1
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Rivera-Tovar PR, Contreras-Contreras G, Rivas-Reyes PI, Pérez-Jiménez J, Martínez-Cifuentes M, Pérez-Correa JR, Mariotti-Celis MS. Sustainable Recovery of Phlorotannins from Durvillaea incurvata: Integrated Extraction and Purification with Advanced Characterization. Antioxidants (Basel) 2025; 14:250. [PMID: 40227225 PMCID: PMC11939385 DOI: 10.3390/antiox14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
The rising demand for bioactive compounds from marine resources highlights the need for sustainable separation technologies. This study introduces an integrated process combining ultrasound-assisted extraction (USAE) and resin purification (RP) to isolate phlorotannins from Durvillaea incurvata, a brown seaweed with significant biomedical potential. Using a 32.5% ethanol-water solvent system for USAE followed by RP on Diaion HP-20 resin, phlorotannins were enriched 2.4-fold, with simultaneous removal of interfering compounds such as mannitol (~100%), which was demonstrated by FTIR and HPLC-IR analysis. Advanced characterization using UHPLC-QToF-MS/MS identified five novel phlorotannins with polymerization degrees of 3 to 8 phloroglucinol units in both USAE extracts and post-RP. Mass balance based on spectrophotometric measurements indicated a purification factor of ~2, confirming process effectiveness. RP streams showed distinct phlorotannin profiles, with one phlorotannin exceeding 70% relative abundance. However, MS/MS results showed significantly lower recoveries than spectrophotometric data, revealing a novel insight into RP purification. These findings highlight the critical role of comprehensive chemical characterization in optimizing sustainable phlorotannin extraction from seaweed. They propose a framework for scalable, eco-efficient technologies for achieving high-purity phlorotannin recovery. This approach facilitates the development of phlorotannin-based applications in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Pamela Raquel Rivera-Tovar
- Nutrition and Dietetics School, Faculty of Medicine, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile; (P.R.R.-T.); (G.C.-C.)
| | - Gabriela Contreras-Contreras
- Nutrition and Dietetics School, Faculty of Medicine, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile; (P.R.R.-T.); (G.C.-C.)
| | - Paulina Isabel Rivas-Reyes
- Food Technology Section, Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile;
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - María Salomé Mariotti-Celis
- Nutrition and Dietetics School, Faculty of Medicine, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile; (P.R.R.-T.); (G.C.-C.)
| |
Collapse
|
3
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
5
|
Beck A, Muhoberac M, Randolph CE, Beveridge CH, Wijewardhane PR, Kenttämaa HI, Chopra G. Recent Developments in Machine Learning for Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:233-246. [PMID: 38910862 PMCID: PMC11191731 DOI: 10.1021/acsmeasuresciau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/25/2024]
Abstract
Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.
Collapse
Affiliation(s)
- Armen
G. Beck
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Matthew Muhoberac
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Caitlin E. Randolph
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Connor H. Beveridge
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Prageeth R. Wijewardhane
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Gaurav Chopra
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Department
of Computer Science (by courtesy), Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute for Drug Discovery, Purdue Institute for Cancer Research,
Regenstrief Center for Healthcare Engineering, Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana 47907 United States
| |
Collapse
|
6
|
Ma X, Fernández FM. Triboelectric Nanogenerator-Coated Blade Spray Mass Spectrometry for Volume-Limited Drug Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117164. [PMID: 37981917 PMCID: PMC10653212 DOI: 10.1016/j.ijms.2023.117164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The demand for analytical tools for the analysis of low-concentration volume-limited samples has driven researchers to explore new analytical approaches. Mass spectrometry excels at trace analysis due to its high sensitivity and specificity, whereas ambient methods simplify, or completely eliminate sample preparation. Herein, we report a triboelectric nanogenerator-coated blade spray ambient mass spectrometry (TENG-CBS MS) method for the extraction, elution, and ionization of volume-limited, low-concentration small molecule drug samples with minimum sample preparation. Using a TENG device as the CBS power supply, we show it is possible to extract and analyze drug samples in a pulsed fashion at sub-nanogram to picogram levels with good stability and reproducibility. A wide range of analytes polarities were tested. Results indicated this method could also be useful for the analysis of low-level analytes in precious, volume limited samples in a simple single step.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
7
|
Mik V, Pospíšil T, Brunoni F, Grúz J, Nožková V, Wasternack C, Miersch O, Strnad M, Floková K, Novák O, Široká J. Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants. PHYTOCHEMISTRY 2023; 215:113855. [PMID: 37690699 DOI: 10.1016/j.phytochem.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Collapse
Affiliation(s)
- Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Federica Brunoni
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jiří Grúz
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Claus Wasternack
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Otto Miersch
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Kristýna Floková
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jitka Široká
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
8
|
Huidobro-López B, León C, López-Heras I, Martínez-Hernández V, Nozal L, Crego AL, de Bustamante I. Untargeted metabolomic analysis to explore the impact of soil amendments in a non-conventional wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161890. [PMID: 36731565 DOI: 10.1016/j.scitotenv.2023.161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As non-conventional wastewater treatment, vegetation filters make the most of the natural attenuation processes that occur in soil to remove contaminants, while providing several environmental benefits. However, this practice may introduce contaminants of emerging concern (CECs) and their transformation products (TPs) into the environment. A potential improvement to the system was tested using column experiments containing soil (S) and soil amended with woodchips (SW) or biochar (SB) irrigated with synthetic wastewater that included 11 selected CECs. This study evaluated: i) known CECs attenuation and ii) unknown metabolites formation. Known CECs attenuation was assessed by total mass balance by considering both water and soil media. An untargeted metabolomic strategy was developed to assess the formation of unknown metabolites and to identify them in water samples. The results indicated that SB enhanced CECs attenuation and led to the formation of fewer metabolites. Sorption and biodegradation processes were favored by the bigger surface area of particles in SB column, especially for compounds with negative charges. Incorporating woodchips into soil shortened retention times in the column, which reduced attenuation phenomena and resulted in the formation of significantly more metabolites. Incomplete biodegradation reactions, fostered by shorter retention times in SW column could mainly explain these results.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Carlos León
- Carlos III University, Department of Bioengineering, E-28911 Madrid, Spain
| | | | | | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Antonio L Crego
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, E-28871 Madrid, Spain
| |
Collapse
|
9
|
Loewenthal D, Dagan S, Drug E. Integrating Effect-Directed Analysis and Chemically Indicative Mass Spectral Fragmentation to Screen for Toxic Organophosphorus Compounds. Anal Chem 2023; 95:2623-2627. [PMID: 36689728 DOI: 10.1021/acs.analchem.2c04842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Analytical chemists are often challenged to screen for bioactive compounds in complex matrices, sometimes without a priori knowledge of the exact compound of interest. Therefore, "flagging" techniques, highlighting common characteristics of bioactive compounds, are highly sought after. In this work, we demonstrate a double flagging method, where unknown organophosphorus acetylcholinesterase inhibitors are "flagged" out of a complex matrix by the presence of organophosphorus-indicative ions as well as their acetylcholinesterase inhibition. This is accomplished by flagging the LC chromatographic retention time of phosphorus-indicative ions using accurate mass high-energy in-source CID products, and the retention time of acetylcholinesterase inhibiting compounds using a parallel microfractionation-based bioassay. We successfully apply this method to screen VX, VM, and RVX nerve agents as well as methomyl, a carbamate pesticide, out of soil and whole blood samples at low μM to sub-μM concentrations. This methodology can be easily extended to diverse chemical families and biological activities of interest.
Collapse
Affiliation(s)
- Dan Loewenthal
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel.,School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv6997801, Israel
| | - Shai Dagan
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel
| |
Collapse
|
10
|
Milman BL, Zhurkovich IK. Present-Day Practice of Non-Target Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
We review the main techniques, procedures, and information products used in non-target analysis (NTA) to reveal the composition of substances. Sampling and sample preparation methods are preferable that ensure the extraction of analytes from test samples in a wide range of analyte properties with the most negligible loss. The necessary techniques of analysis are versions of chromatography–high-resolution tandem mass spectrometry (HRMS), yielding individual characteristics of analytes (mass spectra, retention properties) to accurately identify them. The prioritization of the analytical strategy discards unnecessary measurements and thereby increases the performance of the NTA. Chemical databases, collections of reference mass spectra and retention characteristics, algorithms, and software for processing HRMS data are indispensable in NTA.
Collapse
|
11
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
12
|
Verlinden B, Van Hecke K, Wilden A, Hupert M, Santiago-Schübel B, Egberink RJM, Verboom W, Kowalski PM, Modolo G, Verwerft M, Binnemans K, Cardinaels T. Gamma radiolytic stability of the novel modified diglycolamide 2,2'-oxybis( N, N-didecylpropanamide) (mTDDGA) for grouped actinide extraction. RSC Adv 2022; 12:12416-12426. [PMID: 35480374 PMCID: PMC9036757 DOI: 10.1039/d1ra08761d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Reprocessing of spent nuclear fuel aims at improving resource efficiency and reducing its radiotoxicity and heat production in the long term. The necessary separation of certain metal ions from the spent fuel solutions can be achieved using different solvent extraction processes. For the scenario of the EURO-GANEX process, the use of the new, modified diglycolamide 2,2′-oxybis(N,N-didecylpropanamide) (mTDDGA) was recently proposed to simplify the current solvent composition and reduce extraction of fission products. Before further developing the process based on this new ligand, its stability under ionizing radiation conditions needs to be studied. For this reason, gamma irradiation experiments were conducted followed by analyses with high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). The determined degradation rate of mTDDGA was found to be lower than that of the reference molecule N,N,N′,N′-tetra-n-octyl-diglycolamide (TODGA). Many identified degradation compounds of both molecules are analogues showing the same bond breaking, although also unreported de-methylation, double/triple de-alkylation and n-dodecane addition products were observed. The radiolysis behavior of a new diglycolamide for solvent extraction of actinides and lanthanides was studied. The observed degradation rate was lower than for the reference molecule and 22 degradation compounds were identified.![]()
Collapse
Affiliation(s)
- Bart Verlinden
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science Boeretang 200 2400 Mol Belgium .,Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 3001 Leuven Belgium.,JARA Energy, Center for Simulation and Data Science (CSD) Jülich Germany
| | - Karen Van Hecke
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science Boeretang 200 2400 Mol Belgium
| | - Andreas Wilden
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Nukleare Entsorgung und Reaktorsicherheit (IEK-6) 52428 Jülich Germany
| | - Michelle Hupert
- Forschungszentrum Jülich GmbH, Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3) 52428 Jülich Germany
| | - Beatrix Santiago-Schübel
- Forschungszentrum Jülich GmbH, Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3) 52428 Jülich Germany
| | - Richard J M Egberink
- Department of Molecules & Materials, Mesa+ Institute for Nanotechnology, University of Twente P.O. Box 217 7500 AE Enschede The Netherlands
| | - Willem Verboom
- Department of Molecules & Materials, Mesa+ Institute for Nanotechnology, University of Twente P.O. Box 217 7500 AE Enschede The Netherlands
| | - Piotr M Kowalski
- JARA Energy, Center for Simulation and Data Science (CSD) Jülich Germany.,Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research: Theory and Computation of Energy Materials (IEK-13) 52428 Jülich Germany
| | - Giuseppe Modolo
- Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Nukleare Entsorgung und Reaktorsicherheit (IEK-6) 52428 Jülich Germany
| | - Marc Verwerft
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science Boeretang 200 2400 Mol Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 3001 Leuven Belgium
| | - Thomas Cardinaels
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science Boeretang 200 2400 Mol Belgium .,Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 3001 Leuven Belgium
| |
Collapse
|
13
|
Sussman EM, Oktem B, Isayeva IS, Liu J, Wickramasekara S, Chandrasekar V, Nahan K, Shin HY, Zheng J. Chemical Characterization and Non-targeted Analysis of Medical Device Extracts: A Review of Current Approaches, Gaps, and Emerging Practices. ACS Biomater Sci Eng 2022; 8:939-963. [PMID: 35171560 DOI: 10.1021/acsbiomaterials.1c01119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.
Collapse
Affiliation(s)
- Eric M Sussman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Berk Oktem
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Irada S Isayeva
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jinrong Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Vaishnavi Chandrasekar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Hainsworth Y Shin
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jiwen Zheng
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
14
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Scholz
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Address correspondence to
| | - John W. Nichols
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Gerald T. Ankley
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute for Environmental Research, Biologie V, RWTH Aachen University, Aachen, Germany
| | - Brett Blackwell
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Werner Brack
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lawrence Burkhard
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Timothy W. Collette
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Jon A. Doering
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota
| | - Drew Ekman
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Kellie Fay
- Office of Pollution Prevention and Toxics, Risk Assessment Division, US Environmental Protection Agency, Washington, DC
| | - Fabian Fischer
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | - Joel C. Hoffman
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Chih Lai
- College of Arts and Sciences, University of Saint Thomas, St. Paul, Minnesota, USA
| | - David Leuthold
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | | | - Nathan Pollesch
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute of Organic Chemistry, Technische Universitat Bergakademie Freiberg, Freiberg, Germany
| | | |
Collapse
|
15
|
Identification of synthetic cannabinoid methyl 2-{[1-(cyclohexylmethyl)-1 H-indol-3-yl] formamido}-3-methylbutanoate using modern mass spectrometry and nuclear magnetic resonance techniques. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The samples of plant material suspected to contain new psychoactive substances are very often the subject of chemical-toxicological analyses. Gas chromatography-mass spectrometry (MS), liquid chromatography-quadrupole time-of-flight-MS, and liquid chromatography-tandem MS were applied with the aim to identify synthetic cannabinoid, methyl 2-{[1-(cyclohexylmethyl)-1H-indol-3-yl] formamido}-3-methylbutanoate (MMB-CHMICA) without the analytical standard, which is very often the case when a new drug arrives. The structure of compound was also confirmed by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and conformational analysis. After identification, methanolic extract of plant material containing MMB-CHMICA was successfully used for developing a multiple reaction monitoring method on liquid chromatography-tandem MS instrument. The optimization procedure is shown in detail. The complete fragmentation pattern and also the optimization of the extraction procedure of MMB-CHMICA from plant material were shown. The obtained data are useful for forensic, toxicological, and clinical purposes.
Collapse
|
16
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Milman BL, Ostrovidova EV, Zhurkovich IK. Big Free-Access Chemical Databases in Non-Target Mass Spectrometry Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Hamidi S. Assessment of Undeclared Synthetic Drugs in Dietary Supplements in an Analytical View: A Comprehensive Review. Crit Rev Anal Chem 2021; 53:986-996. [PMID: 34756146 DOI: 10.1080/10408347.2021.1999787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Dietary supplements have gained widespread attention globally as they are supposed to be healthier than synthetic pharmaceutical compounds with fewer side effects. Unlike common prescription drugs, dietary supplements are readily available to the general public. However, over the past few years, all kinds of legal and illegal drugs, have been detected in dietary supplements without labeling to defraud consumers, resulting in serious public health consequences. Due to the increasing number of drug frauds in dietary supplements, their consumption will undoubtedly risk consumers. Therefore; the importance of high-tech analytical methods in their assessment for controlling food quality seems undeniable. The current review examines the analytical techniques that focus on adulterating health products with undeclared pharmaceuticals, including registered and banned drugs. The present study referred to a survey from 2004 to 2021 based on articles in the Scopus database.
Collapse
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Alternative method’s results for the non targeted determination of xenobiotics in food by means of high resolution and accuracy mass spectrometry. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2021. [DOI: 10.1186/s40550-021-00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe application of a high resolution and accurate mass spectrometry (HRAMS) approach to detect xenobiotics in different food matrices by means of non targeted determination by UHPLC-Orbitrap followed by data processing analysis was described. Three case studies were reported to demonstrate the possibility to identify unexpected substances in different food commodities overcomes targeted method. This innovative approach could lay the foundation for its applicability to routine analysis in the near future giving the possibility to open new horizons to the research of a wide range of xenobiotics.
Collapse
|
20
|
Recent Analytical Method for Detection of Chemical Adulterants in Herbal Medicine. Molecules 2021; 26:molecules26216606. [PMID: 34771013 PMCID: PMC8588557 DOI: 10.3390/molecules26216606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal medicine has become popular in recent years as an alternative medicine. The problem arises when herbal medicines contain an undeclared synthetic drug that is illegally added, since it is a natural product that does not contain any chemical drugs due to the potential cause of harmful effects. Supervision of herbal medicines is important to ensure that these herbal medicines are still safe to use. Thus, developing a reliable analytical technique for the determination of adulterated drugs in herbal medicine is gaining interest. This review aims to provide a recent analytical method that has been used within the past 5 years (2016-2021) for the determination of chemical adulterants in herbal medicine.
Collapse
|
21
|
Mulani F, Nandikol SS, Haldar S, Thulasiram HV. Accurate Identification of Bioactive Meliaceae Limonoids by UHPLC-MS/MS Based Structure-Fragment Relationships (SFRs). ACS OMEGA 2021; 6:26454-26476. [PMID: 34661002 PMCID: PMC8515590 DOI: 10.1021/acsomega.1c03697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Limonoids are bioactive plant specialized metabolites found in the Meliaceae family. The basic limonoids, i.e., azadiradione, epoxyazadiradione, and gedunin have been exploited for various bioactivities and therefore are the potential drug leads for tomorrow. However, their low abundance, structural similarity, and lack of adequate mass fragmentation data have hampered their accurate identification and quantification from various sources. In the present study, basic limonoids such as azadirone, azadiradione, epoxyazadiradione, and gedunin isolated from Neem were utilized for the synthesis of their derivatives and isotopologs. A total of 30 one compounds were used in this study among which five were isolated, two were biotransformed, and 24 were synthesized. Among the synthesized compounds nine are novel compounds including six deuterated analogs/isotopologs which are (1,3-2H)-1,2-dihydro-3β-hydroxyazadiradione (9), (1,3,16-2H)-1,2-dihydro-3β-16β-dihydroxyazadiradione (10), 3β-hydroxyazadiradione (11), 3β-16β-dihydroxyazadiradione (12), (3-2H)-3β-hydroxyazadiradione (13), (3,16-2H)-3β-16β-dihydroxyazadiradione (14), (1,3,7-2H)-1,2-dihydro-3β-hydroxy-7-deacetylazadiradione (15), 1,2,20,21,22,23-hexahydroazadiradione (17), and (1,3-2H)-1,2-dihydro-3β-hydroxygedunin (29). These limonoids along with their semisynthesized derivatives were subjected to ultra high performance liquid chromatography mass spectrometry (UHPLC-MS/MS) and the fragmentation pathway was established based on structure-fragment relationships (SFRs), utilizing high resolution MS/MS data. We have developed a most reliable and easily reproducible protocol describing in depth analysis of SFRs based on the structural modifications and synthesis of isotopologs. Also, the MS/MS fragment library of these basic limonoids generated in this study acts as a fingerprint for accurate identification and quantification of limonoids by MS/MS analysis in various plant tissue extracts, phytopharmaceutical formulations and biological samples.
Collapse
Affiliation(s)
- Fayaj
A. Mulani
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sharvani S. Nandikol
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Haldar
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Hirekodathakallu V. Thulasiram
- Chemical
Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India
| |
Collapse
|
22
|
Arrizabalaga-Larrañaga A, Nielen MWF, Blokland MH. Hand-Held Diode Laser for On-Site Analysis Using Transportable Mass Spectrometry. Anal Chem 2021; 93:8122-8127. [PMID: 34077188 PMCID: PMC8253484 DOI: 10.1021/acs.analchem.1c01083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A hand-held laser
diode thermal desorption electrospray ionization
(LDTD-ESI) mass spectrometry (MS) method was developed for rapid screening
of illegal substances in solid samples. To achieve that, a simple,
inexpensive, battery-powered surgical laser diode at 940 nm was employed
to ablate the solid samples. The potential of using a black polytetrafluoroethylene
substrate to enhance the analytes’ desorption to the gas phase
was investigated and demonstrated. Among the optimized ESI parameters,
the solvent (methanol/water, 50:50, v/v) and the
flow rate (50 μL h–1) were critical to obtain
the best sensitivity. The applicability was demonstrated for the rapid
identification of selective androgen receptor modulators (SARMs) in
pills and powders based on accurate mass measurements by time-of-flight
MS. Also, the hand-held LDTD-ESI was combined with a transportable
single quadrupole MS. The same SARMs samples were analyzed, and identifications
were based on in-source cone voltage fragmentation patterns observed.
These initial results demonstrate the applicability of the developed
simplified LDTD-ESI MS method for future on-site testing of organic
compounds in solid samples.
Collapse
Affiliation(s)
- Ane Arrizabalaga-Larrañaga
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Michel W F Nielen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marco H Blokland
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
23
|
Raupers B, Medhat H, Grotemeyer J, Gunzer F. Numerical analysis of trajectories in a Cassinian ion trap of second order with trap door ion inlet. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:3-12. [PMID: 33858222 DOI: 10.1177/1469066720984380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion traps like the Orbitrap are well known mass analyzers with very high resolving power. This resolving power is achieved with help of ions orbiting around an inner electrode for long time, in general up to a few seconds, since the mass signal is obtained by calculating the Fourier Transform of the induced signal caused by the ion motion. A similar principle is applied in the Cassinian Ion Trap of second order, where the ions move in a periodic pattern in-between two inner electrodes. The Cassinian ion trap has the potential to offer mass resolving power comparable to the Orbitrap with advantages regarding the experimental implementation. In this paper we have investigated the details of the ion motion analyzing experimental data and the results of different numerical methods, with focus on increasing the resolving power by increasing the oscillation frequency for ions in a high field ion trap. In this context the influence of the trap door, a tunnel through which the ions are injected into the trap, on the ion velocity becomes especially important.
Collapse
Affiliation(s)
- Bjoern Raupers
- Department of Laser Mass Spectrometry, Institute for Physical Chemistry, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Hana Medhat
- Department for Electronics Engineering/Center for Computational Engineering, Faculty of Information Engineering and Technology, German University in Cairo, Cairo, Egypt
| | - Juergen Grotemeyer
- Department of Laser Mass Spectrometry, Institute for Physical Chemistry, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Frank Gunzer
- Department for Electronics Engineering/Center for Computational Engineering, Faculty of Information Engineering and Technology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
24
|
Zhu SZ, Zhang L, Zhang J, Guo YL. Arc Plasma-Based Dissociation Device: Fingerprinting Mass Spectrometric Analysis Realized at Atmospheric Condition. Anal Chem 2020; 92:14633-14639. [DOI: 10.1021/acs.analchem.0c03127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Su-zhen Zhu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
25
|
Purity estimation of seized stimulant-type new psychoactive substances without reference standards by nitrogen chemiluminescence detection combined with GC-APCI-QTOFMS. Forensic Sci Int 2020; 312:110304. [PMID: 32387867 DOI: 10.1016/j.forsciint.2020.110304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022]
Abstract
Purity assessment of seized material containing new psychoactive substances (NPS) is complicated without appropriate primary reference standards. Here we present a method for fast quantitative estimation of stimulant-type NPS with use of secondary reference standards, based on gas chromatography nitrogen chemiluminescence detection coupled with atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (GC-NCD-APCI-QTOFMS). Quantification was based on the detector's N-equimolar response to nitrogen and using two external nitrogen-containing calibrators, MDMA for prim- and sec-amines and α-PVP for tert-amines. Sample preparation involved dissolving the seized powdery material in an organic solvent mixture followed by acylation with N-methyl-bis-trifluoroacetamide (MBTFA). The method's between-day accuracy and precision over a five-day period was measured for twenty-eight stimulants: the grand mean equimolarity was 91.9% (CV 5.5%), as compared with primary reference standards. The GC-NCD-APCI-QTOFMS method was applied to the purity estimation of forty-two seized powder samples previously found to contain stimulant-type NPS by appropriate methods. The quantitative results were compared to those obtained by an established method relying on liquid chromatography chemiluminescence detection (LC-CLND), the latter using caffeine as an external calibrator. The mean difference of purity values between the methods was 8.1% (range 0.4-26.7%). The presented method might find use as a tool for instant purity assessment in forensic laboratories.
Collapse
|
26
|
Muschietti L, Redko F, Ulloa J. Adulterants in selected dietary supplements and their detection methods. Drug Test Anal 2020; 12:861-886. [DOI: 10.1002/dta.2806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Liliana Muschietti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA‐CONICET) Buenos Aires Argentina
| | - Flavia Redko
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA‐CONICET) Buenos Aires Argentina
| | - Jerónimo Ulloa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, IQUIMEFA (UBA‐CONICET) Buenos Aires Argentina
| |
Collapse
|
27
|
Relationships in Gas Chromatography—Fourier Transform Infrared Spectroscopy—Comprehensive and Multilinear Analysis. SEPARATIONS 2020. [DOI: 10.3390/separations7020027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Molecular spectroscopic detection techniques, such as Fourier transform infrared spectroscopy (FTIR), provides additional specificity for isomers where often mass spectrometry (MS) fails, due to similar fragmentation patterns. A hyphenated system of gas chromatography (GC) with FTIR via a light-pipe interface is reported in this study to explore a number of GC–FTIR analytical capabilities. Various compound classes were analyzed—aromatics, essential oils and oximes. Variation in chromatographic peak parameters due to the light-pipe was observed via sequentially-located flame ionization detection data. Unique FTIR spectra were observed for separated mixtures of essential oil isomers having similar mass spectra. Presentation of GC×FTIR allows a ‘comprehensive’-style experiment to be developed. This was used to obtain spectroscopic/separation profiles for interconverting oxime species with their individual spectra in the overlap region being displayed on a color contour plot. Partial least square regression provides multivariate quantitative analysis of co-eluting cresol isomers derived from GC–FTIR data. The model resulted in an R2 of 0.99. Prediction was obtained with R2 prediction value of 0.88 and RMSEP of 0.57, confirming the method’s suitability. This study explores the potential of GC–FTIR hyphenation and re-iterates its value to derive unambiguous and detailed molecular information which is complementary to MS.
Collapse
|
28
|
A Review on Worldwide Ephedra History and Story: From Fossils to Natural Products Mass Spectroscopy Characterization and Biopharmacotherapy Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1540638. [PMID: 32419789 PMCID: PMC7210547 DOI: 10.1155/2020/1540638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Growing worldwide, the genus Ephedra (family Ephedraceae) had a medicinal, ecological, and economic value. The extraordinary morphological diversity suggests that Ephedra was survivor of an ancient group, and its antiquity is also supported by fossil data. It has recently been suggested that Ephedra appeared 8–32 million years ago, and a few megafossils document its presence in the Early Cretaceous. Recently, the high analytical power provided by the new mass spectrometry (MS) instruments is making the characterization of Ephedra metabolites more feasible, such as ephedrine series. In this regard, the chemical compounds isolated from crude extracts, fractions, and few isolated compounds of Ephedra species were characterized by MS-based techniques (LC-MS, LC-ESI-MS, HPLC-PDA-ESI/MS, LC-DAD-ESI/MSn, LC/Orbitrap MS, etc.). Moreover, we carry out an exhaustive review of the scientific literature on biomedicine and pharmacotherapy (anticancer, antiproliferative, anti-inflammatory, antidiabetic, antihyperlipidemic, antiarthritic, and anti-influenza activities; proapoptotic and cytotoxic potential; and so on). Equally, antimicrobial and antioxidant activities were discussed. This review is focused on all these topics, along with current studies published in the last 5 years (2015–2019) providing in-depth information for readers.
Collapse
|
29
|
Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 2020; 1103:11-31. [DOI: 10.1016/j.aca.2019.12.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
30
|
Preliminary Study to Develop an Alternative Method for the Non-targeted Determination of Xenobiotics in Food by Means of Ultra High Performance Liquid Chromatography Coupled to High Resolution and Accuracy Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01727-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis preliminary study describes the use of high resolution and accuracy mass spectrometry techniques combined with new generation chemical software products for detecting and identifying contaminants in food commodities. As a first step, the extracts of routine target analysis samples (obtained in our official laboratory responsible for food residues control) were acquired and processed with this method in order to search unknown and non-targeted contaminants in food. In order to verify the feasibility of the presented method, the research has been firstly addressed to untargeted pesticides and their metabolites in stone fruits commodities and tomatoes. The differential analysis carried with Compound Discoverer 2.0 between the investigated unknown sample and the blank matrix sample allowed to remove all the matrix molecular components; Aggregated Computational Toxicology Resource (ACToR) helped to understand and predict chemical interpretation of substances. The acquisition in FullScan-AIF and FullScan-ddMS2 allowed the clear detection and identification of isobaric compounds such as quinalphos and phoxim. In order to verify that the proposed method is suitable to the scope of application, the main points of SANTE/11813/2017 Document have been followed. The results demonstrate that no false positives and no false negatives have been detected from the analysis of samples spiked with 55 pesticides at 0.010 and 0.10 mg kg−1. This preliminary study has been also tested with a Proficiency Test (EUPT-FV-SM08) and, according to EUPT-FV-SM08 Final Report, our laboratory has been included in the 67% (56) that clearly detected over 70% pesticides. Finally, this method has been extended to other matrices and contaminants.
Collapse
|
31
|
Alvarez-Rivera G, Ballesteros-Vivas D, Parada-Alfonso F, Ibañez E, Cifuentes A. Recent applications of high resolution mass spectrometry for the characterization of plant natural products. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Garvey EC, O’Sullivan MG, Kerry JP, Kilcawley KN. Factors influencing the sensory perception of reformulated baked confectionary products. Crit Rev Food Sci Nutr 2019; 60:1160-1188. [DOI: 10.1080/10408398.2018.1562419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Emer C. Garvey
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Ireland
- Sensory Group, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| | - Maurice G. O’Sullivan
- Sensory Group, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| | - Joseph P. Kerry
- Food Packaging Group, School of Food and Nutritional Science, University College Cork, Cork, Ireland
| | - Kieran N. Kilcawley
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Ireland
| |
Collapse
|
33
|
Zhang K, Kurita KL, Venkatramani C, Russell D. Seeking universal detectors for analytical characterizations. J Pharm Biomed Anal 2018; 162:192-204. [PMID: 30265979 DOI: 10.1016/j.jpba.2018.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
Abstract
It is highly desirable to have a universal detector that can detect all types of compounds and give a uniform response regardless of the physiochemical properties of the compounds. With such a universal detector, all components in a sample can be accurately quantified without the need for individual standards. This is especially needed for the characterization of unknowns and for non-targeted analysis, or for samples that have no isolated standards available for each component. Over the years, much effort has been put into seeking a universal detection technology. In this review, we discuss the commonly used detectors for analytical characterization, including UV, RI, ELSD, CAD, CLND, FID, VUV, MS, NMR, and hyphenated detection, with the focuses on the "universal" features of these detectors regarding the types of molecules they can detect and the uniformity of responses.
Collapse
Affiliation(s)
- Kelly Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Kenji L Kurita
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | | | - David Russell
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
34
|
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. MASS SPECTROMETRY REVIEWS 2018; 37:513-532. [PMID: 28436590 PMCID: PMC8106966 DOI: 10.1002/mas.21535] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Tandem mass spectral library search (MS/MS) is the fastest way to correctly annotate MS/MS spectra from screening small molecules in fields such as environmental analysis, drug screening, lipid analysis, and metabolomics. The confidence in MS/MS-based annotation of chemical structures is impacted by instrumental settings and requirements, data acquisition modes including data-dependent and data-independent methods, library scoring algorithms, as well as post-curation steps. We critically discuss parameters that influence search results, such as mass accuracy, precursor ion isolation width, intensity thresholds, centroiding algorithms, and acquisition speed. A range of publicly and commercially available MS/MS databases such as NIST, MassBank, MoNA, LipidBlast, Wiley MSforID, and METLIN are surveyed. In addition, software tools including NIST MS Search, MS-DIAL, Mass Frontier, SmileMS, Mass++, and XCMS2 to perform fast MS/MS search are discussed. MS/MS scoring algorithms and challenges during compound annotation are reviewed. Advanced methods such as the in silico generation of tandem mass spectra using quantum chemistry and machine learning methods are covered. Community efforts for curation and sharing of tandem mass spectra that will allow for faster distribution of scientific discoveries are discussed.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Tomas Cajka
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, People’s Republic of China
| | - Zijuan Lai
- Genome Center, Metabolomics, UC Davis, Davis, California
| | | | | | | | | | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Oliver Fiehn
- Genome Center, Metabolomics, UC Davis, Davis, California
- Faculty of Sciences, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal Bioanal Chem 2018; 410:3607-3619. [PMID: 29629503 DOI: 10.1007/s00216-018-1051-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022]
Abstract
Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.
Collapse
|
36
|
Zavahir JS, Nolvachai Y, Marriott PJ. Molecular spectroscopy – Information rich detection for gas chromatography. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
|
38
|
Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS). Food Chem 2017; 244:292-303. [PMID: 29120785 DOI: 10.1016/j.foodchem.2017.09.131] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
Abstract
A new mass spectrometric method for evaluating metabolite formation of the pesticides thiacloprid, azoxystrobin, and difenoconazole was developed for the Brassica species pak choi and broccoli. Both, distribution and transformation kinetics of the active compounds and their metabolites were analyzed by UPLC-TWIMS-QTOF-MS. Additionally, HR-MS analysis and structure elucidation tools such as diagnostic ions, isotopic matches, and collision cross sections were applied for metabolites identification. Following the application of two plant protection products (containing the above-mentioned active compounds) in a greenhouse study plant material was cryo-milled and extracted with water/methanol. The residual levels of active compounds were identified at certain timepoints during pre-harvest intervals and in the final products. Different phase I and phase II metabolites of the pesticides were identified in different plant organs such as leaves, stems, (broccoli) heads, and roots. Three individual degradation pathways and distribution profiles are suggested including eight thiacloprid, eleven azoxystrobin and three difenoconazole metabolites.
Collapse
|
39
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Termopoli V, Famiglini G, Palma P, Piergiovanni M, Cappiello A. Atmospheric Pressure Vaporization Mechanism for Coupling a Liquid Phase with Electron Ionization Mass Spectrometry. Anal Chem 2017; 89:2049-2056. [PMID: 28208289 DOI: 10.1021/acs.analchem.6b04646] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel liquid chromatography-mass spectrometry (LC-MS) interfacing concept is presented and discussed. The new interface, called liquid-EI (LEI), is based on electron ionization (EI) but, differently from any previous attempt, the vaporization of solutes and mobile phase takes place at atmospheric pressure into a specifically designed region, called "vaporization microchannel", before entering the high-vacuum ion source. The interface is completely independent from the rest of the instrumentation and can be adapted to any gas chromatography/mass spectrometry (GC/MS) system, as an add-on for a rapid LC-MS conversion. Pressure drop and temperature gradient between LC and MS were considered to enhance the analyte response and reduce band broadening and/or solute carryovers. A fused silica liner, placed inside the vaporization microchannel, acts as an inert vaporization surface speeding up the gas-phase conversion of large molecules while lessening possible memory effects. The liner is easily replaceable for a quick and extremely simple interface maintenance. Proof of concept and detailed description of the interface are here presented.
Collapse
Affiliation(s)
- Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino , Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino , Urbino, Italy
| | - Pierangela Palma
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino , Urbino, Italy
| | - Maurizio Piergiovanni
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino , Urbino, Italy
| | - Achille Cappiello
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino , Urbino, Italy
| |
Collapse
|
41
|
Kachlicki P, Piasecka A, Stobiecki M, Marczak Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016; 21:E1494. [PMID: 27834838 PMCID: PMC6273528 DOI: 10.3390/molecules21111494] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/05/2022] Open
Abstract
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material including flavonoid glycoconjugates. Resolution of the applied mass spectrometers plays an important role in structural studies of mixtures of the target compounds isolated from biological material. High-resolution analyzers allow obtaining information about elemental composition of the analyzed compounds. Application of various mass spectrometric techniques, including different systems of ionization, analysis of both positive and negative ions of flavonoids, fragmentation of the protonated/deprotonated molecules and in some cases addition of metal ions to the studied compounds before ionization and fragmentation, may improve structural characterization of natural products. In our review we present different strategies allowing structural characterization of positional isomers and isobaric compounds existing in class of flavonoid glycoconjugates and their derivatives, which are synthetized in plants and are important components of the human food and drugs as well as animal feed.
Collapse
Affiliation(s)
- Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
42
|
Oberacher H, Arnhard K. Current status of non-targeted liquid chromatography-tandem mass spectrometry in forensic toxicology. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Strategy for non-target ionic analysis by capillary electrophoresis with ultraviolet detection. Anal Bioanal Chem 2016; 409:1067-1077. [DOI: 10.1007/s00216-016-0025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/11/2023]
|
44
|
|
45
|
Sun Q, Luo Y, Yang X, Xiang P, Shen M. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS. Forensic Sci Int 2016; 261:71-81. [DOI: 10.1016/j.forsciint.2016.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
|
46
|
Fontanesi L. Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding. Anim Front 2016. [DOI: 10.2527/af.2016-0011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Krauss M. High-Resolution Mass Spectrometry in the Effect-Directed Analysis of Water Resources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/bs.coac.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Richardson S, Postigo C. Discovery of New Emerging DBPs by High-Resolution Mass Spectrometry. APPLICATIONS OF TIME-OF-FLIGHT AND ORBITRAP MASS SPECTROMETRY IN ENVIRONMENTAL, FOOD, DOPING, AND FORENSIC ANALYSIS 2016. [DOI: 10.1016/bs.coac.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|