1
|
Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples. Food Chem 2023; 402:134245. [DOI: 10.1016/j.foodchem.2022.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022]
|
2
|
Bai Q, Luo H, Yi X, Shi S, Wang L, Liu M, Du F, Yang Z, Sui N. Nitrogen-Doped Graphdiyne Quantum-dots as an Optical-Electrochemical sensor for sensitive detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Plastic Waste Precursor-Derived Fluorescent Carbon and Construction of Ternary FCs@CuO@TiO2 Hybrid Photocatalyst for Hydrogen Production and Sensing Application. ENERGIES 2022. [DOI: 10.3390/en15051734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sustainable nexus between renewable energy production and plastic abatement is imperative for overall sustainable development. In this regard, this study aims to develop a cheaper and environmentally friendly nexus between plastic waste management, wastewater treatment, and renewable hydrogen production. Fluorescent carbon (FCs) were synthesized from commonly used LDPE (low-density polyethylene) by a facile hydrothermal approach. Optical absorption study revealed an absorption edge around 300 nm and two emission bands at 430 and 470 nm. The morphological analysis showed two different patterns of FCs, a thin sheet with 2D morphology and elongated particles. The sheet-shaped particles are 0.5 μm in size, while as for elongated structures, the size varies from 0.5 to 1 μm. The as-synthesized FCs were used for the detection of metal ions (reference as Cu2+ ions) in water. The fluorescence intensity of FCs versus Cu2+ ions depicts its upright analytical ability with a limit of detection (LOD) reaching 86.5 nM, which is considerably lesser than earlier reported fluorescence probes derived from waste. After the sensing of Cu2+, the as-obtained FCs@Cu2+ was mixed with TiO2 to form a ternary FCs@CuO@TiO2 composite. This ternary composite was utilized for photocatalytic hydrogen production from water under 1.5 AM solar light irradiation. The H2 evolution rate was found to be ~1800 μmolg−1, which is many folds compared to the bare FCs. Moreover, the optimized FCs@CuO@TiO2 ternary composite showed a photocurrent density of ~2.40 mA/cm2 at 1 V vs. Ag/AgCl, in 1 M Na2SO4 solution under the illumination of simulated solar light. The achieved photocurrent density corresponds to the solar-to-hydrogen (STH) efficiency of ~0.95%. The efficiency is due to the fluorescence nature of FCs and the synergistic effect of CuO embedded in TiO2, which enhances the optical absorption of the composite by reaching the bandgap of 2.44 eV, apparently reducing the recombination rate, which was confirmed by optoelectronic, structural, and spectroscopic characterizations.
Collapse
|
4
|
Nanocomposite Materials Based on Electrochemically Synthesized Graphene Polymers: Molecular Architecture Strategies for Sensor Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.
Collapse
|
5
|
Rossini EL, Milani MI, Lima LS, Pezza HR. Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119285. [PMID: 33310613 DOI: 10.1016/j.saa.2020.119285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Bioanalyses are commonly performed with blood or serum samples. However, these analyses often require invasive and painful blood collection using a needle or finger pricking. Saliva is an alternative and very attractive biological medium for performing clinical analyses, since it contains many types of clinically relevant biomarkers and compounds. Its collection is straightforward and can be achieved in a non-invasive and stress-free way. However, the analytes are frequently present at low concentrations, while the viscosity of whole saliva hinders its analysis using paper devices, especially those with multiple layers (3D-μPADs). This work explores the use of a simple, fast, and low-cost saliva sample pretreatment using a cotton-paper-syringe filtration system, allowing the analysis of saliva samples using multilayer paper devices. The proposed methodology employs the oxidation of glucose and lactate, catalyzed by specific oxidase enzymes, producing hydrogen peroxide. The detection is based on the fluorescence quenching of carbon dots in the presence of hydrogen peroxidase. The concentrations of the analytes showed good linear correlations with the fluorescence quenching, with LODs of 2.60 × 10-6 and 8.14 × 10-7 mol L-1 for glucose and lactate, respectively. The proposed method presented satisfactory intra-day and inter-day repeatabilities, with %RSD values in the range 3.82-6.61%. The enzymatic systems proved to be specific for the analytes and the matrix had no significant influence on the glucose and lactate determinations. The proposed methodology was successfully applied to saliva and serum samples and was validated using certified material.
Collapse
Affiliation(s)
- Eduardo Luiz Rossini
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil.
| | - Maria Izabel Milani
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| | - Liliane Spazzapam Lima
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| | - Helena Redigolo Pezza
- Instituto de Química, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Rua Prof. Francisco Degni 55, C.P. 355, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|
6
|
Dadkhah S, Mehdinia A, Jabbari A, Manbohi A. Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots. Mikrochim Acta 2020; 187:569. [DOI: 10.1007/s00604-020-04543-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
|
7
|
Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R. Carbon dots as rapid assays for detection of mercury(II) ions based on turn-off mode and breast milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118320. [PMID: 32278279 DOI: 10.1016/j.saa.2020.118320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
In this research, nitrogen co-doped carbon dots were synthesized by solid thermal method with citric acid used as the precursor of carbon, and melamine as nitrogen source. Such carbon dots show high quantum yield of 44%. Furthermore, the native fluorescence of CDs can be reduced by mercury(II), while other metals had no significant influence on fluorescence intensity. During the study, the optimal parameters were selected, such as pH or time for incubation with analyte. Under the optimal conditions, quenching effect caused by mercury ions was evaluated. It was observed that with increasing mercury concentration, the fluorescence of the carbon dots decreased proportionally. The response was characterized by linearity within the range from 2 to 14 μM. Moreover, the limit of detection was 0.44 μM. It was the first time that human milk was used as a real sample to test the applicability of carbon dots. The study results demonstrated good recovery in the 74-111% range (RSD < 6%) As a novel carbon material, CDs show promise for broader applications in analyzing complicated biological samples.
Collapse
Affiliation(s)
- Martyna Pajewska-Szmyt
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, 4 Wileńska St, PL-87-100 Toruń, Poland.
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, 4 Wileńska St, PL-87-100 Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, 4 Wileńska St, PL-87-100 Toruń, Poland
| |
Collapse
|
8
|
Li C, Wang Y, Jiang H, Wang X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3488. [PMID: 32575665 PMCID: PMC7349518 DOI: 10.3390/s20123488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
In recent years, sulfur-containing nanomaterials and their derivatives/composites have attracted much attention because of their important role in the field of biosensor, biolabeling, drug delivery and diagnostic imaging technology, which inspires us to compile this review. To focus on the relationships between advanced biomaterials and biosensors, this review describes the applications of various types of sulfur-containing nanomaterials in biosensors. We bring two types of sulfur-containing nanomaterials including metallic sulfide nanomaterials and sulfur-containing quantum dots, to discuss and summarize the possibility and application as biosensors based on the sulfur-containing nanomaterials. Finally, future perspective and challenges of biosensors based on sulfur-containing nanomaterials are briefly rendered.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (C.L.); (Y.W.); (H.J.)
| |
Collapse
|
9
|
Yu Z, Ma W, Wu T, Wen J, Zhang Y, Wang L, He Y, Chu H, Hu M. Coumarin-Modified Graphene Quantum Dots as a Sensing Platform for Multicomponent Detection and Its Applications in Fruits and Living Cells. ACS OMEGA 2020; 5:7369-7378. [PMID: 32280878 PMCID: PMC7144171 DOI: 10.1021/acsomega.9b04387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
In this work, coumarin derivatives (C) are used to enhance the fluorescence of graphene quantum dots (GQDs) by covalently linking the carboxyl groups on the edge of the GQD sheet. The as-synthesized coumarin-modified graphene quantum dots (C-GQDs) have a uniform particle size with an average diameter of 3.6 nm. Simultaneously, the C-GQDs have strong fluorescence emission, excellent photostability, and high fluorescence quantum yield. C-GQDs and CN- can form a C-GQDs+CN- system due to deprotonation and/or intermolecular interactions. The introduced hydroquinone (HQ) is oxidized to benzoquinone (BQ), and the interaction between BQ and the C-GQDs+CN- system could lead to fluorescence enhancement of C-GQDs. Meanwhile, the redox reaction between BQ and ascorbic acid (AA) can be used for quantitative detection of AA with CN- and HQ being used as substrates. Based on the above mechanism, C-GQDs are developed as a multicomponent detection and sensing platform, and the detection limits for CN-, HQ, and AA were 4.7, 2.2, and 2.2 nM, respectively. More importantly, satisfactory results were obtained when the platform was used to detect CN-, HQ, and AA in living cells and fresh fruits.
Collapse
Affiliation(s)
- Zhaochuan Yu
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Wenhui Ma
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Tao Wu
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Jing Wen
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Yong Zhang
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Liyan Wang
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Yuqian He
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Hongtao Chu
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| | - Minggang Hu
- College
of Chemistry and Chemical Engineering and College of Materials Science and
Engineering, Qiqihar University, 42 Wenhua avenue, Qiqihar 161006, China
| |
Collapse
|
10
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
11
|
The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products. BIOSENSORS-BASEL 2020; 10:bios10030021. [PMID: 32138274 PMCID: PMC7146278 DOI: 10.3390/bios10030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The presence of antimicrobial residues in food-producing animals can lead to harmful effects on the consumer (e.g., allergies, antimicrobial resistance, toxicological effects) and cause issues in food transformation (i.e., cheese, yogurts production). Therefore, to control antimicrobial residues in food products of animal origin, screening methods are of utmost importance. Microbiological and immunological methods (e.g., ELISA, dipsticks) are conventional screening methods. Biosensors are an innovative solution for the development of more performant screening methods. Among the different kinds of biosensing elements (e.g., antibodies, aptamers, molecularly imprinted polymers (MIP), enzymes), aptamers for targeting antimicrobial residues are in continuous development since 2000. Therefore, this review has highlighted recent advances in the development of aptasensors, which present multiple advantages over immunosensors. Most of the aptasensors described in the literature for the detection of antimicrobial residues in animal-derived food products are either optical or electrochemical sensors. In this review, I have focused on optical aptasensors and showed how nanotechnologies (nanomaterials, micro/nanofluidics, and signal amplification techniques) largely contribute to the improvement of their performance (sensitivity, specificity, miniaturization, portability). Finally, I have explored different techniques to develop multiplex screening methods. Multiplex screening methods are necessary for the wide spectrum detection of antimicrobials authorized for animal treatment (i.e., having maximum residue limits).
Collapse
|
12
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
13
|
Christé S, Esteves da Silva JC, Pinto da Silva L. Evaluation of the Environmental Impact and Efficiency of N-Doping Strategies in the Synthesis of Carbon Dots. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E504. [PMID: 31973126 PMCID: PMC7040597 DOI: 10.3390/ma13030504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
The efficiency and associated environmental impacts of different N-doping strategies of carbon dots (CDs) were evaluated. More specifically, N-doped CDs were prepared from citric acid via two main synthesis routes: Microwave-assisted hydrothermal treatment with addition of N-containing small organic molecules (urea and ethylenediamine (EDA)); and microwave-assisted solvothermal treatment in N-containing organic solvents (n,n-dimethylformamide (DMF), acetonitrile and pyridine). These syntheses produced CDs with similar blue emission. However, XPS analysis revealed that CDs synthesized via both hydrothermal routes presented a better N-doping efficiency (~15 at.%) than all three solvothermal-based strategies (0.6-7 at.%). However, from the former two hydrothermal strategies, only the one involving EDA as a nitrogen-source provided a non-negligible synthesis yield, which indicates that this should be the preferred strategy. This conclusion was supported by a subsequent life cycle assessment (LCA) study, which revealed that this strategy is clearly the most sustainable one from all five studied synthesis routes.
Collapse
Affiliation(s)
- Suzanne Christé
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
| | - Joaquim C.G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.C.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, Moosavifard SE, Barati A. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome c via Aggregation-Induced Emission Enhancement on Novel Label-Free DNA-Capped Silver Nanoclusters/Graphene Oxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46077-46089. [PMID: 31718135 DOI: 10.1021/acsami.9b14487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four fluorescent DNA-stabilized fluorescent silver nanoclusters (DNA-AgNCs) were designed and synthesized with differences in lengths of cytosine-rich DNA strand (as the stabilizing agent) and target-specific strand DNA aptamers for adenosine triphosphate (ATP) and cytochrome c (Cyt c). After their nanohybrid formation with graphene oxide (GO), it was unexpectedly found that, depending on the composition of the base and length of the strand DNA aptamer, the fluorescence intensity of three of the nanohybrids significantly enhanced. Our experimental observations and quantum mechanical calculations provided an insight into the mechanisms underlying the behavior of DNA-AgNCs/GO nanohybrids. The enhanced fluorescence was found to be attributed to the aggregation-induced emission enhancement (AIE) characteristic of the DNA-AgNCs adsorbed on the GO surface, as confirmed evidently by both fluorescence and transmission electron microscopies. The AIE is a result of hardness and oxidation properties of GO, which lead to enhanced argenophilic interaction and thus to increased Ag(I)-DNA complex shell aggregation. Consequently, two of the DNA-AgNCs/GO nanohybrids were successfully extended to construct highly selective, sensitive, label-free, and simple aptasensors for biosensing of ATP (LOD = 0.42 nM) and Cyt c (LOD = 2.3 nM) in lysed Escherichia coli DH5 α cells and mouse embryonic stem cells, respectively. These fundamental findings are expected to significantly influence the designing and engineering of new AgNCs/GO-based AIE biosensors.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Karam Molaei
- Department of Chemistry , Tarbiat Modares University , Tehran 14115-111 , Iran
| | - Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center , Motamed Cancer Institute, ACECR , Tehran 15179-64311 , Iran
| | - Saman Hosseinkhani
- Department of Biochemistry , Tarbiat Modares University , Al Ahmad Street , Tehran 14115-175 , Iran
| | - Avat Taherpour
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Morteza Sarparast
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine , Jahrom University of Medical Sciences (JUMS) , Jahrom 74148-46199 , Iran
| | - Ali Barati
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| |
Collapse
|
15
|
Recycling Oxacillin Residues from Environmental Waste into Graphene Quantum Dots. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Of great concern are the residual antibiotics from dirt that can be found in farm soil and wastewater. This kind of emerging pollutant into engineered nanomaterials is riveting. This work proposes the elimination and transformation of a beta-lactam antibiotic, oxacillin, from environmental waste to graphene quantum dots (GQDs). Two protocols were followed in which the use of ethylenediamine (EDA) in the transformation leads to GQDs with excellent optical properties. Therefore, two types of GQDs were synthesized in a Teflon-lined stainless autoclave by a thermal procedure using oxacillin in the absence and presence of EDA. The ensuing e-GQDs from oxacillin and EDA display a stronger fluorescence emission in comparison to those synthesized without EDA (o-GQDs). The combination of Kaiser test analyses, infrared (IR) and Raman measurements revealed the presence of oxygen-containing groups and primary amines at the edges of the graphitic nanolayer for e-GQDs. This straightforward strategy brings hope and opens a new interest in waste recycling by means of extracting residual contaminants from the environment for their further transformation into adequate non-toxic graphitic nanomaterials with potential applications.
Collapse
|
16
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3850. [PMID: 31489912 PMCID: PMC6766831 DOI: 10.3390/s19183850] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
About 71% of the Earth's surface is covered with water. Human beings, animals, and plants need water in order to survive. Therefore, it is one of the most important substances that exist on Earth. However, most of the water resources nowadays are insufficiently clean, since they are contaminated with toxic metal ions due to the improper disposal of pollutants into water through industrial and agricultural activities. These toxic metal ions need to be detected as fast as possible so that the situation will not become more critical and cause more harm in the future. Since then, numerous sensing methods have been proposed, including chemical and optical sensors that aim to detect these toxic metal ions. All of the researchers compete with each other to build sensors with the lowest limit of detection and high sensitivity and selectivity. Graphene quantum dots (GQDs) have emerged as a highly potential sensing material to incorporate with the developed sensors due to the advantages of GQDs. Several recent studies showed that GQDs, functionalized GQDs, and their composites were able to enhance the optical detection of metal ions. The aim of this paper is to review the existing, latest, and updated studies on optical sensing applications of GQDs-based materials toward toxic metal ions and future developments of an excellent GQDs-based SPR sensor as an alternative toxic metal ion sensor.
Collapse
Affiliation(s)
- Nur Ain Asyiqin Anas
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Nur Syahira Md Ramdzan
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg WJGM, Zhang W, Jin Y, Su C. Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7265-7287. [PMID: 31199142 PMCID: PMC7388031 DOI: 10.1021/acs.est.9b01453] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
Collapse
Affiliation(s)
- Dengjun Wang
- National Research Council Resident Research Associate at the United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wenjie Sun
- Department of Civil and Environmental Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Chang Min Park
- Department of Environmental Engineering , Kyungpook National University , Buk-gu , Daegu 41566 , South Korea
| | - Chongyang Shen
- Department of Soil and Water Sciences , China Agricultural University , Beijing 100193 , China
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , The Netherlands
- Center for Safety of Substances and Products , National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven , The Netherlands
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, and Environmental Science and Policy Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yan Jin
- Department of Plant and Soil Sciences , University of Delaware , Newark , Delaware 19716 , United States
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development , United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| |
Collapse
|
20
|
Ashrafi H, Hassanpour S, Saadati A, Hasanzadeh M, Ansarin K, Ozkan SA, Shadjou N, Jouyban A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Highly sensitive quantification of hydrogen-transmitting coenzyme in physiological pH using silver nanoparticles dispersed on nitrogen doped graphene quantum dots. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int J Biol Macromol 2018; 123:1091-1105. [PMID: 30458193 DOI: 10.1016/j.ijbiomac.2018.11.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Chitosan has a number of commercial and possible biomedical uses. Chitosan as a polysaccharide is a bioactive polymer with a variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. In this work, cross-linked chitosan/thiolated graphene quantum dot as a biocompatible polysaccharide was modified by gold nanoparticle and used for immobilization of ractopamine (RAC) aptamer. A highly specific DNA-aptamer (5'-SH-AAAAAGTGCGGGC-3'), selected to RAC was immobilized onto thiolated graphene quantum dots (GQDs)-chitosan (CS) nanocomposite modified by gold nanostructures (Au NSs) and used for quantification of RAC. Different shapes of gold nanostructures with various sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a glassy carbon surface which provided a high surface area to immobilize a high amount of the aptamer. Therefore, a label free electrochemical (EC) apta-assay for ultrasensitive detection of RAC was developed. A special immobilization media consisting of Au NSs/GQDs-CS/Cysteamine (CysA) was utilized to improve conductivity and performance of the biosensor. The RAC aptamer was attached on the Au NSs of the composite membrane via AuS bond. The fabrication process of the EC aptamer based assay was characterized by some electrochemical techniques. The peak currents obtained by differential pulse voltammetry decreased linearly with the increasing of RAC concentrations and the apta-assay responds approximately over a wide dynamic range of RAC concentration from 0.0044 fM to 19.55 μM. The low limit of quantification was 0.0044 fM.
Collapse
|