1
|
Kim KS, Lee JS, Han SS, Cho JY. Accurate Determination of Circulatory Lipids Using a Combination of HILIC-MRM and RPLC-PRM. Anal Chem 2025; 97:9713-9721. [PMID: 40315190 PMCID: PMC12079635 DOI: 10.1021/acs.analchem.4c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Circulatory lipids are important markers for characterizing disease phenotypes; however, accurately determining lipid species remains a significant challenge in lipidomic analysis. Here, we present a novel analytical workflow for accurate lipidome characterization in human plasma using mass spectrometry (MS) through the integration of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC). This workflow enables rapid screening of 1,966 lipid species across 18 lipid classes using HILIC-multiple reaction monitoring (MRM), which enables facile identification of lipid species by lipid class-based separations. In the NIST Standard Reference Material for Human Plasma (SRM 1950), 489 lipid species were identified using HILIC-MRM and subsequently analyzed with RPLC-parallel reaction monitoring (PRM) to resolve potential lipid isobars within the same lipid class. Notably, RPLC-PRM identified 70 additional lipidomic features in SRM 1950 that were not detectable with HILIC-MRM. Furthermore, a high correlation (Pearson correlation coefficient = 0.81) was observed regarding the concentrations of lipid species not carrying isobaric interferences in between HILIC-MRM and RPLC-PRM, indicating that the individual lipid concentrations measured by each platform can be integrated. The workflow was further applied to a cohort of 284 human plasma samples from chronic kidney disease (CKD) patients, successfully profiling lipidomic phenotypes across CKD subtypes. These findings demonstrate that combining HILIC-MRM and RPLC-PRM as complementary platforms enhances the accuracy and comprehensiveness of lipidomic analysis.
Collapse
Affiliation(s)
- Kyeong-Seog Kim
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
| | - Jae-Seung Lee
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
| | - Seung Seok Han
- Department
of Internal Medicine, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
| | - Joo-Youn Cho
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
- Kidney
Research Institute, Seoul National University
Medical Research Center, Seoul 03080, Republic
of Korea
| |
Collapse
|
2
|
Koch J, Neumann L, Lackner K, Fernández-Quintero ML, Watschinger K, Keller MA. Benchmarking of Trapped Ion Mobility Spectrometry in Differentiating Plasmalogens from Other Ether Lipids in Lipidomics Experiments. Anal Chem 2025. [PMID: 40358456 DOI: 10.1021/acs.analchem.4c06617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Trapped Ion Mobility Spectrometry (TIMS) has demonstrated promising potential as a powerful discriminating method when coupled with mass spectrometry, enhancing the precision of feature annotation. Such a technique is particularly valuable for lipids, where a large number of isobaric but structurally distinct molecular species often coexist within the same sample matrix. In this study, we explored the potential of ion mobility for ether lipid isomer differentiation. Mammalian ether phospholipids are characterized by a fatty alcohol residue at the sn-1 position of their glycerol backbone. They can make up to 20% of the total phospholipid mass and are present in a broad range of tissues. There they are, for example, crucial for nervous system function, membrane homeostasis, and inter- as well as intracellular signaling. Molecular ether lipid species are difficult to distinguish analytically, as they occur as 1-O-alkyl and 1-O-alkenyl subclasses, with the latter being also known as plasmalogens. Isomeric ether lipid pairs can be separated with reversed-phase chromatography. However, their precise identification remains challenging due to the lack of clear internal reference points, inherent to the nature of lipid profiles and the lack of sufficient commercially available standard substances. Here, we demonstrate─with focus on phosphatidylethanolamines─that ion mobility measurements allow to discriminate between the ether lipid subclasses through distinct differences in their gas phase geometries. This approach offers significant advantages as it does not depend on potential retention time differences between different chromatographic systems. However, the current resolution in the ion mobility dimension is not sufficient to baseline separate 1-O-alkyl and 1-O-alkenyl isobars, and the observed differences are not yet accurately represented in existing collision cross section databases. Despite these challenges, the predictable properties of the ion mobility behavior of ether lipid species can significantly support their accurate annotation and hold promise for future advancements in lipid research.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Lukas Neumann
- Department of Basic Sciences in Engineering Science, University of Innsbruck, Innsbruck 6020, Austria
| | - Katharina Lackner
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Monica L Fernández-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Katrin Watschinger
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
3
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Ni Z, Wölk M, Jukes G, Mendivelso Espinosa K, Ahrends R, Aimo L, Alvarez-Jarreta J, Andrews S, Andrews R, Bridge A, Clair GC, Conroy MJ, Fahy E, Gaud C, Goracci L, Hartler J, Hoffmann N, Kopczyinki D, Korf A, Lopez-Clavijo AF, Malik A, Ackerman JM, Molenaar MR, O'Donovan C, Pluskal T, Shevchenko A, Slenter D, Siuzdak G, Kutmon M, Tsugawa H, Willighagen EL, Xia J, O'Donnell VB, Fedorova M. Guiding the choice of informatics software and tools for lipidomics research applications. Nat Methods 2023; 20:193-204. [PMID: 36543939 PMCID: PMC10263382 DOI: 10.1038/s41592-022-01710-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.
Collapse
Affiliation(s)
- Zhixu Ni
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Geoff Jukes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Lucila Aimo
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Jorge Alvarez-Jarreta
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Robert Andrews
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alan Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Geremy C Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew J Conroy
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Eoin Fahy
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Caroline Gaud
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- Field of Excellence BioHealthe-University of Graz, Graz, Austria
| | - Nils Hoffmann
- Center for Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Dominik Kopczyinki
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Ansgar Korf
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | | | - Adnan Malik
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denise Slenter
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA, USA
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Egon L Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Munjoma N, Isaac G, Muazzam A, Cexus O, Azhar F, Pandha H, Whetton AD, Townsend PA, Wilson ID, Gethings LA, Plumb RS. High Throughput LC-MS Platform for Large Scale Screening of Bioactive Polar Lipids in Human Plasma and Serum. J Proteome Res 2022; 21:2596-2608. [PMID: 36264332 DOI: 10.1021/acs.jproteome.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a key role in many biological processes, and their accurate measurement is critical to unraveling the biology of diseases and human health. A high throughput HILIC-based (LC-MS) method for the semiquantitative screening of over 2000 lipids, based on over 4000 MRM transitions, was devised to produce an accessible and robust lipidomic screen for phospholipids in human plasma/serum. This methodology integrates many of the advantages of global lipid analysis with those of targeted approaches. Having used the method as an initial "wide class" screen, it can then be easily adapted for a more targeted analysis and quantification of key, dysregulated lipids. Robustness was assessed using 1550 continuous injections of plasma extracts onto a single column and via the evaluation of columns from 5 different batches of stationary phase. Initial screens in positive (239 lipids, 431 MRM transitions) and negative electrospray ionization (ESI) mode (232 lipids, 446 MRM transitions) were assessed for reproducibility, sensitivity, and dynamic range using analysis times of 8 min. The total number of lipids monitored using these screening methods was 433 with an overlap of 38 lipids in both modes. A polarity switching method for accurate quantification, using the same LC conditions, was assessed for intra- and interday reproducibility, accuracy, dynamic range, stability, carryover, dilution integrity, and matrix interferences and found to be acceptable. This polarity switching method was then applied to lipids important in the stratification of human prostate cancer samples.
Collapse
Affiliation(s)
- Nyasha Munjoma
- Scientific Operations, Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Giorgis Isaac
- Scientific Operations, Waters Corporation, Milford, Massachusetts 01757, United States
| | - Ammara Muazzam
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, M13 9NT, United Kingdom.,Stoller Biomarker Discovery Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Olivier Cexus
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| | - Fowz Azhar
- Salford Royal NHS Foundation Trust, Salford Royal Hospital, Salford, Manchester, M6 8HD, United Kingdom
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| | - Anthony D Whetton
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, M13 9NT, United Kingdom.,Stoller Biomarker Discovery Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Paul A Townsend
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, M13 9NT, United Kingdom.,Stoller Biomarker Discovery Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Du Cane Road, London, W12 0NN, United Kingdom
| | - Lee A Gethings
- Scientific Operations, Waters Corporation, Wilmslow, SK9 4AX, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| | - Robert S Plumb
- Scientific Operations, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
6
|
He Y, van Mever M, Yang W, Huang L, Ramautar R, Rijksen Y, Vermeij WP, Hoeijmakers JHJ, Harms AC, Lindenburg PW, Hankemeier T. A Sample Preparation Method for the Simultaneous Profiling of Signaling Lipids and Polar Metabolites in Small Quantities of Muscle Tissues from a Mouse Model for Sarcopenia. Metabolites 2022; 12:metabo12080742. [PMID: 36005613 PMCID: PMC9413361 DOI: 10.3390/metabo12080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of a wide range of chemical classes relevant to understanding sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small muscles, or muscle biopsies, is desired. Several existing metabolomics platforms that include diverse classes of signaling lipids, energy metabolites, and amino acids and amines would be informative for suspected biochemical pathways involved in sarcopenia. The sample limitation requires an optimized sample preparation method with minimal losses during isolation and handling and maximal accuracy and reproducibility. Here, two developed sample preparation methods, BuOH-MTBE-Water (BMW) and BuOH-MTBE-More-Water (BMMW), were evaluated and compared with previously reported methods, Bligh-Dyer (BD) and BuOH-MTBE-Citrate (BMC), for their suitability for these classes. The most optimal extraction was found to be the BMMW method, with the highest extraction recovery of 63% for the signaling lipids and 81% for polar metabolites, and an acceptable matrix effect (close to 1.0) for all metabolites of interest. The BMMW method was applied on muscle tissues as small as 5 mg (dry weight) from the well-characterized, prematurely aging, DNA repair-deficient Ercc1∆/- mouse mutant exhibiting multiple-morbidities, including sarcopenia. We successfully detected 109 lipids and 62 polar targeted metabolites. We further investigated whether fast muscle tissue isolation is necessary for mouse sarcopenia studies. A muscle isolation procedure involving 15 min at room temperature revealed a subset of metabolites to be unstable; hence, fast sample isolation is critical, especially for more oxidative muscles. Therefore, BMMW and fast muscle tissue isolation are recommended for future sarcopenia studies. This research provides a sensitive sample preparation method for the simultaneous extraction of non-polar and polar metabolites from limited amounts of muscle tissue, supplies a stable mouse muscle tissue collection method, and methodologically supports future metabolomic mechanistic studies of sarcopenia.
Collapse
Affiliation(s)
- Yupeng He
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marlien van Mever
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Wei Yang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luojiao Huang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yvonne Rijksen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Institute for Genome Stability in Aging and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Peter W. Lindenburg
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Research Group Metabolomics, Leiden Center for Applied Bioscience, University of Applied Sciences Leiden, 2333 CK Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-527-1340
| |
Collapse
|
7
|
Qu X, Wang T, Liu X, Jiang X, Liang X, Wu J. Dual-Mechanism-Driven Strategy for High-Coverage Detection of Serum Lipids on a Novel SALDI-MS Target. Anal Chem 2022; 94:8570-8579. [PMID: 35670384 DOI: 10.1021/acs.analchem.1c04929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum lipid metabolites have been emerging as ideal biomarkers for disease diagnosis and prediction. In the current stage, nontargeted or targeted lipidomic research mainly relies on a liquid chromatography-mass spectrometry (LC-MS) platform, but future clinical applications need more robust and high-speed platforms. Surface-assisted laser desorption ionization mass spectrometry (SALDI-MS) has shown excellent advantages in the high-speed analysis of lipid metabolites. However, the platform in the positive ion mode is more inclined to target a certain class of lipids, leading to the low coverage of lipid detection and limiting its practical translation to clinical applications. Herein, we proposed a dual-mechanism-driven strategy for high-coverage detection of serum lipids on a novel SALDI-MS target, which is a composite nanostructure comprising vertical silicon nanowires (VSiNWs) decorated with AuNPs and polydopamine (VSiNW-Au-PDA). The performance of laser desorption and ionization on the target can be enhanced by charge-driven desorption coupled with thermal-driven desorption. Simultaneous detection of 236 serum lipids (S/N ≥ 5) including neutral and polar lipids can be achieved in the positive ion mode. Among these, 107 lipid peaks were successfully identified. When combined with VSiNW-Au-PDA and VSiNW chips, 479 lipid peaks can be detected in serum samples in positive and negative ion modes, respectively. Based on the platform, serum samples from 57 hepatocellular carcinoma (HCC) patients and 76 healthy controls were analyzed. After data mining, 14 lipids containing different lipid types (TAG, CE, PC) were selected as potential lipidomic biomarkers. With the assistance of an artificial neural network, a diagnostic model with a sensitivity of 92.7% and a specificity of 96% was constructed for HCC diagnosis.
Collapse
Affiliation(s)
- Xuetong Qu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyue Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinrong Jiang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Vvedenskaya O, Holčapek M, Vogeser M, Ekroos K, Meikle PJ, Bendt AK. Clinical lipidomics – A community-driven roadmap to translate research into clinical applications. J Mass Spectrom Adv Clin Lab 2022; 24:1-4. [PMID: 35199094 PMCID: PMC8844780 DOI: 10.1016/j.jmsacl.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Overview of current state of mass spectrometry based lipidomics. Highlighting ongoing efforts towards harmonization. Invitation to join international community.
Lipid metabolites, beyond triglycerides and cholesterol, have been shown to have vast potential for applications in clinical applications, with substantial societal and economical value. To successfully evolve from the current research-grade methods to assays suitable for routine clinical applications, a harmonization – if not standardization – of these mass spectrometry-based workflows is necessary. Input on clinical needs and technological capabilities must be obtained from all relevant stakeholders, including wet lab scientists, informaticians and data scientists, manufacturers, and medical professionals. In order to build bridges between this diverse group of professionals, the International Lipidomics Society and its Clinical Lipidomics Interest Group were created. This opinion article is intended to provide an overview of international efforts to tackle the issues of workflow harmonization, and to serve as an open invitation for others to join this growing community.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Spectroswiss Sarl, Lausanne, Switzerland
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Michael Vogeser
- Institute for Laboratory Medicine in the Munich University Clinic, Munich, Germany
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne Victoria, Australia
| | - Anne K. Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
- Corresponding author.
| |
Collapse
|
9
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
10
|
A normalized signal calibration with a long-term reference improves the robustness of RPLC-MRM/MS lipidomics in plasma. Anal Bioanal Chem 2021; 413:4077-4090. [PMID: 33907864 DOI: 10.1007/s00216-021-03364-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Improving the reliability of quantification in lipidomic analyses is crucial for its successful application in the discovery of new biomarkers or in clinical practice. In this study, we propose a workflow to improve the accuracy and precision of lipidomic results issued by the laboratory. Lipid species from 11 classes were analyzed by a targeted RPLC-MRM/MS method. The peak areas of species were used to estimate concentrations by an internal standard calibration approach (IS-calibration) and by an alternative normalization signal calibration schema (NS-calibration). The latter uses a long-term reference plasma material as a matrix-matched external calibrator whose accuracy was compared to the NIST SRM-1950 mean consensus values reported by the Interlaboratory Lipidomics Comparison Exercise. The bias of lipid concentrations showed a good accuracy for 69 of 89 quantified lipids. The quantitation of species by the NS-calibration schema improved the within- and between-batch reproducibility in quality control samples, in comparison to the usual IS-calibration approach. Moreover, the NS-calibration workflow improved the robustness of the lipidomics measurements reducing the between-batch variability (relative standard deviation <10% for 95% of lipid species) in real conditions tested throughout the analysis of 120 plasma samples. In addition, we provide a free access web tool to obtain the concentration of lipid species by the two previously mentioned quantitative approaches, providing an easy follow-up of quality control tasks related to lipidomics.
Collapse
|
11
|
Medina J, van der Velpen V, Teav T, Guitton Y, Gallart-Ayala H, Ivanisevic J. Single-Step Extraction Coupled with Targeted HILIC-MS/MS Approach for Comprehensive Analysis of Human Plasma Lipidome and Polar Metabolome. Metabolites 2020; 10:E495. [PMID: 33276464 PMCID: PMC7760228 DOI: 10.3390/metabo10120495] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Expanding metabolome coverage to include complex lipids and polar metabolites is essential in the generation of well-founded hypotheses in biological assays. Traditionally, lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether (MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated the performance of single-step sample preparation methods for simultaneous extraction of the complex lipidome and polar metabolome from human plasma. The method performance was evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374 polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency, and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction with IPA showed the greatest reproducibility with the highest number of lipid species detected with the coefficient of variation (CV) < 30%. Besides this difference, both IPA and BUME allowed for the high-throughput extraction and reproducible measurement of a large panel of complex lipids and polar metabolites, thus warranting their application in large-scale human population studies.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Vera van der Velpen
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Yann Guitton
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France;
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; (J.M.); (V.v.d.V.); (T.T.)
| |
Collapse
|
12
|
Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta 2020; 1137:156-169. [PMID: 33153599 PMCID: PMC7525665 DOI: 10.1016/j.aca.2020.09.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Lipids are vital biological molecules and play multiple roles in cellular function of mammalian organisms such as cellular membrane anchoring, signal transduction, material trafficking and energy storage. Driven by the biological significance of lipids, lipidomics has become an emerging science in the field of omics. Lipidome in biological systems consists of hundreds of thousands of individual lipid molecules that possess complex structures, multiple categories, and diverse physicochemical properties assembled by different combinations of polar headgroups and hydrophobic fatty acyl chains. Such structural complexity poses a huge challenge for comprehensive lipidome analysis. Thanks to the great innovations in chromatographic separation techniques and the continuous advances in mass spectrometric detection tools, analytical strategies for lipidomics have been highly diversified so that the depth and breadth of lipidomics have been greatly enhanced. This review will present the current state of mass spectrometry-based analytical strategies including untargeted, targeted and pseudotargeted lipidomics. Recent typical applications of lipidomics in biomarker discovery, pathogenic mechanism and therapeutic strategy are summarized, and the challenges facing to the field of lipidomics are also discussed.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Structural Elucidation of Ether Glycerophospholipids Using Gas-Phase Ion/Ion Charge Inversion Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1093-1103. [PMID: 32251588 PMCID: PMC7328668 DOI: 10.1021/jasms.0c00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ether lipids represent a unique subclass of glycerophospholipid (GPL) that possesses a 1-O-alkyl (i.e., plasmanyl subclass) or a 1-O-alk-1'-enyl (i.e., plasmenyl subclass) group linked at the sn-1 position of the glycerol backbone. As changes in ether GPL composition and abundance are associated with numerous human pathologies, analytical strategies capable of providing high-level structural detail are desirable. While mass spectrometry (MS) has emerged as a prominent tool for lipid structural elucidation in biological extracts, distinctions between the various isomeric forms of ether-linked GPLs have remained a significant challenge for tandem MS, principally due to similarities in the conventional tandem mass spectra obtained from the two ether-linked subclasses. To distinguish plasmanyl and plasmenyl GPLs, a multistage (i.e., MSn where n = 3 or 4) mass spectrometric approach reliant on low-energy collision-induced dissociation (CID) is required. While this method facilitates assignment of the sn-1 bond type (i.e., 1-O-alkyl versus 1-O-alk-1'-enyl), a composite distribution of isomers is left unresolved, as carbon-carbon double-bond (C=C) positions cannot be localized in the sn-2 fatty acyl substituent. In this study, we combine a systematic MSn approach with two unique gas-phase charge inversion ion/ion chemistries to elucidate ether GPL structures with high-level detail. Ultimately, we assign both the sn-1 bond type and sites of unsaturation in the sn-2 fatty acyl substituent using an entirely gas-phase MS-based workflow. Application of this workflow to human blood plasma extract permitted isomeric resolution and in-depth structural identification of major and, in some cases, minor isomeric contributors to ether GPLs that have been previously unresolved when examined via conventional methods.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
14
|
Unsihuay D, Qiu J, Swaroop S, Nagornov KO, Kozhinov AN, Tsybin YO, Kuang S, Laskin J. Imaging of Triglycerides in Tissues Using Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 448:116269. [PMID: 32863736 PMCID: PMC7453423 DOI: 10.1016/j.ijms.2019.116269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nonpolar triglycerides (TGs) are rarely detected in mass spectrometry imaging (MSI) experiments unless they are abundant in the sample. Herein, we use nanospray desorption electrospray ionization (nano-DESI) to explore the role of the solvent composition and ionic dopants on the detection of TGs in a murine gastrocnemius muscle tissue used as a model system. We evaluated three solvent mixtures for their ability to extract nonpolar TG species: MeOH:H2O 9:1 (v/v), MeOH:DCM 6:4 (v/v) and MeOH:AcN:tol 5:3.5:1.5 (v/v/v). We observe that TGs are mainly detected as [M+K]+ adducts and their extraction efficiency is improved using less polar solvents: MeOH:DCM and MeOH:AcN:tol. We also explore whether the ionization efficiency of TGs may be improved by doping the MeOH:AcN:tol solvent with ammonium formate (AF) and other ionic additives. However, the formation of [M+NH4]+ adducts of TGs is less efficient than the formation of [M+K]+ adducts in the range of AF concentrations from 0.1 to 10 mM. Chemical derivatization using 100 μM of Girard T reagent predominately generates reaction products of phosphatidylcholine rather than TG species. Moreover, the presence of the Girard T reagent suppresses ion signals of all the species in the spectrum including TGs. Nano-DESI MSI experiments performed using MeOH:AcN:tol solvent enable imaging of TGs without any detectable adverse effect on signals of other lipids and metabolites. Specifically, 10 out of 14 TG species were detected exclusively using MeOH:AcN:tol and the sensitivity towards other TGs was improved by at least an order of magnitude. Although polyunsaturated TGs may be detected using both solvents, saturated and monounsaturated TGs are only detected using MeOH:AcN:tol. Our results provide a direct path for the improved detection of TGs in tissue imaging experiments using liquid-based ambient ionization techniques.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sneha Swaroop
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Yury O. Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Long NP, Nghi TD, Kang YP, Anh NH, Kim HM, Park SK, Kwon SW. Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine. Metabolites 2020; 10:E51. [PMID: 32013105 PMCID: PMC7074059 DOI: 10.3390/metabo10020051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the tremendous success, pitfalls have been observed in every step of a clinical metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand for logistics, instrumentations, and computational resources for metabolic phenotyping studies has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study robustness, usability, and transferability. The importance of quality assurance and quality control procedures is discussed, followed by a practical rule containing five phases, including two additional "pre-pre-" and "post-post-" analytical steps. Besides, we will elucidate the potential involvement of machine learning and demonstrate that the need for automated data mining algorithms to improve the quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics framework, along with an appropriate checklist refined from current guidelines and our previously published assessment, in the attempt to accurately translate achievements in metabolomics into clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics approaches with metabolomics as the pillar member is in urgent need. When combining with other social or nutritional factors, we can gather complete omics profiles for a particular disease. Our discussion reflects the current obstacles and potential solutions toward the progressing trend of utilizing metabolomics in clinical research to create the next-generation healthcare system.
Collapse
Affiliation(s)
- Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; (T.D.N.); (S.K.P.)
| | - Yun Pyo Kang
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; (T.D.N.); (S.K.P.)
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| |
Collapse
|
16
|
Randolph CE, Blanksby SJ, McLuckey SA. Toward Complete Structure Elucidation of Glycerophospholipids in the Gas Phase through Charge Inversion Ion/Ion Chemistry. Anal Chem 2020; 92:1219-1227. [PMID: 31763816 PMCID: PMC6949391 DOI: 10.1021/acs.analchem.9b04376] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Shotgun lipidomics has recently gained popularity for lipid analysis. Conventionally, shotgun analysis of glycerophospholipids via direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides glycerophospholipid (GPL) class (i.e., headgroup composition) and fatty acyl composition. Reliant on low-energy collision-induced dissociation (CID), traditional ESI-MS/MS fails to define fatty acyl regiochemistry along the glycerol backbone or carbon-carbon double bond position(s) in unsaturated fatty acyl substituents. Therefore, isomeric GPLs are often unresolved, representing a significant challenge for shotgun-MS approaches. We developed a top-down shotgun-MS method utilizing gas-phase ion/ion charge inversion chemistry that provides near-complete GPL structural identification. First, in negative ion mode, CID of mass-selected GPL anions generates fatty acyl carboxylate anions via fragmentation of ester bonds linking the fatty acyl substituents at the sn-1 and sn-2 positions of the glycerol backbone. Product anions, including fatty acyl carboxylate ions, were then derivatized in the mass spectrometer via an ion/ion charge inversion reaction with tris-phenanthroline magnesium dications. Subsequent CID of charge-inverted fatty acyl complex cations yielded isomer-specific product ion spectra that permit (i) unambiguous assignment of carbon-carbon double bond position(s) and (ii) relative quantitation of isomeric fatty acyl substituents. The outlined strategy was applied to the analysis of targeted GPLs extracted from human plasma, including several proposed plasma biomarkers. A single experiment thus facilitates assignment of the GPL headgroup, fatty acyl composition, carbon-carbon double bond position(s) in unsaturated fatty acyl chains, and, in some cases, fatty acyl sn-position and relative abundances for isomeric fatty acyl substituents. Ultimately, this MSn platform paired with ion/ion chemistry permitted identification of major, and some minor, isomeric contributors that are unresolved using conventional ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
17
|
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Schuhmann K, Moon H, Thomas H, Ackerman JM, Groessl M, Wagner N, Kellmann M, Henry I, Nadler A, Shevchenko A. Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics. Anal Chem 2019; 91:12085-12093. [PMID: 31441640 PMCID: PMC6751524 DOI: 10.1021/acs.analchem.9b03270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Collapse
Affiliation(s)
- Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jacobo Miranda Ackerman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Groessl
- Department
of Nephrology and Hypertension, Inselspital,
Bern University Hospital, Freiburgstr. 15, 3010 Bern, Switzerland
- Department
for BioMedical Research, University of Bern, Murtenstr. 35, 3010 Bern, Switzerland
| | - Nicolai Wagner
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Markus Kellmann
- Thermo
Fisher Scientific, Hanna-Kunath-Str.
11, 28199 Bremen, Germany
| | - Ian Henry
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - André Nadler
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
19
|
Marshall DL, Criscuolo A, Young RSE, Poad BLJ, Zeller M, Reid GE, Mitchell TW, Blanksby SJ. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1621-1630. [PMID: 31222675 DOI: 10.1007/s13361-019-02261-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|