1
|
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
2
|
Abstract
Solid phase microextraction (SPME) is one of the most popular sample preparation methods which can be applied to organic compounds allowing the simultaneous extraction and pre-concentration of analytes from the sample matrix. It is based on the partitioning of the analyte between the extracting phase, generally immobilized on a fiber substrate, and the matrix (water, air, etc.), and has numerous advantages such as rapidity, simplicity, low cost, ease of use and automation, and absence of toxic solvents. Fiber SPME has been widely used in combination with various analytical instrumentation even if most of the work has been done coupling the extraction technique with gas and liquid chromatography (GC and LC). This manuscript presents an overview of the recent works (from 2010 to date) of solid phase microextraction coupled to liquid chromatography (SPME-LC) relevant to analytical applications performed using commercially available fibers or lab-made fibers already developed in previous papers, and to improved instrumental systems and approaches.
Collapse
|
3
|
Lei X, Cui J, Wang S, Huang T, Wu X. Preparation of a biomimetic ionic liquids hybrid polyphosphorylcholine monolithic column for the high efficient capillary microextraction of glycopeptide antibiotics. J Chromatogr A 2020; 1623:461175. [DOI: 10.1016/j.chroma.2020.461175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
|
4
|
Manousi N, Tzanavaras PD, Zacharis CK. Bioanalytical HPLC Applications of In-Tube Solid Phase Microextraction: A Two-Decade Overview. Molecules 2020; 25:molecules25092096. [PMID: 32365828 PMCID: PMC7248733 DOI: 10.3390/molecules25092096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-7663
| |
Collapse
|
5
|
|
6
|
Zhang N, Su L, Man S, Lei X, Huang T, Zhu C, Zhang L, Wu X. Task-specific solid-phase microextraction based on ionic liquid/polyhedral oligomeric silsesquioxane hybrid coating for sensitive analysis of polycyclic aromatic hydrocarbons by gas chromatography–mass spectrometry. J Chromatogr A 2019; 1598:49-57. [DOI: 10.1016/j.chroma.2019.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
7
|
Wang M, Ma H, Chi Q, Li Q, Li M, Zhang H, Li C, Fang H. A monolithic copolymer prepared from N-(4-vinyl)-benzyl iminodiacetic acid, divinylbenzene and N,N'-methylene bisacrylamide for preconcentration of cadmium(II) and cobalt(II) from biological samples prior to their determination by ICP-MS. Mikrochim Acta 2019; 186:537. [PMID: 31317277 DOI: 10.1007/s00604-019-3656-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
Abstract
A capillary monolith consisting of poly[N-(4-vinyl)-benzyl iminodiacetic acid-co-divinylbenzene-co-N,N'-methylene bisacrylamide), referred to as poly(VBIDA-DVB-Bis), has been prepared. It is shown to be an efficient sorbent for the enrichment of Co(II) and Cd(II). The two ions are completely retained by the monolith in the pH range from 4.0 to 9.0. The breakthrough curve tests were adopted to evaluate the adsorption performance of the monolith towards Co(II) and Cd(II). A dose-response model was used to describe the breakthrough curves of the two ions at different initial concentrations. The adsorption capacities for Co(II) and Cd(II) are 1.54 and 1.73 mg·m-1 at a concentration level of 2.5 mg·L-1, respectively. The enrichment factor is 100, and the required sample volume is 5 mL. Following elution of the two ions with 0.5 M HNO3, they were quantified by ICP-MS. The limits of detection in a 1 mL sample are 0.35 ng·L-1 for Co(II) and 0.44 ng·L-1 for Cd(II). The method was applied to the determination of Co(II) and Cd(II) in spiked rice, human urine and seawater samples. Graphical abstract Schematic representation of a monolithic copolymer prepared from N-(4-vinyl)-benzyl iminodiacetic acid (VBIDA), divinylbenzene (DVB) and N,N'-methylene bisacrylamide (Bis) and its application for selective capturing of cadmium(II) and cobalt(II) from complex sample matrices prior to their determination by ICP-MS.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Huifang Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qin Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Ming Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Huijuan Zhang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Huaifang Fang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Ren H, Xue M, An Z, Jiang J. Improving thermal desorption aerosol gas chromatography using a dual-trap design. J Chromatogr A 2019; 1599:247-252. [PMID: 31030953 DOI: 10.1016/j.chroma.2019.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/26/2022]
Abstract
Thermal desorption aerosol gas chromatography (TAG) is an effective tool for in situ analysis of particulate organic molecules. However, the performance of current TAG is limited by the detectability of low volatile compounds and the matrix effect. In this study, a dual-trap TAG system was developed to address these issues. Thermally desorbed effluent is focused by a weakly retained trap (for low volatile compounds) in a 1 m capillary column conditioned in the GC oven, followed by a strongly retained trap (for high volatile compounds). Then, the focused analytes are desorbed in a reverse flow into the GC column for analysis. Detection over a wide volatility range from C10 to C40 n-alkanes is achieved using the dual-trap TAG. We show that it has lower discrimination of injection, better linearity and higher detectability of n-alkanes. The dual-trap TAG was applied for in-situ measurement of ambient fine particles (PM2.5) in Beijing. Repeatable retention time of n-alkanes was demonstrated during a continuous measurement over two weeks.
Collapse
Affiliation(s)
- Haixia Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mo Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhaojin An
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Preparation and characterization of a novel nanocomposite coating based on sol-gel titania/hydroxyapatite for solid-phase microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Mei M, Huang X, Chen L. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Chen C, Liu W, Hong T. Novel approaches for biomolecule immobilization in microscale systems. Analyst 2019; 144:3912-3924. [DOI: 10.1039/c9an00212j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This manuscript reviews novel approaches applied for biomolecule immobilization in microscale systems.
Collapse
Affiliation(s)
- Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Tingting Hong
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
12
|
Development and validation of eco-friendly strategies based on thin film microextraction for water analysis. J Chromatogr A 2018; 1579:20-30. [DOI: 10.1016/j.chroma.2018.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 01/11/2023]
|
13
|
Cui X, Xu S, Jin C, Ji Y. Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 2018; 1033:35-48. [DOI: 10.1016/j.aca.2018.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022]
|
14
|
Maciel EVS, de Toffoli AL, Lanças FM. Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns. J Sep Sci 2018; 42:258-272. [PMID: 30289207 DOI: 10.1002/jssc.201800824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Determination of target analytes present in complex matrices requires a suitable sample preparation approach to efficiently remove the analytes of interest from a medium containing several interferers while at the same time preconcentrating them aiming to improve the output signal detection. Online multidimensional solid-phase separation techniques have been widely used for the analysis of different contaminants in complex matrices such as food, environmental, and biological samples, among others. These online techniques usually consist of two steps performed in two different columns (extraction and analytical column), the first being employed to extract the analytes of interest from the original medium and the latter to separate them from the interferers. The extraction column in multidimensional techniques presents a relevant role since their variations as building material (usually a tube), sorbent material, modes of application, and so on can significantly influence the extraction success. The main features of such columns are subject of constant research aiming improvements directly related to the performance of the separation techniques that utilize multidimensional analysis. The present review highlights the main features of extraction columns online coupled to chromatographic techniques, inclusive for in-tube solid-phase microextraction, online solid phase and turbulent flow, aiming the determination of analytes present at very low concentrations in complex matrices. It will critically describe and discuss some of the most common instrumental set up as well as comments on recent applications of these multidimensional techniques. Besides that, the authors have described some properties and enhancements of the extraction columns that are used as first dimension on these systems, such as type of column material (poly (ether ether ketone), fused silica, stainless steel, and other materials) and the way that the extractive phase is accommodated inside the tubing (filled and open tubular). Practical applications of this approach in fields such as environment, food, and bioanalysis are also presented and discussed.
Collapse
Affiliation(s)
| | - Ana Lúcia de Toffoli
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| |
Collapse
|
15
|
On-line coupling of hydrophilic ionic liquids-based polymer monolith microextraction to capillary liquid chromatography with amperometric detection: An ultrasensitive residue analysis method for glycopeptide antibiotics. J Chromatogr A 2018; 1556:10-20. [DOI: 10.1016/j.chroma.2018.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
|
16
|
|
17
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
18
|
Inter-laboratory validation of a thin film microextraction technique for determination of pesticides in surface water samples. Anal Chim Acta 2017; 964:74-84. [DOI: 10.1016/j.aca.2017.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
|
19
|
Liu X, Suo F, He M, Chen B, Hu B. Imidazole functionalized organic monoliths for capillary microextraction of Co(II), Ni(II) and Cd(II) from urine prior to on-line ICP-MS detection. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2087-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Piri-Moghadam H, Lendor S, Pawliszyn J. Development of a Biocompatible In-Tube Solid-Phase Microextraction Device: A Sensitive Approach for Direct Analysis of Single Drops of Complex Matrixes. Anal Chem 2016; 88:12188-12195. [PMID: 28193058 DOI: 10.1021/acs.analchem.6b03160] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| |
Collapse
|
21
|
Piri-Moghadam H, Ahmadi F, Pawliszyn J. A critical review of solid phase microextraction for analysis of water samples. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|