1
|
Chen Y, Zhou Y, You J, Zhang Z, Sun A, Liu H, Shi X. Fluorescent Molecular Imprinted Sensor Based on Carbon Quantum Dot for Nitrofen Detection in Water Sample. Polymers (Basel) 2025; 17:816. [PMID: 40292707 PMCID: PMC11944888 DOI: 10.3390/polym17060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
The structure of nitrofen is stable and resistant to natural degradation, persisting in environments for extended periods. It can accumulate through the food chain, posing risks to human health. Here, we report a sensor based on carbon quantum dots (CQDs) and molecular imprinting technology (CQDs@MIPs). It not only possesses the specificity and stability of MIPs but also incorporates the environmental friendliness and signal amplification capabilities of CQDs, making it an ideal material for the specific detection of nitrofen residues in the environment. The interaction between CQDs@MIPs and nitrofen, as well as the successful removal of nitrofen, were confirmed through transmission electron microscopy (TEM) and Zeta potential analysis, which evaluated the morphology and particle size of the prepared CQDs@MIPs. After binding with nitrofen, the CQDs@MIP sensor exhibited a low detection limit (2.5 × 10-3 mg·L-1), a wide detection range (0.01-40 mg·L-1), a good linear relationship (R2 = 0.9951), and a short detection time (5 min). The CQDs@MIP sensor also demonstrated excellent stability, with the fluorescence intensity of CQDs@MIPs remaining above 90% of the initial preparation after 20 days. At the same time, Red, Green, Blue (RGB) color model extraction technology is used to fit the color of the sample under different concentrations, and the smart phone application is integrated to realize the visual detection of nitrofen. Furthermore, acceptable accuracy was achieved in real water samples (recovery rates ranging from 84.1% to 115.7%), indicating that our CQDs@MIP sensor has high analytical potential for real samples.
Collapse
Affiliation(s)
- Yuge Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yongheng Zhou
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinjie You
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Aili Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Liu H, Chen Y, Ju H. Functional DNA structures for cytosensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. BIOSENSORS-BASEL 2021; 11:bios11090328. [PMID: 34562920 PMCID: PMC8467589 DOI: 10.3390/bios11090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.
Collapse
|
5
|
Abdollahiyan P, Mohammadzadeh A, Hasanzadeh M. Chemical binding of molecular-imprinted polymer to biotinilated antibody: Utilization of molecular imprinting polymer as intelligent synthetic biomaterials toward recognition of carcinoma embryonic antigen in human plasma sample. J Mol Recognit 2021; 34:e2897. [PMID: 33759263 DOI: 10.1002/jmr.2897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
In this study, a novel biosensor based on molecular imprinting polymer (MIP) methodology was fabricated toward recognition of carcinoembryonic antigen (CEA). For this purpose, poly (toluidine blue) (PTB) was electropolymerized on the surface of gold electrode in the absence and presence of CEA. So, the target molecules were entrapped into the imprinted specific cavities of MIP. Obtained results show that, the binding affinity of the MIP system was significantly higher than that of revealed for the nonimprinted polymer (NIP) system, MIP-based biosensor revealed linear response from (0.005 to 75 μg/L) and low limit of quantification of (0.005 μg/L) by using chronoamperometry technique, leading to CEA monitoring in real and clinical samples. Thus, a novel technique for rapid, simple, sensitive and affordable monitoring of CEA (LLOQ = 0.005 μg/L) has provided through developed biosensor. From a future perspective, moreover, this method can be considered as an applicable candidate in biomedical and clinical analysis for point-of-care usages.
Collapse
Affiliation(s)
- Parinaz Abdollahiyan
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Mohammadzadeh
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Hu B, Chen L, Yu Z, Xu Y, Dai J, Yan Y, Ma Z. Hollow molecularly imprinted fluorescent sensor using europium complex as functional monomer for the detection of trace 2,4,6-trichlorophenol in real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119051. [PMID: 33080514 DOI: 10.1016/j.saa.2020.119051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
As an important environmental indicator, 2,4,6-trichlorophenol (2,4,6-TCP) was proved extremely harmful to human body. In this article, hollow molecularly imprinted fluorescent polymers (@MIPs) for the selective detection of 2,4,6-TCP were devised and fabricated by sacrificial skeleton method based on SiO2 nanoparticles. As the most innovation, highly luminescent europium complex Eu(MAA)3phen played the role of both fluorophores and functional monomers of the MIPs. The obtained @MIPs showed monodispersity and the average particle size was around 130 nm. It had a linear fluorescent response within the concentration range 10-100 nmol L-1 with the correlation coefficient calculated as 0.99625, and the limit of detection was identified as 2.41 nmol L-1. The results show that Eu(MAA)3phen as a fluorophore has high luminescent properties, and as a functional monomer, it can improve the selectivity and anti-interference performance of MIPs. Furthermore, the hollow structure made it possible that the imprinted specific recognition sites distributed on both inner and outer surfaces of @MIPs. The experimental results showed that these @MIPs could be employed to the selective detection of chlorophenols under low concentration. And this work will provide a reference for further optimization of fluorescent imprinted sensors.
Collapse
Affiliation(s)
- Bo Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhixin Yu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Zhen Jiang Chang Jiang Electromechanical Equipment Co. Ltd., Zhenjiang 212013, China
| | - Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Zhen Jiang Chang Jiang Electromechanical Equipment Co. Ltd., Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhongfei Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer. Biomed Pharmacother 2020; 134:111153. [PMID: 33360045 DOI: 10.1016/j.biopha.2020.111153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
Cancer metastasis is one of the foremost causes of cancer incidence and fatality in the whole of the world. Circulating tumor cells (CTC) have been confirmed to be among the most significant stimuli of metastasis in recent years and presently are the subject of extensive research aiming to be accurately identified by using biological and physical properties. Among the various studies conducted for isolation, identification, and characterization of CTCs, microfluidic systems have aroused great attention owing to their unique advantages such as low-cost, simplicity, reduction in reagent consumption, miniaturization, fast and precise control. The purpose of this review is to provide an overview of current state of the microfluidic biosensors for the screening of CTCs. Additionally, given the recent progress in this field, future outlook for the development of the microfluidics biosensing is briefly discussed.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Chester R, Das AAK, Medlock J, Nees D, Allsup DJ, Madden LA, Paunov VN. Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints. ACS APPLIED BIO MATERIALS 2020; 3:789-800. [DOI: 10.1021/acsabm.9b00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rosie Chester
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Anupam A. K. Das
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Jevan Medlock
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Dieter Nees
- Joanneum Research FmbH, Leonhardstrasse 59, 8010 Graz, Austria
| | - David J. Allsup
- Hull York Medical School, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Leigh A. Madden
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU67RX, U.K
| |
Collapse
|
9
|
Vajhadin F, Ahadian S, Travas-Sejdic J, Lee J, Mazloum-Ardakani M, Salvador J, Aninwene GE, Bandaru P, Sun W, Khademhossieni A. Electrochemical cytosensors for detection of breast cancer cells. Biosens Bioelectron 2019; 151:111984. [PMID: 31999590 DOI: 10.1016/j.bios.2019.111984] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of lethal cancers among women with its metastasis leading to cancer-related morbidity and mortality. Circulating tumor cells (CTCs) derived from a primary tumor can be detected in the venous blood of cancer patients. Monitoring CTCs in blood samples has increased exponentially over the past decades and holds great promise in the diagnosis and treatment of metastatic breast cancer. Electrochemical cytosensors, classified as a class of electrochemical biosensors for sensitive detection and enumeration of targeted cells with minimally invasive methods, have the advantages of electrochemical biosensors, such as simplicity, low cost, and low limit of detection. Here, we review recent progress in the detection of CTCs from breast cancer with a focus on electrochemical cytosensors. This review describes platforms benefiting from these cytosensors to identify cancerous breast cells. Furthermore, strategies for signal amplification and also generation of reusable electrochemical cytosensors are introduced. In addition, breast cancer markers and biorecognition elements for cell capturing are reviewed.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, University of Yazd, Yazd, Yazd, 89195-741, Iran; Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Jocelynda Salvador
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - George E Aninwene
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Praveen Bandaru
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhossieni
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA; Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA; Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
11
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
12
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Zhou T, Ding L, Che G, Jiang W, Sang L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Wang C, Ding C, Wu Q, Xiong X. Molecularly Imprinted Polymers with Dual Template and Bifunctional Monomers for Selective and Simultaneous Solid-Phase Extraction and Gas Chromatographic Determination of Four Plant Growth Regulators in Plant-Derived Tissues and Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01455-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Mobed A, Hasanzadeh M, Agazadeh M, Mokhtarzadeh A, Rezaee MA, Sadeghi J. Bioassays: The best alternative for conventional methods in detection of Legionella pneumophila. Int J Biol Macromol 2019; 121:1295-1307. [PMID: 30219511 DOI: 10.1016/j.ijbiomac.2018.09.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
Abstract
Fastidious bacteria are group of bacteria that not only grow slowly but also have complex nutritional needs. In this review, recent progress made on development of biosensing strategies towards quantification of Legionella pneumophila as fastidious bacteria in microbiology was investigated. In coincidence with medical bacteriology, it is the most widely used bio-monitoring, biosensors based on DNA and antibody. Also, all of legionella pneumophila genosensors and immunosensors that developed in recent years were collected analyzed. This review is meant to provide an overview of the various types of bioassays have been developed for determination of Legionella Legionella, along with significant advances over the last several years in related technologies. In addition, this review described: i) Most frequently applied principles in bioassay/biosensing of Legionellaii) The aspects of fabrication in the perspective of bioassay/biosensing applications iii) The potential of various electrochemical and optical bioassay/biosensing for the determination of Legionella and the circumvention of the most serious problem in immunosensing/immunoassay was discussed. iv) Some of bioassay/biosensing has been discussed with and without labels. v) We also summarize the latest developments in the applications of bioassay/biosensing methods for detection of Legionella. vi) The development trends of optical and electrochemical based bioassay/biosensing are also introduced.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Agazadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javid Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
18
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
|
21
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Nanomaterials based optical biosensing of hepatitis: Recent analytical advancements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X. Molecular imprinting technology for microorganism analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
|