1
|
El-Attar RO, Abdelhameed RM, Khaled E. β-cyclodextrin cross-linked metal organic frameworks as a new sensing candidate for donepezil hydrochloride potentiometric sensors. BMC Chem 2025; 19:150. [PMID: 40442810 PMCID: PMC12121035 DOI: 10.1186/s13065-025-01521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
Screen-printing is a well-established promising technology for large scale production of planner disposable electrochemical sensors. The present study aims to fabricate a novel donepezil hydrochloride (DPH) screen-printed sensor integrated with the cross-linked β-cyclodextrin-functionalized aluminum metal organic framework-multiwall carbon nanotubes nanocomposites (β-CD/MOF/MWCNTs) as a novel sensing element. The fabricated disposable sensors exhibit theoretical Nernstian compliance value of 60.7 ± 1.5 mV decade-1 within a linear dynamic concentration range from 10-6 to 10-2 mol L-1 and limit of detection 7.0 × 10 -7 molL-1. The DPH disposable sensors show high potential stability with a prolonged operational lifetime and the fast response time of 6 s. The presented electrochemical sensors represent an efficient analytical tool for fast and sensitive assay of DPH residues in the marketed pharmaceutical tablets and biological samples with acceptable average recoveries under direct potentiometric measurements, flow injection analysis (FIA), and potentiometric titration. Moreover, the dissolution and degradation studies of DPH can be monitored by the presented disposable sensors.
Collapse
Affiliation(s)
- Rehab O El-Attar
- Microanalysis Laboratory, Applied Organic Chemistry Department, National Research Centre, El Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, National Research Center, El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Elmorsy Khaled
- Microanalysis Laboratory, Applied Organic Chemistry Department, National Research Centre, El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
2
|
Chitolina-Rodrigues G, Chandran D, R R, Silva-Neto HA. Recent advances in screen-printed carbon electrodes for food additive analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3613-3628. [PMID: 40270469 DOI: 10.1039/d5ay00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Screen-printed carbon electrodes (SPCEs) are regarded as the actual and future sensing option for additive analysis in food samples; nonetheless, the sample preparation, selectivity, and detectability are key challenges to overcome for its technological development and wide application. In the present review, we inform, discuss, and compare some pivotal aspects associated with the fabrication of SPCEs, the presence of additives in foods, sample preparation, and voltammetric measurements of additives in food samples. Also, the proposed study has indicated that it is possible to develop suitable options for electroanalytical methodologies by using bare or modified SPCEs, which present affordable results in terms of selectivity, linear concentration range, and limit of detection for different classes of additives. Lastly, the review introduces challenging points that can be carefully evaluated for the next generation of SPCEs dedicated to additive analysis.
Collapse
Affiliation(s)
| | - Devu Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Rejithamol R
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Habdias A Silva-Neto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
3
|
Jiang D, Feng Z, Jiang H, Xiang X, Wang L. Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection. Biosens Bioelectron 2025; 271:117103. [PMID: 39736243 DOI: 10.1016/j.bios.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/01/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro. Furthermore, gold nanoparticle-modified anodized aluminum oxide sieves macromolecular substances and facilitates sensor nano-analysis. Composites of cerium-based organometallic framework, MnO2, and gold nanoparticles significantly enhanced the sensitivity of the screen-printed carbon electrode. Under optimal experimental conditions, the detection limit for OVA was 0.042 μg/mL, with a linear range of 0.1-10.0 μg/mL. The fabricated sensor demonstrated high sensitivity, reliability, and simplicity, showcasing its broad potential for allergen detection applications.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Zeng Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu, 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
4
|
Borges IDO, Silva Lima AR, Gomes Dos Santos Neto A, Stulzer HK, Jost CL. Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1658-1669. [PMID: 39846838 DOI: 10.1039/d4ay02151g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets. Notably, for the first time in the literature, we employ screen-printed carbon electrodes (SPCE) for TBF quantification. Additionally, glassy carbon electrodes (GCE) were used to explore the redox behavior of the analyte. Electrochemical performance was evaluated and compared using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Optimized conditions of supporting electrolyte and scan rate studies revealed that the oxidation of TBF involves an equal exchange of protons and electrons. For the GCE, the oxidation process was found to be irreversible, controlled by both diffusion and adsorption, while for the SPCE, it was irreversible and diffusion-controlled. Square wave voltammetry (SWV) was optimized for both electrodes to enhance sensitivity. For SPCE, the calibration curve ranged from 5 to 100 μg mL-1, with an LOD of 1.48 μg mL-1 using a single drop of sample. The calibration curve for GCE was constructed between 2.5 and 30 μg mL-1, with a limit of detection (LOD) of 0.072 μg mL-1. TBF quantification was performed on raw material samples from various suppliers and tablet forms using external calibration with a recovery range within 90-110%. Analysis of the data reveals that the voltammetric method's accuracy aligns well with the chromatographic approach based on high performance liquid chromatography (HPLC). Furthermore, the proposed methodology demonstrated outstanding sustainability, achieving a score of 0.91 in Green Analytical Chemistry (GAC) criteria. Our novel approach combines high analytical efficiency with a reduced environmental impact, establishing itself as a green, cost-effective, and accurate alternative for TBF sensing.
Collapse
Affiliation(s)
- Isabelle de Oliveira Borges
- Universidade Federal de Santa Catarina, Departamento de Farmácia, 88040-900 Florianópolis, SC, Brazil.
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
| | - Adriano Rogerio Silva Lima
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
| | - Antonio Gomes Dos Santos Neto
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
| | - Hellen Karine Stulzer
- Universidade Federal de Santa Catarina, Departamento de Farmácia, 88040-900 Florianópolis, SC, Brazil.
| | - Cristiane Luisa Jost
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Orzari LO, Kalinke C, Silva-Neto HA, Rocha DS, Camargo J, Coltro WK, Janegitz BC. Screen-Printing vs Additive Manufacturing Approaches: Recent Aspects and Trends Involving the Fabrication of Electrochemical Sensors. Anal Chem 2025; 97:1482-1494. [PMID: 39817415 PMCID: PMC11780578 DOI: 10.1021/acs.analchem.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring. Modern designs have given rise to innovative manufacturing protocols, including screen and additive printing methods, for creating sophisticated 2D and 3D electrochemical devices. This perspective provides a comprehensive overview of the screen-printing and additive-printing protocols for constructing electrochemical devices. It is also informed that screen-printed sensors offer cost-effectiveness and ease of fabrication, although they may pose challenges due to the use of toxic volatile inks and limited design flexibility. On the other hand, additive manufacturing, especially the fused filament fabrication (or fused deposition modeling) strategies, allows for intricate three-dimensional sensor designs and rapid prototyping of customized equipment. However, the post-treatment processes and material selection can affect production costs. Despite their unique advantages and limitations, both printing techniques show promise for various applications, driving innovation in the field toward more advanced sensor designs. Finally, these advancements pave the way for improved sensor performance and expand possibilities for academic, environmental, and industrial applications. The future is full of exciting opportunities for state-of-the-art sensor technologies that will further improve our ability to detect and determine various substances in a wide range of environments as researchers continue to explore the many possibilities of electrochemical devices.
Collapse
Affiliation(s)
- Luiz O. Orzari
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Cristiane Kalinke
- Institute
of Chemistry, University of Campinas, 13083-859 Campinas, São Paulo, Brazil
- Department
of Chemistry, Federal University of Parana, 81531-980 Curitiba, Paraná, Brazil
| | - Habdias A. Silva-Neto
- Department
of Chemistry, Federal University of Santa
Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Danielly S. Rocha
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
| | - Jéssica
R. Camargo
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
- Department
of Physics, Chemistry and Mathematics, Federal
University of São Carlos, 18052-780 Sorocaba, São Paulo, Brazil
| | - Wendell K.T. Coltro
- Institute
of Chemistry, Federal University of Goiás, 74690-900 Goiânia, Goiás, Brazil
- National
Institute of Bioanalytical Science and Technology, 13084-971 Campinas, São Paulo, Brazil
| | - Bruno C. Janegitz
- Department
of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| |
Collapse
|
6
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2025; 12:343-363. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
7
|
Thaweeskulchai T, Prempinij W, Schulte A. A 3D printed dual screen-printed electrode separation device for twin electrochemical mini-cell establishment. RSC Adv 2024; 14:30830-30835. [PMID: 39328873 PMCID: PMC11426311 DOI: 10.1039/d4ra05929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
We describe a tiny 3D-printed polymethyl-methacrylate-based plastic sleeve that houses two disposable screen-printed electrodes (SPE) and enables each of the working electrodes (WEs) to work independently, on a different side of a thin barrier, in its own electrochemical (EC) mini-cell, while the SPE counter and reference units are shared for electroanalysis. Optical and EC performance tests proved that the plastic divider between WE1 and WE2 efficiently inhibited solution mixing between the mini-cells. The two neighboring, independently operating mini-cells enabled matched differential measurements in the same sample solution, a tactic designed for elimination of electrochemical interference in complex samples. In a proof-of-principle glucose biosensor trial, a glucose oxidase-modified WE2 and an unmodified WE1 delivered the EC data for the removal of anodic ascorbic acid (AA) interference simply by subtracting the WE1 (background) current from the analyte-specific WE2 current (from buffered sample solution supplemented with glucose/AA), at an anodic H2O2 detection potential of +1 V. The microfabricated SPE accessory is cheap and easy to make and use. For the many dual electrode SPE strips on the market for multiple analytical targets the new device widens the options for their exploitation in assays of biological and environmental samples with complex matrix compositions and significant risks of interference.
Collapse
Affiliation(s)
- Thana Thaweeskulchai
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Waswan Prempinij
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| |
Collapse
|
8
|
Kamalasekaran K, Sundramoorthy AK. Applications of chemically modified screen-printed electrodes in food analysis and quality monitoring: a review. RSC Adv 2024; 14:27957-27971. [PMID: 39224631 PMCID: PMC11367709 DOI: 10.1039/d4ra02470b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Food analysis and food quality monitoring are vital aspects of the food industry, ensuring the safety and authenticity of various food products, from packaged goods to fast food. In this comprehensive review, we explore the applications of chemically modified Screen-Printed Electrodes (SPEs) in these critical domains. SPEs have become extremely useful devices for ensuring food safety and quality assessment because of their adaptability, affordability, and convenience of use. The Introduction opens the evaluation, that covers a wide spectrum of foods, encompassing packaged, junk food, and food quality concerns. This sets the stage for a detailed exploration of chemically modified SPEs, including their nature, types, utilization, and the advantages they offer in the context of food analysis. Subsequently, the review delves into the multitude applications of SPEs in food analysis, ranging from the detection of microorganisms such as bacteria and fungi, which are significant indicators of food spoilage and safety, to the identification of pesticide residues, food colorants, chemicals, toxins, and antibiotics. Furthermore, chemically modified SPEs have proven to be invaluable in the quantification of metal ions and vitamins in various food matrices, shedding light on nutritional content and quality.
Collapse
Affiliation(s)
- Kavitha Kamalasekaran
- Department of Chemistry, Velammal Engineering College Chennai 600066 Tamil Nadu India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 600077 Tamil Nadu India
| |
Collapse
|
9
|
Pham ML, Maghsoomi S, Brandl M. An Electrochemical Aptasensor for the Detection of Freshwater Cyanobacteria. BIOSENSORS 2024; 14:28. [PMID: 38248405 PMCID: PMC10813013 DOI: 10.3390/bios14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 μA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| | - Somayeh Maghsoomi
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Martin Brandl
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| |
Collapse
|
10
|
Su Z, Hu S, Zhang Y, Liang Z, Peng Y, Cao Q, Yu X, Zhu Z, He P, Li Z. Electrodeposition of paracetamol oxide for intelligent portable ratiometric detection of nicotine and ethyl vanillin β-D-glucoside. Analyst 2023; 149:188-195. [PMID: 38010128 DOI: 10.1039/d3an01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, the electrodeposition of paracetamol oxide (PA ox) for the intelligent portable ratiometric detection of nicotine (NIC) and ethyl vanillin β-D-glucoside (EVG) is reported. PA ox electrodeposited on a screen-printed carbon electrode (SPCE) was used as a new fixed state ratiometric reference probe. A portable electrochemical workstation combined with a smart phone was applied as an intelligent portable electrochemical sensing platform. The sensor was studied by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), ultraviolet-visible spectrophotometry (UV-vis), theoretical calculation, chronoamperometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). Under optimized conditions, the detection range of NIC is 10-200 μmol L-1, and the detection limit is 0.256 μmol L-1. The detection range of EVG was 10-180 μmol L-1, and the detection limit was 0.058 μmol L-1. The sensor can realize the real-time detection of NIC and EVG concentration in cigarette samples quickly and accurately, and has good anti-interference, repeatability and stability.
Collapse
Affiliation(s)
- Zhaohong Su
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Shiyu Hu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuhang Zhang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhanning Liang
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Yi Peng
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyi Cao
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Xia Yu
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiyang Zhu
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| | - Pei He
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry R&D Center of China Tobacco Yunnan Industry Co., Ltd, 650231 Kunming, PR China.
| |
Collapse
|
11
|
Macedo AA, Arantes LC, Pimentel DM, de Deus Melo T, Magalhães de Almeida Melo L, Alves de Barros W, Rocha CM, de Fátima Â, Pio Dos Santos WT. Comprehensive detection of lysergic acid diethylamide (LSD) in forensic samples using carbon nanotube screen-printed electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5837-5845. [PMID: 37874181 DOI: 10.1039/d3ay01385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Lysergic acid diethylamide (LSD) is a prevalent psychoactive substance recognized for its hallucinogenic properties, often encountered in blotter papers for illicit consumption. Given that LSD ranks among the most widely abused illicit drugs globally, its prompt identification in seized samples is vital for forensic investigations. This study presents, for the first time, an electrochemical screening method for detecting LSD in forensic samples, utilizing a multi-wall carbon nanotube screen-printed electrode (SPE-MWCNT). The LSD detection process was optimized on SPE-MWCNT in a phosphate buffer solution (0.1 mol L-1, pH 12.0) using square wave voltammetry (SWV). The combined use of SPE-MWCNT with SWV displayed robust stability in electrochemical responses for both qualitative (peak potential) and quantitative (peak current) LSD assessment, with a relative standard deviation (RSD) of less than 5% across the same or different electrodes (N = 3). A linear detection range was established between 0.16 and 40.0 μmol L-1 (R2 = 0.998), featuring a low limit of detection (LOD) of 0.05 μmol L-1. Interference studies with twenty-three other substances, including groups of phenethylamines typically found in blotting papers (e.g., NBOHs and NBOMes) and traditional illicit drugs, were performed, revealing a highly selective response for LSD using the proposed method. Consequently, the integration of SPE-MWCNT with SWV offers a robust tool for qualitative and quantitative LSD analysis in forensic applications, providing rapid, sensitive, selective, reproducible, and straightforward preliminary identification in seized samples.
Collapse
Affiliation(s)
- Anne Alves Macedo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Luciano C Arantes
- Laboratório de Química e Física Forense, Instituto de Criminalística, Polícia Civil do Distrito Federal, 70610-907, Brasília, Distrito Federal, Brazil
| | - Dilton Martins Pimentel
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| | - Tifany de Deus Melo
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Larissa Magalhães de Almeida Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Mancilha Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wallans Torres Pio Dos Santos
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Diamantina, 39100000, Minas Gerais, Brazil.
- Laboratório Integrado de Pesquisas do Vale do Jequitinhonha, Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, CampusJK, 39100000 Diamantina, Minas Gerais, Brazil
| |
Collapse
|
12
|
Rubino A, Queirós R. Electrochemical determination of heavy metal ions applying screen-printed electrodes based sensors. A review on water and environmental samples analysis. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
13
|
Lisboa TP, Couto da Silva G, Oliveira RS, Veríssimo de Oliveira WB, Cunha de Souza C, Costa Matos MA, Matos RC. Electrochemical monitoring of levofloxacin using a silver nanoparticle-modified disposable device based on a lab-made conductive ink. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2262-2269. [PMID: 37129413 DOI: 10.1039/d3ay00499f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The emergence of bacteria genetically resistant to first- and second-generation fluoroquinolones has resulted in increased consumption of levofloxacin (LEV) in human and veterinary medicine. In this regard, the development of low cost and good sensitivity electrochemical devices has been highly required. Thus, in this work, we propose the development of a disposable electrochemical device (DED) using a lab-made conductive ink based on graphite powder and nail polish immobilized on a rigid polyvinyl chloride support (transparent sheet). Additionally, a simple and quick protocol for the electrodeposition of silver nanoparticles was used in order to improve the electroanalytical performance of the sensor (2.75-fold). A differential pulse voltammetry (DPV) method was optimized and the sensor was applied for LEV monitoring in pharmaceutical formulation samples, synthetic urine and simulated body fluid. The method showed a wide linear working range ranging from 0.5 to 50 μmol L-1 and a detection limit of 68.3 nmol L-1. Furthermore, the precision was adequate (RSD < 4.7%), while the accuracy was evaluated through spiked samples with percent recovery ranging from 93 to 103%. The sensor was also shown to be selective for LEV against other electroactive antibiotic species, thus demonstrating suitable characteristics for electroanalytical applications.
Collapse
Affiliation(s)
- Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Gabriela Couto da Silva
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | - Raylla Santos Oliveira
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Cassiano Cunha de Souza
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de For a, 36026-900, Juiz de Fora-MG, Brazl.
| |
Collapse
|
14
|
Sharafi E, Sadeghi S. A highly sensitive and ecofriendly assay platform for the simultaneous electrochemical determination of rifampicin and isoniazid in human serum and pharmaceutical formulations. NEW J CHEM 2023. [DOI: 10.1039/d2nj04263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simple fabrication of an electrochemical sensor for simultaneous determination of rifampicin and isoniazid based on electrochemical modification of SPCE surface with reduced graphene oxide and nickel hydroxide film (Ni(OH)2/rGO/SPCE) without using toxic chemical agents.
Collapse
Affiliation(s)
- Effat Sharafi
- Department of Chemistry, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Susan Sadeghi
- Department of Chemistry, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| |
Collapse
|
15
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Khairu Anuar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalyst Research Centre (NANOCAT), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| |
Collapse
|
17
|
Tasić ŽZ, Petrović Mihajlović MB, Simonović AT, Radovanović MB, Antonijević MM. Recent Advances in Electrochemical Sensors for Caffeine Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9185. [PMID: 36501886 PMCID: PMC9735645 DOI: 10.3390/s22239185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review.
Collapse
|
18
|
Pepłowski A, Budny F, Jarczewska M, Lepak-Kuc S, Dybowska-Sarapuk Ł, Baraniecki D, Walter P, Malinowska E, Jakubowska M. Self-Assembling Graphene Layers for Electrochemical Sensors Printed in a Single Screen-Printing Process. SENSORS (BASEL, SWITZERLAND) 2022; 22:8836. [PMID: 36433435 PMCID: PMC9692624 DOI: 10.3390/s22228836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This article reports findings on screen-printed electrodes employed in microfluidic diagnostic devices. The research described includes developing a series of graphene- and other carbon form-based printing pastes compared to their rheological parameters, such as viscosity in static and shear-thinning conditions, yield stress, and shear rate required for thinning. In addition, the morphology, electrical conductivity, and electrochemical properties of the electrodes, printed with the examined pastes, were investigated. Correlation analysis was performed between all measured parameters for six electrode materials, yielding highly significant (p-value between 0.002 and 0.017) correlations between electron transfer resistance (Ret), redox peak separation, and static viscosity and thinning shear-rate threshold. The observed more electrochemically accessible surface was explained according to the fluid mechanics of heterophase suspensions. Under changing shear stress, the agglomeration enhanced by the graphene nanoplatelets' interparticle affinity led to phase separation. Less viscous pastes were thinned to a lesser degree, allowing non-permanent clusters to de-agglomerate. Thus, the breaking of temporary agglomerates yielded an unblocked electrode surface. Since the mechanism of phase ordering through agglomeration and de-agglomeration is affected by the pastes' rheology and stress during the printing process and requires no further treatment, it can be appropriately labeled as a self-assembling electrode material.
Collapse
Affiliation(s)
- Andrzej Pepłowski
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Filip Budny
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
| | - Sandra Lepak-Kuc
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Łucja Dybowska-Sarapuk
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Dominik Baraniecki
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| | - Piotr Walter
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego, 00-664 Warsaw, Poland
- Division of Medical Diagnostics, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| | - Małgorzata Jakubowska
- Printed Electronics, Textronics & Assembly Lab, Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 A. Boboli, 02-525 Warsaw, Poland
| |
Collapse
|
19
|
Meng L, Chirtes S, Liu X, Eriksson M, Mak WC. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosens Bioelectron 2022; 218:114742. [DOI: 10.1016/j.bios.2022.114742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
20
|
A disposable paper-based microfluidic electrochemical cell equipped with graphite-supported gold nanoparticles modified electrode for gallic acid determination. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors. Talanta 2022; 251:123812. [DOI: 10.1016/j.talanta.2022.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
|
22
|
Buffon E, Stradiotto NR. Using a disposable platform based on reduced graphene oxide, iron nanoparticles and molecularly imprinted polymer for voltammetric determination of vanillic acid in fruit peels. Food Chem 2022; 397:133786. [PMID: 35908470 DOI: 10.1016/j.foodchem.2022.133786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
This work reports the development and application of a disposable electrochemical platform for vanillic acid (VA) detection using screen-printed electrode modified with reduced graphene oxide, iron nanoparticles and molecularly imprinted poly(pyrrole) film. The electrochemical platform was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Using optimized conditions, the proposed disposable platform presented linear concentration ranges of 1.0 × 10-9 to 1.5 × 10-7 mol/L. The limits of detection and quantification obtained for the device were 3.1 × 10-10 and 1.0 × 10-9 mol/L, respectively. The electrochemical platform was found to be selective for VA recognition and presented voltammetric responses with good repeatability and stability. The analytical methodology developed was applied for VA determination in banana and orange peels. The results obtained showed that the proposed electrochemical platform has a good accuracy when applied for the determination of VA.
Collapse
Affiliation(s)
- Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil.
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
23
|
Sahragard A, Varanusupakul P, Miró M. Interfacing liquid-phase microextraction with electrochemical detection: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Magnetically aligned graphite flakes electrodes for excellent sensitive detection of hydroquinone and catechol. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022; 12:7972. [PMID: 35562402 PMCID: PMC9106706 DOI: 10.1038/s41598-022-11982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.0026 \mu $$\end{document}0.0026μA/M. Further testing was performed to assess the sensor’s ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.
Collapse
|
26
|
Electrochemical Biosensors for Soluble Epidermal Growth Factor Receptor Detection. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Ultrasensitive detection and application of estradiol based on nucleic acid aptamer and circulating amplification technology. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Vrabelj T, Finšgar M. Recent Progress in Non-Enzymatic Electroanalytical Detection of Pesticides Based on the Use of Functional Nanomaterials as Electrode Modifiers. BIOSENSORS 2022; 12:263. [PMID: 35624564 PMCID: PMC9139166 DOI: 10.3390/bios12050263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
Abstract
This review presents recent advances in the non-enzymatic electrochemical detection and quantification of pesticides, focusing on the use of nanomaterial-based electrode modifiers and their corresponding analytical response. The use of bare glassy carbon electrodes, carbon paste electrodes, screen-printed electrodes, and other electrodes in this research area is presented. The sensors were modified with single nanomaterials, a binary composite, or triple and multiple nanocomposites applied to the electrodes' surfaces using various application techniques. Regardless of the type of electrode used and the class of pesticides analysed, carbon-based nanomaterials, metal, and metal oxide nanoparticles are investigated mainly for electrochemical analysis because they have a high surface-to-volume ratio and, thus, a large effective area, high conductivity, and (electro)-chemical stability. This work demonstrates the progress made in recent years in the non-enzymatic electrochemical analysis of pesticides. The need for simultaneous detection of multiple pesticides with high sensitivity, low limit of detection, high precision, and high accuracy remains a challenge in analytical chemistry.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
29
|
Inam AKMS, Angeli MAC, Douaki A, Shkodra B, Lugli P, Petti L. An Aptasensor Based on a Flexible Screen-Printed Silver Electrode for the Rapid Detection of Chlorpyrifos. SENSORS 2022; 22:s22072754. [PMID: 35408368 PMCID: PMC9003324 DOI: 10.3390/s22072754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Initially, the aptasensor was optimized in terms of electrolyte pH, aptamer concentration, and incubation time for chlorpyrifos. Under optimal conditions, the aptasensor showed a wide linear range from 1 to 105 ng/mL with a calculated limit of detection as low as 0.097 ng/mL and sensitivity of 600.9 µA/ng. Additionally, the selectivity of the aptasensor was assessed by identifying any interference from other pesticides, which were found to be negligible (with a maximum standard deviation of 0.31 mA). Further, the stability of the sample was assessed over time, where the reported device showed high stability over a period of two weeks at 4 °C. As the last step, the ability of the aptasensor to detect chlorpyrifos in actual samples was evaluated by testing it on banana and grape extracts. As a result, the device demonstrated sufficient recovery rates, which indicate that it can find application in the food industry.
Collapse
Affiliation(s)
- A. K. M. Sarwar Inam
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | - Martina Aurora Costa Angeli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
- Correspondence:
| | - Ali Douaki
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Bajramshahe Shkodra
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Paolo Lugli
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| | - Luisa Petti
- Sensing Technologies Laboratory, Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (A.K.M.S.I.); (A.D.); (B.S.); (P.L.); (L.P.)
| |
Collapse
|
30
|
A simple and reliable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Shamagsumova R, Shurpik D, Kuzin Y, Stoikov I, Rogov A, Evtugyn G. Pillar[6]arene: Electrochemistry and Application in Electrochemical (Bio)sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Voltammetric Determination of Active Pharmaceutical Ingredients Using Screen-Printed Electrodes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A simple, fast, sensitive and low-cost voltammetric method using a screen-printed carbon electrode (SPCE) is presented in this work for the simultaneous determination of ascorbic acid (AA), paracetamol (PA), dextromethorphan (DX) and caffeine (CF) in both pharmaceutical formulations and samples of environmental interest. The oxidative peak current displayed linear dependence on concentration within the range 1.7–60.5, 0.6–40.0, 0.9–8.4 (1st linear part) and 1.8–22.0 mg L−1 for AA, PA, DX and CF, respectively; and detection limits of 0.5, 0.2, 0.3 and 0.5 mg L−1, respectively. The developed differential pulse voltammetric (DPV) method was validated using both a pharmaceutical product and a spiked well water sample. A very good agreement between the determined and the theoretical label drug content and recoveries in the range of 99.5–100.8% were obtained for pharmaceutical product and well water samples, respectively.
Collapse
|
33
|
Rebelo P, Pacheco JG, Voroshylova IV, Melo A, Cordeiro MND, Delerue-Matos C. A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation. Anal Chim Acta 2022; 1194:339410. [DOI: 10.1016/j.aca.2021.339410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022]
|
34
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
36
|
Inam AKS, Costa Angeli MA, Shkodra B, Douaki A, Avancini E, Magagnin L, Petti L, Lugli P. Flexible Screen-Printed Electrochemical Sensors Functionalized with Electrodeposited Copper for Nitrate Detection in Water. ACS OMEGA 2021; 6:33523-33532. [PMID: 34926901 PMCID: PMC8675019 DOI: 10.1021/acsomega.1c04296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 05/15/2023]
Abstract
Nitrate (NO3 -) contamination is becoming a major concern due to the negative effects of an excessive NO3 - presence in water which can have detrimental effects on human health. Sensitive, real-time, low-cost, and portable measurement systems able to detect extremely low concentrations of NO3 - in water are thus becoming extremely important. In this work, we present a novel method to realize a low-cost and easy to fabricate amperometric sensor capable of detecting small concentrations of NO3 - in real water samples. The novel fabrication technique combines printing of a silver (Ag) working electrode with subsequent modification of the electrode with electrodeposited copper (Cu) nanoclusters. The process was tuned in order to reach optimized sensor response, with a high catalytic activity toward electroreduction of NO3 - (sensitivity: 19.578 μA/mM), as well as a low limit of detection (LOD: 0.207 nM or 0.012 μg/L) and a good dynamic linear concentration range (0.05 to 5 mM or 31 to 310 mg/L). The sensors were tested against possible interference analytes (NO2 -, Cl-, SO4 2-, HCO3 -, CH3COO-, Fe2+, Fe3+, Mn2+, Na+, and Cu2+) yielding only negligible effects [maximum standard deviation (SD) was 3.9 μA]. The proposed sensors were also used to detect NO3 - in real samples, including tap and river water, through the standard addition method, and the results were compared with the outcomes of high-performance liquid chromatography (HPLC). Temperature stability (maximum SD 3.09 μA), stability over time (maximum SD 3.69 μA), reproducibility (maximum SD 3.20 μA), and repeatability (maximum two-time useable) of this sensor were also investigated.
Collapse
Affiliation(s)
- A. K.
M. S. Inam
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
- Department
of Nutrition and Food Engineering, Daffodil
International University, Dhaka 1207, Bangladesh
| | | | - Bajramshahe Shkodra
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
| | - Ali Douaki
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
| | - Enrico Avancini
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
| | - Luca Magagnin
- Department
of Chemistry, Materials and Chemical Engineering
“Giulio Natta”, Politecnico di Milano, Milano 20133, Italy
| | - Luisa Petti
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
| | - Paolo Lugli
- Faculty
of Science and Technology, Free University
of Bozen-Bolzano, Bolzano 39100, Italy
| |
Collapse
|
37
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Barros Azeredo NF, Ferreira Santos MS, Sempionatto JR, Wang J, Angnes L. Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Anal Chem 2021; 94:250-268. [PMID: 34851628 DOI: 10.1021/acs.analchem.1c02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed electrodes (SPEs) coupled with flow systems have been reported in recent decades for an ever-growing number of applications in modern electroanalysis, aiming for portable methodologies. The information acquired through this combination can be attractive for future users with basic knowledge, especially due to the increased measurement throughput, reduction in reagent consumption and minimal waste generation. The trends and possibilities of this set rely on the synergistic behavior that maximizes both SPE and flow analyses characteristics, allowing mass production and automation. This overview addresses an in-depth update about the scope of samples, target analytes, and analytical throughput (injections per hour, limits of detection, linear range, etc.) obtained by coupling injection techniques (FIA, SIA, and BIA) with SPE-based electrochemical detection.
Collapse
Affiliation(s)
- Nathália Florência Barros Azeredo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil.,Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lúcio Angnes
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil
| |
Collapse
|
39
|
Melo Henrique J, Rocha Camargo J, Gabriel de Oliveira G, Santos Stefano J, Campos Janegitz B. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Karadurmus L, Dogan-Topal B, Kurbanoglu S, Shah A, Ozkan SA. The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical DNA Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode. MICROMACHINES 2021; 12:mi12111337. [PMID: 34832748 PMCID: PMC8619472 DOI: 10.3390/mi12111337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines–dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3–1.3 ppm EPI, 0.1–1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Burcu Dogan-Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| |
Collapse
|
41
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
42
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
43
|
Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02802-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
A simple label-free electrochemical sensor for sensitive detection of alpha-fetoprotein based on specific aptamer immobilized platinum nanoparticles/carboxylated-graphene oxide. Sci Rep 2021; 11:13969. [PMID: 34234187 PMCID: PMC8263621 DOI: 10.1038/s41598-021-93399-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 11/08/2022] Open
Abstract
A label-free electrochemical aptamer-based sensor has been fabricated for alpha-fetoprotein (AFP) detection. Platinum nanoparticles on carboxylated-graphene oxide (PtNPs/GO-COOH) modified screen-printed graphene-carbon paste electrode (SPGE) was utilized as an immobilization platform, and the AFP aptamer was employed as a bio-recognition element. The synthesized GO-COOH helps to increase the surface area and amounts of the immobilized aptamer. Subsequently, PtNPs are decorated on GO-COOH to enhance electrical conductivity and an oxidation current of the hydroquinone electrochemical probe. The aptamer selectively interacts with AFP, causing a decrease in the peak current of the hydroquinone because the binding biomolecules on the electrode surface hinder the electron transfer of the redox probe. Effects of aptamer concentration and AFP incubation time were studied, and the current changes of the redox probe before and after AFP binding were investigated by square wave voltammetry. The developed aptasensor provides a linear range from 3.0–30 ng mL−1 with a detection limit of 1.22 ng mL−1. Moreover, the aptamer immobilized electrode offers high selectivity to AFP molecules, good stability, and sensitive determination of AFP in human serum samples with high recoveries.
Collapse
|
45
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
All solid-state miniaturized potentiometric sensors for flunitrazepam determination in beverages. Mikrochim Acta 2021; 188:192. [PMID: 34008054 DOI: 10.1007/s00604-021-04851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
Flunitrazepam is one of the frequently used hypnotic drugs to incapacitate victims for sexual assault. Appropriate diagnostic tools should be available to victims regarding the growing concern about "date-rape drugs" and their adverse impact on society. Miniaturized screen-printed potentiometric sensors offer crucial point-of-care devices that alleviate this serious problem. In this study, all solid-state screen-printed potentiometric flunitrazepam sensors have been designed. The paper device was printed with silver and carbon ink. Formation of an aqueous layer in the interface between carbon-conducting material and ion-sensing membrane nevertheless poses low reproducibility in the solid-contact electrodes. Accordingly, poly(3,4-ethylenedioxythiophene) (PEDT) nano-dispersion was applied as a conducting hydrophobic polymer on the electrode surface to curb water accumulation. Conditioning of ion-sensing membrane in the vicinity of reference membrane has been considered carefully using special protocol. Electrochemical characteristics of the proposed PEDT-based sensor were calculated and compared favorably to PEDT-free one. The miniaturized device was successfully used for the determination of flunitrazepam in carbonated soft drinks, energy drink, and malt beverage. Statistical comparison between the proposed sensor and official method revealed no significant difference. Nevertheless, the proposed sensor provides simple and user-friendly diagnostic tool with less equipment for on-site determination of flunitrazepam.
Collapse
|
47
|
Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology-A Review. Foods 2021; 10:foods10040832. [PMID: 33920486 PMCID: PMC8069916 DOI: 10.3390/foods10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023] Open
Abstract
Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the importance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food-chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and post-mortem probing of humoral response to several pathogens. In this review, the inclusion of immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and ergo public health risks in tests is advocated. Immunomagnetic separation, immunochromatography, immunosensor, microsphere array, lab-on-a-chip/disc platforms increasingly in combination with nanotechnologies, are discussed. The heuristic development of portable and ambulant microfluidic devices is intriguing and promising. Tant pis, many new platforms seem unattainable as the industry standard. Comparability of results with those of reference methods hinders the implementation of new technologies. Whatever the scientific and technological excellence and incentives, the decision-maker determines this implementation after weighing mainly costs and business risks.
Collapse
|
48
|
Kelani KM, Badran OM, Rezk MR, Elghobashy MR, Eid SM. Widening the applications of the Just-Dip-It approach: a solid contact screen-printed ion-selective electrode for the real-time assessment of pharmaceutical dissolution testing in comparison to off-line HPLC analysis. RSC Adv 2021; 11:13366-13375. [PMID: 35423846 PMCID: PMC8697630 DOI: 10.1039/d1ra00040c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Over past years, the field of pharmaceutical dissolution testing has significantly expanded to cover not only the quality control of dosage forms, but also to play an important role in the bioavailability testing paradigm and screening of most formulations. These tests usually need a very long time sampling and monitoring, so that the automation of sampling is laborsaving. Problems often occur with these automatic devices due to sampling lines that may disconnect, crimp, carry over, become mixed up, or are inadequately cleaned. Potentiometric sensors, such as liquid contact (LC-ISE) or solid contact ion-selective electrodes (SC-SP-ISE), can provide timely data to be used for the real-time tracking of the amount of active pharmaceutical ingredients (APIs) released in the dissolution medium without these problems. In this work, we adopted the Just-Dip-It approach as a process analytical technology solution with the ultimate goal of advancing the ion selective sensors to their most effective use in pharmaceutical analysis. Two sensors were fabricated, the traditional LC-ISE and SC-SP-ISE. The sensing poly-vinyl chloride membranes of two electrodes were prepared using 2-nitrophenyl octyl ether as a plasticizer to soften the membrane, and the reduction in resistance to pioglitazone ions (PIO) permeability was achieved through the incorporation of sodium tetraphenylborate and calix[8]arene as a cationic exchanger salt and inclusion complexing ligand, respectively. Finally, prepared membranes were turned into the flexible perm-selective slices of hydrophobic plastic, which work as a barrier to other compounds, except for the PIO cation in the concentration range of 1 × 10-6 to 1 × 10-2 M and 1 × 10-5 to 1 × 10-2 M for SC-SP-ISE and LC-ISE, respectively. The challenges and opportunities of both sensors in comparison to a developed HPLC method were discussed for the dissolution testing of the combination dosage forms of pioglitazone. Potentiometric methods were validated according to IUPAC guidelines, while HPLC was validated according to ICH guidelines to ensure accuracy and precision.
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Osama M Badran
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| |
Collapse
|
49
|
Screen-printed conductive carbon layers for dye-sensitized solar cells and electrochemical detection of dopamine. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Innovative screen-printed electrodes on cork composite substrates applied to sulfadiazine electrochemical sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|