1
|
Salarifar A, Safarzadeh Kozani P, Rasaee MJ. A comparison between different chemical fractionation methods for immunoglobulin preparation. J Immunoassay Immunochem 2025; 46:169-185. [PMID: 39799401 DOI: 10.1080/15321819.2025.2450664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
BACKGROUND Application of antibodies in therapeutics and diagnostics are growing Continually. Herein, we aimed to find the most qualified immunoglobulin (Ig) chemical preparation method. METHODS A rabbit was immunized against recombinant SARS-CoV-2 nucleocapsid (NP) and reactive polyclonal antibodies were prepared using the ammonium sulfate (AS), caprylic acid (CA), polyethylene glycol (PEG), and caprylic acid/ammonium sulfate (CA/AS) methods. Different antibody solutions were analyzed by SDS-PAGE and subsequently quantified by ImageJ software for further analysis in terms of Ig purity, Ig recovery, and albumin impurity. Ultimately, the prepared antibodies were assessed via Western blotting and ELISA to evaluate their ability to bind NP. RESULTS Prepared Ig solutions via the CA/AS method had the highest Ig purity (followed by CA, PEG, and AS) and lowest albumin impurity (followed by CA, AS, and PEG). The PEG method had the highest recovery followed by AS, CA, and CA/AS methods. Moreover, antibodies prepared via different methods demonstrated comparable binding capacities to NP in ELISA and Western blotting. CONCLUSIONS CA/AS, closely followed by CA, proved to be the most qualified method for the preparation of Ig yielding the highest Ig purity while the PEG method resulted in the highest Ig recovery rate.
Collapse
Affiliation(s)
- Abbasali Salarifar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Zou R, van Dam R, Smits N, Beij E, Bovee T, de Graaf DC, Guo Y, Peters J. Discovery of multiple bee-hazardous pesticides in ornamental plants via the Bee-Plex multi-target microsphere screening method. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136556. [PMID: 39591785 DOI: 10.1016/j.jhazmat.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Exposure to pesticides is one of the main drivers of global bee decline. However, the occurrence of pesticides in bee-attracting crops remains underexposed due to the lack of efficient on-site screening approaches for multi-analyte monitoring. Utilizing color-encoded superparamagnetic microspheres, we constructed a portable 8-plex indirect competitive microsphere-based immunoassay for the simultaneous determination of multiple bee-hazardous residues (Bee-Plex). Through a single measurement within 40 min, Bee-Plex exhibited high sensitivities with IC50values of 0.04, 0.08, 0.14, 0.15, 0.78, 0.86, 7.72, and 8.79 ng/mL for imidacloprid, parathion, fipronil, emamectin, carbofuran, chlorpyrifos, fenpropathrin and carbaryl, respectively. Moreover, the implementation of multiple broad-specific antibodies enables a wide-range screening profile for 30 pesticides and pesticide metabolites, detecting 6 neonicotinoids, 6 N-methyl carbamates 6 organophosphates, 5 avermectins, 5 pyrethroids and 2 phenylpyrazoles. The combination of Bee-Plex screening (93 % accuracy) and LC-MS/MS confirmatory analysis revealed contaminations of neonicotinoids (100 %) and avermectins (70 %) in roses, with occurrence frequencies of 79 %, 79 %, 21 %, 21 %, 7 %, and 7 % for imidacloprid, acetamiprid, clothianidin, thiacloprid, imidaclothiz, and nitenpyram, respectively. Above all, this study offers a powerful analytical tool for rapid screening of multiple bee-hazardous pesticides, offering new insights in the occurrence of multi-pesticide contamination in ornamental plants.
Collapse
Affiliation(s)
- Rubing Zou
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands; Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Ruud van Dam
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Nathalie Smits
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Erik Beij
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Toine Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Dirk C de Graaf
- Ghent University, Department of Biochemistry and Microbiology, Ghent, Belgium
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China.
| | - Jeroen Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Khan SK, Dutta J, Ahmad I, Rather MA. Nanotechnology in aquaculture: Transforming the future of food security. Food Chem X 2024; 24:101974. [PMID: 39582638 PMCID: PMC11585796 DOI: 10.1016/j.fochx.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| |
Collapse
|
4
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Guan Z, Liu Q, Ma CB, Du Y. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem 2024; 416:4663-4677. [PMID: 38523160 DOI: 10.1007/s00216-024-05256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
6
|
Zou R, Guo Y, Chen Y, Zhao Y, Zhao L, Zhu G, Liu Y, Peters J, Guo Y. Computer-aided profiling of a unique broad-specific antibody and its application to an ultrasensitive fluoroimmunoassay for five N-methyl carbamate pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127845. [PMID: 34865894 DOI: 10.1016/j.jhazmat.2021.127845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 05/08/2023]
Abstract
Pollution of N-methyl carbamate (NMC) pesticides is threatening the non-target organisms' survival. Thus, broad-specific antibodies and class-selective immunoassays are demanding for multiple NMCs determination. In this study, we employed a molecular docking-based virtual screening strategy to fast profile antibody spectrum, based on a designed chemical pool containing 17 compounds. A monoclonal antibody (mAb)-6G against carbofuran was used as the objective. The recombinant full-length IgG was successfully expressed to validate the antibody sequences for homology modeling. After docking, we manually categorized the antibody-chemical binding strength into three groups. Non-competitive surface plasmon resonance (SPR) demonstrated the mAb-6G affinitive binding toward five NMCs (carbofuran, isoprocarb, propoxur, carbaryl and carbosulfan), which were classified into strong and moderate binding categories. Antibody binding properties were confirmed again by ic-ELISA and lateral flow immunochromatographic strip. Subsequently, an ultrasensitive indirect competitive fluoromicrosphere-based immunoassay (ic-FMIA) was established with the IC50 (half-maximal inhibitory concentration) values of 0.08-3.37 ng/mL. This portable assay presented a 30-230-fold improved sensitivity than traditional ic-ELISA and was applied in European surface water analysis. Overall, our work provides an efficient platform integrating in-silico and experimental methodologies to accelerate the characterization of hapten-specific antibody binding properties and the development of high-sensitive immunoassays for multi-pollutants monitoring.
Collapse
Affiliation(s)
- Rubing Zou
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Yuanhao Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Li Zhao
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jeroen Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Doménech-Carbó MT, Doménech-Carbó A. Spot tests: past and present. CHEMTEXTS 2022; 8:4. [PMID: 34976574 PMCID: PMC8710564 DOI: 10.1007/s40828-021-00152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Microchemistry, i.e., the chemistry performed at the scale of a microgram or less, has its roots in the late eighteenth and early nineteenth centuries. In the first half of the twentieth century a wide range of spot tests have been developed. For didactic reasons, they are still part of the curriculum of chemistry students. However, they are even highly important for applied analyses in conservation of cultural heritage, food science, forensic science, clinical and pharmacological sciences, geochemistry, and environmental sciences. Modern pregnancy tests, virus tests, etc. are the most recent examples of sophisticated spot tests. The present ChemTexts contribution aims to provide an overview of the past and present of this analytical methodology.
Collapse
Affiliation(s)
- María Teresa Doménech-Carbó
- Institut de Restauració del Patrimoni, Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain
| | - Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de València. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
8
|
Castro RC, Saraiva MLM, Santos JL, Ribeiro DS. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, Michelini E, Di Nardo F, Anfossi L, Baggiani C, Mirasoli M. Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. SENSORS (BASEL, SWITZERLAND) 2021; 21:3358. [PMID: 34065971 PMCID: PMC8150770 DOI: 10.3390/s21103358] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| |
Collapse
|
10
|
Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2020; 44:585-594. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
Broad-spectrum antibodies can effectively recognize substances with similar structures and have broad application prospects in field rapid detection. In this study, broad-spectrum antibodies (Abs) against organophosphorus pesticides (OPs) were used as sensitive recognition elements, which could effectively recognize most OPs. Gold nanoparticles (AuNPs) have good biocompatibility. It combined with Abs to form a gold-labeled probe (AuNPs-Abs), which enhances the effective binding of antibodies to nanomaterials. Prussian blue (PB) was added to electrodeposition solution to enhance the conductivity, resulting in superior electrochemical performance. The AuNP-Abs-PB composite film was prepared by electrodeposition on the electrode surface to improve the anti-interference ability and stability of the immunosensor. Under the optimal experimental conditions, the immunosensor had a wide detection range (IC20-IC80: 1.82 × 10-3-3.29 × 104 ng/mL) and high sensitivity. Most importantly, it was simple to be prepared and could be used to detect multiple OPs.
Collapse
|
11
|
Multiplexed Immunosensor Based on the Amperometric Transduction for Monitoring of Marine Pollutants in Sea Water. SENSORS 2020; 20:s20195532. [PMID: 32992549 PMCID: PMC7584025 DOI: 10.3390/s20195532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollutants vigilance is one of the main problems that the aquaculture industry has to face with the objective to ensure the quality of their products and prevent entrance in the food chain that finally may arrive to the consumer. Contaminants such as hormones, antibiotics or biocides are especially relevant due to their toxicity, pharmacological effect or hormonal activity that can be considered harmful for the final consumer. The contaminants can be detected in the environment where the food is growing, and their concentration can be found (i.e., seawater) in the range of µg·L−1, ng·L−1 or even in lower concentrations. Thus, sensitive and selective methods for their monitoring are required to avoid their arrival in the food chain. Here, the development of a multiplexed amperometric biosensor is described, based on the use of specific antibodies to reach the necessary detectability to measure the targeted contaminants directly in seawater. The multiplexed immunosensor allows the detection of four relevant pollutants, such as el Irgarol 1051, sulfapyridine, chloramphenicol and estradiol, reaching an IC50 of 5.04 ± 0.29, 3.45 ± 0.29, 4.17 ± 0.44 and 5.94 ± 0.28 µg·L−1, directly measured in seawater.
Collapse
|
12
|
Xing C, Dong X, Xu T, Yuan J, Yan W, Sui X, Zhao X. Analysis of multiple mycotoxins-contaminated wheat by a smart analysis platform. Anal Biochem 2020; 610:113928. [PMID: 32860746 DOI: 10.1016/j.ab.2020.113928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
This study describes a smart analysis platform capable of quantitative measurements using a multiplex lateral flow strip. Using the multi-mycotoxin strip, five fungal toxins were simultaneously and quantitatively detected in naturally contaminated wheat. First, a matrix-based standard curve was established for the detection of aflatoxin B1 (AFB1), fumonisin B1 (FB1), T-2, deoxynivalenol (DON), and zearalenone (ZEN). Established on an open android system, the platform is able to read 6 lines on the strip simultaneously. The platform is equipped with a Quick Response code scanning model, which reads the established standard curves, and then rapidly quantify mycotoxins in naturally contaminated wheat. All the data and sample information are stored on a central server through the platform which is linked to the cloud. The limits of detection (LOD) for AFB1, FB1, T-2, DON, and ZEN in wheat were 4, 20, 10, 200, and 40 μg/kg and the visual cut off values was 20, 1000, 200, 4000, and 400 μg/kg, separately. To validate the platform and the multi-mycotoxin detection method, 10 wheat samples were analyzed and the results were in a good agreement with those obtained by LC-MS/MS. The platform will be a powerful tool for crop monitoring services.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xue Dong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Tao Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaoxu Zhao
- Beijing Huaan Magnech Bio-Tech Co., Ltd, Beijing, 102200, China
| |
Collapse
|
13
|
Zheng Q, Wu H, Jiang H, Yang J, Gao Y. Development of a Smartphone-Based Fluorescent Immunochromatographic Assay Strip Reader. SENSORS 2020; 20:s20164521. [PMID: 32823493 PMCID: PMC7471973 DOI: 10.3390/s20164521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/29/2023]
Abstract
Fluorescence immunochromatographic assay (FICA) is a rapid immunoassay technique that has the characteristics of high precision and sensitivity. Although image FICA strip readers have the advantages of high portability and easy operation, the use of high-precision complementary metal oxide semiconductor (CMOS) image sensors leads to an increase in overall cost. Considering the popularity of CMOS image sensors in smartphones and their powerful processing functions, this work developed a smartphone-based FICA strip reader. An optical module suitable for the test strips with different fluorescent markers was designed by replacing the excitation light source and the light filter. An android smartphone was used for image acquisition and image denoising. Then, the test and control lines of the test strip image were recognized by the sliding window algorithm. Finally, the characteristic value of the strip image was calculated. A linear detection range from 10 to 5000 mIU/mL (R2 = 0.95) was obtained for human chorionic gonadotrophin with the maximum relative error less than 9.41%, and a linear detection range from 5 to 4000 pg/mL (R2 = 0.99) was obtained for aflatoxin B1, with the maximum relative error less than 12.71%. Therefore, the smartphone-based FICA strip reader had high portability, versatility, and accuracy.
Collapse
Affiliation(s)
- Qi Zheng
- Zhicheng College, Fuzhou University, Fuzhou 350002, China;
- Key Lab of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350108, China; (H.W.); (H.J.); (J.Y.)
| | - Huihuang Wu
- Key Lab of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350108, China; (H.W.); (H.J.); (J.Y.)
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Haiyan Jiang
- Key Lab of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350108, China; (H.W.); (H.J.); (J.Y.)
| | - Jiejie Yang
- Key Lab of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350108, China; (H.W.); (H.J.); (J.Y.)
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yueming Gao
- Key Lab of Medical Instrumentation & Pharmaceutical Technology of Fujian Province, Fuzhou 350108, China; (H.W.); (H.J.); (J.Y.)
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Correspondence: ; Tel.: +86-1359-906-7568
| |
Collapse
|
14
|
Bartosh AV, Sotnikov DV, Hendrickson OD, Zherdev AV, Dzantiev BB. Design of Multiplex Lateral Flow Tests: A Case Study for Simultaneous Detection of Three Antibiotics. BIOSENSORS-BASEL 2020; 10:bios10030017. [PMID: 32120923 PMCID: PMC7146299 DOI: 10.3390/bios10030017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
The presented study is focused on the impact of binding zone location on immunochromatographic test strips on the analytical parameters of multiplex lateral flow assays. Due to non-equilibrium conditions for such assays the duration of immune reactions influences significantly the analytical parameters, and the integration of several analytes into one multiplex strip may cause an essential decrease of sensitivity. To choose the best location for binding zones, we have tested reactants for immunochromatographic assays of lincomycin, chloramphenicol, and tetracycline. The influence of the distance to the binding zones on the intensity of coloration and limit of detection (LOD) was rather different. Basing on the data obtained, the best order of binding zones was chosen. In comparison with non-optimal location the LODs were 5–10 fold improved. The final assay provides LODs 0.4, 0.4 and 1.0 ng/mL for lincomycin, chloramphenicol, and tetracycline, respectively. The proposed approach can be applied for multiplexed assays of other analytes.
Collapse
|
15
|
Dong X, Gao Y, Zhang X, Yuan J, Li P, Xing C, Yan W. Multiplex europium (III) nanoparticles immunochromatographic assay method for the detection of four nitrofuran metabolites in fish sample. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Li Z, Zhang S, Yu T, Dai Z, Wei Q. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Anal Chem 2019; 91:10448-10457. [PMID: 31192585 DOI: 10.1021/acs.analchem.9b00750] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing easy-to-use and miniaturized detectors is essential for in-field monitoring of environmentally hazardous substances, such as the cyanotoxins. We demonstrated a differential fluorescent sensor array made of aptamers and single-stranded DNA (ssDNA) dyes for multiplexed detection and discrimination of four common cyanotoxins with an ordinary smartphone within 5 min of reaction. The assay reagents were preloaded and dried in a microfluidic chip with a long shelf life over 60 days. Upon the addition of analyte solutions, competitive binding of cyanotoxin to the specific aptamer-dye conjugate occurred. A zone-specific and concentration-dependent reduction in the green fluorescence was observed as a result of the aptamer conformation change. The aptasensors are fully optimized by quantification of their dissociation constants, tuning the stoichiometric ratios of reaction mixtures, and implementation of an internal intensity correction step. The fluorescent sensor array allowed for accurate identification and measurement of four important cyanotoxins, including anatoxin-a (ATX), cylindrospermopsin (CYN), nodularin (NOD), and microcystin-LR (MC-LR), in parallel, with the limit of detection (LOD) down to a few nanomolar (<3 nM), which is close to the World Health Organization's guideline for the maximum concentration allowed in drinking water. The smartphone-based sensor platform also showed remarkable chemical specificity against potential interfering agents in water. The performance of the system was tested and validated with real lake water samples that were contaminated with trace levels of individual cyanotoxins as well as binary, ternary, and quaternary mixtures. Finally, a smartphone app interface has been developed for rapid on-site data processing and result display.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Shengwei Zhang
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| | - Zhiming Dai
- Department of Electrical and Computer Engineering , North Carolina State University , 890 Oval Drive , Raleigh , North Carolina 27606 , United States
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering , North Carolina State University , 911 Partners Way, Campus Box 7905 , Raleigh , North Carolina 27695 , United States
| |
Collapse
|