1
|
Afshar Mogaddam MR, Farajzadeh MA, Abbasalizadeh A, Nemati M, Alizadeh Nabil AA, Tuzen M, Pourali A. Development of homogeneous dispersive solid phase extraction using albumin as a green sorbent and its combination with dispersive liquid-liquid microextraction: application in extraction of pesticides from fruit juices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4187-4193. [PMID: 37581438 DOI: 10.1039/d3ay00626c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In the current study, salt- and pH-induced homogeneous dispersive solid phase extraction was developed using albumin as a sorbent for the extraction of some pesticides (diazinon, diniconazole, haloxyfop-R-methyl, and hexaconazole) from fruit juice of orange, pomegranate, and barberry. The extracted analytes were more concentrated by dispersive liquid-liquid microextraction to obtain high enrichment factors and low detection limits prior to their determination by gas chromatography-mass spectrometry. In the extraction process, human serum albumin solution was added to the sample solution at the μL-level and a homogeneous solution was obtained. Then, albumin was precipitated into the solution by adding an inorganic salt and decreasing the solution pH. By doing so, the analytes were adsorbed by albumin effectively due to their high adsorption capacity and large surface area. Following this, the pesticides were eluted from the albumin sorbent using an elution solvent and used in a dispersive liquid-liquid microextraction step. Under the optimum extraction conditions, low limits of detection and quantification were achieved in the ranges of 0.02-0.04 and 0.07-0.13 ng mL-1, respectively. The calibration curves were linear in the range of 0.13-250 ng mL-1. Relative standard deviation as a criterion for precision and the method repeatability were in the ranges of 2.9-4.2% for intra- (n = 5, C = 5 or 50 ng mL-1) and 3.2-5.2% for inter-day (n = 5, 50 ng mL-1) precisions. The enrichment factors and extraction recoveries were in the ranges of 390-460 and 78-92%, respectively. Finally, the offered procedure was applied for the analysis of pesticide residues in some fruit juice samples.
Collapse
Affiliation(s)
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Aysa Abbasalizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mustafa Tuzen
- Tokat Gaziosmanpasa University, Art and Science Faculty, Chemistry Department, Tokat 60250, Turkey
| | - Ali Pourali
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Vállez-Gomis V, Benedé JL, Combès A, Chisvert A, Pichon V. Solid-phase immunoextraction followed by liquid chromatography-tandem mass spectrometry for the selective determination of thyroxine in human serum. Talanta 2023; 265:124864. [PMID: 37379751 DOI: 10.1016/j.talanta.2023.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
In this work, an analytical method based on solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) has been developed for the selective determination of thyroxine (T4) in human serum. For this purpose, two immunosorbents (ISs) specific to T4 were synthesized by grafting two different T4-specific monoclonal antibodies on a cyanogen bromide (CNBr)-activated-Sepharose® 4B solid support. The grafting yields obtained from the immobilization of each antibody on the CNBr-activated-Sepharose® 4B were over 90%, demonstrating that most of the antibodies were covalently bound to the solid support. The SPE procedure was optimized by studying the retention capability and selectivity of the two ISs in pure media fortified with T4. Under the optimized conditions, high elution efficiencies were achieved in the elution fraction for both specific ISs (i.e., 85%), whereas low ones were obtained in the control ISs (ca. 2%), showing the selectivity of the specific ISs. The ISs were also characterized by studying extraction and synthesis repeatability (RSD <8%), and capacity (104 ng of T4 per 35 mg of ISs, i.e., 3 μg g-1). Finally, the methodology was applied to a pooled human serum sample in order to study its analytical utility and accuracy. Relative recovery (RR) values between 81 and 107% were obtained, showing no matrix effects during the global methodology. Furthermore, the need to perform the immunoextraction was evidenced by comparing the LC-MS scan chromatograms and RR values with and without applying the immunoextraction procedure on a serum sample submitted to protein precipitation. This works exploits, for the first time, the use of an IS on the selective determination of T4 in human serum samples.
Collapse
Affiliation(s)
- Víctor Vállez-Gomis
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; Sorbonne Université, Paris 75005, France.
| |
Collapse
|
3
|
Wang A, Liu J, Yang J, Yang L. Aptamer affinity-based microextraction in-line coupled to capillary electrophoresis mass spectrometry using a porous layer/nanoparticle -modified open tubular column. Anal Chim Acta 2023; 1239:340750. [PMID: 36628776 DOI: 10.1016/j.aca.2022.340750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
An aptamer affinity based microextraction column is developed to be directly in-line coupled to capillary electrophoresis-mass spectrometry (CE-MS) for analyzing mycotoxins in food samples. Single-stranded DNA aptamers for selective recognition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) targets are co-immobilized via covalent bonds on the surface of the inlet end of a capillary, which is pre-modified with three-dimensional porous layer and gold nanoparticles to enhance the specific surface area and loading capacity. The outlet of the capillary is designed as a porous tip to serve as the spray source for injection to the mass spectrometry. All the necessary processes for pretreatment and analysis of a sample are accomplished in one injection, including aptamer affinity-based microextraction, CE separation and MS detection of analytes. AFB1 and OTA are simultaneously determined in a wide linear range with sample consumption of only 1 μL and the limit-of-detection as low as 1 pg/mL. The microextraction column exhibits excellent repeatability and stability, which can be used over 45 runs within a month with CE separation efficiency and only MS intensity slightly decreased. Mycotoxins in three kinds of cereal based infant foods are accurately analyzed using the proposed method. The study provides a robust and universal approach that would have potential applications in a variety of analytical fields based on selective molecular recognition coupling to CE-MS analysis.
Collapse
Affiliation(s)
- Anping Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianing Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jinlan Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Guzella CS, Souto DE, Silva BJ. Alginate-based hydrogel fiber as a restricted access material for microextraction of drugs in biological samples. Carbohydr Polym 2022; 294:119810. [DOI: 10.1016/j.carbpol.2022.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
5
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
6
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Zhang H, Zheng D, Zhou Y, Xia H, Peng X. Multifunctionalized magnetic mesoporous silica as an efficient mixed-mode sorbent for extraction of phenoxy carboxylic acid herbicides from water samples followed by liquid chromatography-mass spectrometry in tandem. J Chromatogr A 2020; 1634:461645. [DOI: 10.1016/j.chroma.2020.461645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
|
8
|
García-Valverde M, Soriano M, Lucena R, Cárdenas S. Cotton fibers functionalized with β-cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Anal Chim Acta 2020; 1126:133-143. [DOI: 10.1016/j.aca.2020.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
|
9
|
Jalili V, Barkhordari A, Ghiasvand A. New extraction media in microextraction techniques. A review of reviews. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Pan J, Song Y, Xu B, Liu J, Fu L, Xu L. Preparation and application of immunoaffinity in-tube solid phase microextraction column with oriented antibody-immobilized porous layer open tubular capillary for high sensitive quantification of serum extracellular domain of human epidermal growth factor receptor 2 levels. J Chromatogr A 2020; 1619:460974. [PMID: 32087879 DOI: 10.1016/j.chroma.2020.460974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) gene expresses a transmembrane glycoprotein that is over-expressed in 15-30% breast, 3% lung, and other several digestive cancers. So HER2 is a good biomarker for tumor diagnostic and treatment monitoring. Clinically, detection of HER2 often employs invasive approaches with tissue samples, which at large extent limit its universal application. Shedding of the extracellular domain (ECD) of the HER2 (HER2-ECD) into the circulation has led to the development of a serum test of HER2-ECD as an additional approach to probe the HER2 overexpression. However, few methods were developed due to the high sensitivity required by the serum HER2-ECD determination. In this work, we prepared a novel immunoaffinity in-tube solid phase microextraction (IT-SPME) sorbent for selective enrichment of HER2-ECD. Two clinical available monoclonal antibodies against to HER2, trastuzumab and pertuzumab, were selected as immunoaffinity ligands. Porous layer open tubular capillary with oriented antibody immobilization were fabricated and systematically optimized to afford a higher extraction capacity. The capacity was reached to 120.4 μg/m, which is more than 1000 times higher than that obtained by a common method (directly antibody immobilization on a naked capillary). After sample extraction and enrichment by the IT-SPME, the eluent were determined by a particle-enhanced turbidimetric immunoassay (PETIA). Sensitive quantification of HER2-ECD by the PETIA was thereby accomplished. HER2-ECD concentrations in 82 clinical serum samples were determined by the developed IT-SPME/PETIA method, and the results were well-correlated with that by the clinical used chemiluminescence immunoassay (CLIA). Besides, the IT-SPME/PETIA method was found providing 5 times higher sensitivity than the CLIA, and 500 times higher than the PETIA without IT-SPME. The results indicate that the developed method is suitable for high-sensitive quantification of HER2-ECD in clinical samples.
Collapse
Affiliation(s)
- Jianhui Pan
- Graduate School, Tianjin Medical University, Tianjin, 300070, China; Tianjin Chest Hospital, Tianjin, 300222, China
| | - Yang Song
- Graduate School, Tianjin Medical University, Tianjin, 300070, China; School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Sinopharm Group (Tianjin) East Bookcom Pharmaceutical Co., Ltd, Tianjin, 300051, China
| | - Bei Xu
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jiyang Liu
- Tianjin Medical College, Tianjin, 300222, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China.
| | - Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Tianjin Medical College, Tianjin, 300222, China; Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
11
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
12
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|