillary electrophoresis. Using β-adrenoreceptor agonists as model analytes, we demonstrate how this strategy efficiently improves the enantiorecognition in chiral discrimination sites of inclusion complexes. The evolved β-CD derivative could be utilized as a chiral receptor to achieve the effective enantioseparation (Rs > 1.5) of racemic β-adrenoreceptor agonists. We highlight a novel strategy for efficiently and rapidly manipulating native CD based on the characteristics of analyte so as to gain an excellent chiral selector.
Collapse
Affiliation(s)
- Linwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Yang Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Shuhao Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Zhen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
49
|
Fernandes C, Tiritan ME, Cravo S, Phyo YZ, Kijjoa A, Silva AMS, Cass QB, Pinto MMM. New chiral stationary phases based on xanthone derivatives for liquid chromatography. Chirality 2017; 29:430-442. [PMID: 28608589 DOI: 10.1002/chir.22706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/27/2017] [Accepted: 03/19/2017] [Indexed: 11/08/2022]
Abstract
Six chiral derivatives of xanthones (CDXs) were covalently bonded to silica, yielding the corresponding xanthonic chiral stationary phases (XCSPs). The new XCSPs were packed into stainless-steel columns with 150 x 4.6 mm i.d. Moreover, the greening of the chromatographic analysis by reducing the internal diameter (150 x 2.1 mm i.d.) of the liquid chromatography (LC) columns was also investigated. The enantioselective capability of these phases was evaluated by LC using different chemical classes of chiral compounds, including several types of drugs. A library of CDXs was evaluated in order to explore the principle of reciprocity as well as the chiral self-recognition phenomenon. The separation of enantiomeric mixtures of CDXs was investigated under multimodal elution conditions. The XCSPs provided high specificity for the enantiomeric mixtures of CDXs evaluated mainly under normal-phase elution conditions. Furthermore, two XCSPs were prepared with both enantiomers of the same xanthonic selector in order to confirm the inversion order elution.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Gandra, PRD, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
| | - Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Artur M S Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, Aveiro, Portugal
| | - Quezia B Cass
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
| |
Collapse
|
50
|
Zhou T, Zeng J, Zhao T, Zhong Q, Yang Y, Tan W. Enantioselective analysis of bambuterol in human plasma using microwave-assisted chiral derivatization coupled with ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 2017; 40:2779-2790. [DOI: 10.1002/jssc.201700280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ting Zhou
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Jing Zeng
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Ting Zhao
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | | | - Yang Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology; Guangzhou Higher Education Mega Center; China
| |
Collapse
|