1
|
Lyle AN, Danilenko U, Sugahara O, Vesper HW. Cardiovascular disease lipids and lipoproteins biomarker standardization. Crit Rev Clin Lab Sci 2025; 62:266-287. [PMID: 40022559 DOI: 10.1080/10408363.2025.2462817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in the United States and globally. This review describes changes in CVD lipid and lipoprotein biomarker measurements that occurred in line with the evolution of clinical practice guidelines for CVD risk assessment and treatment. It also discusses the level of comparability of these biomarker measurements in clinical practice. Comparable and reliable measurements are achieved through assay standardization, which not only depends on correct test calibration but also on factors such as analytical sensitivity, selectivity, susceptibility to factors that can affect the analytical measurement process, and the stability of the test system over time. The current status of standardization for traditional and newer CVD biomarkers is discussed, as are approaches to setting and achieving standardization goals for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), triglycerides (TG), lipoprotein(a) (Lp(a)), apolipoproteins (apo) A-I and B, and non-HDL-C. Appropriate levels of standardization for blood lipids are maintained by the Centers for Disease Control and Prevention's (CDC) CVD Biomarkers Standardization Program (CDC CVD BSP) using the analytical performance goals recommended by the National Cholesterol Education Program. The level of measurement agreement that can be achieved is dependent on the characteristics of the analytes and differences in measurement principles between reference measurement procedures and clinical assays. The technical and analytical limitations observed with traditional blood lipids are not observed with apolipoproteins. Additionally, apoB and Lp(a) may more accurately capture CVD risk and residual CVD risk, respectively, than traditional lipids, thus prompting current guidelines to recommend apolipoprotein measurements. This review further discusses CDC's approach to standardization and describes the analytical performance of traditional blood lipids and apoA-I and B observed over the past 11 years. The reference systems for apoA-I and B, previously maintained by a single laboratory, no longer exist, thus requiring the creation of new systems, which is currently underway. This situation emphasizes the importance of a collaborative network of laboratories, such as CDC's Cholesterol Reference Methods Laboratory Network (CRMLN), to ensure standardization sustainability. CDC is supporting the International Federation of Clinical Chemistry and Laboratory Medicine's (IFCC) work to establish such a network for lipoproteins. Ensuring comparability and reliability of CVD biomarker measurements through standardization remains critical for the effective implementation of clinical practice guidelines and for improving patient care. Utilizing experience gained over three decades, CDC CVD BSP will continue to improve the standardization of traditional and emerging CVD biomarkers together with stakeholders.
Collapse
Affiliation(s)
- Alicia N Lyle
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Uliana Danilenko
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Otoe Sugahara
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Hubert W Vesper
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
2
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025; 97:8625-8640. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Trad FM, AlHamad T, Younes N, Abunasser S, Younes S, Nizamuddin PB, Chaar DE, Salameh IM, Al-Dewik NI, Laiwattanapaisal W, Aungbamnet P, Loungjinda P, Ammaranond P, Li M, Abu-Raddad LJ, Nasrallah GK. Accre 8 emerging point of care CLIA system for vitamin B12 assessment compared with three established assays. Sci Rep 2025; 15:13328. [PMID: 40247050 PMCID: PMC12006362 DOI: 10.1038/s41598-025-97503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Accurate Vitamin B12 (Vit B12) quantification is essential for diagnosing deficiencies linked to neurological and hematological disorders. The Accre 8 Point-of-Care (POC) Chemiluminescent Immunoassay (CLIA) system offers a compact design, rapid single-step operation, and minimal calibration requirements. This study evaluates Accre 8's performance against established CLIA immunoassays (Abbott and Roche) and LC-MS/MS, the gold standard for Vit B12 quantification. A total of 297 serum samples, spanning deficient to sufficient Vit B12 levels, were analyzed. Accre 8 demonstrated a strong correlation with LC-MS/MS (r = 0.94, p < 0.001), with median Vit B12 levels closely aligning with LC-MS/MS (256.0 pmol/L). Accre 8 exhibited high sensitivity (96.9%) and specificity (86.7%), with Cohen's Kappa agreement (0.76). Bland-Altman analysis showed a mean bias of - 18.5%, while Passing-Bablok regression indicated proportional bias at higher concentrations (slope = 1.44). ROC analysis confirmed excellent diagnostic accuracy (AUC = 0.98). Accre 8's strong diagnostic performance, minimal calibration needs, and low sample volume requirements position it as a practical alternative to conventional CLIA systems for Vit B12 assessment, particularly in clinical and resource-limited settings. These findings support its potential integration into routine diagnostic workflows for Vit B12 deficiency screening and monitoring.
Collapse
Affiliation(s)
- Farah M Trad
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Tasneem AlHamad
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shaden Abunasser
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Parveen B Nizamuddin
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dayana El Chaar
- Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, 27 King's College Cir, Toronto, ON, M5S 1 A1, Canada
| | - Israa M Salameh
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nader I Al-Dewik
- Department of Research, Women's Wellness and Research Center, Hamad Medical Corporation, P.O.BOX. 3050, Doha, Qatar
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Pattramon Aungbamnet
- Medical Technology Unit, Health Sciences Service Center, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pollanat Loungjinda
- Medical Technology Unit, Health Sciences Service Center, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Palanee Ammaranond
- Department of transfusion medicine and clinical microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meng Li
- Guangzhou Wondfo Biotech Co., Ltd, No. 8 Lizhishan Road, Science City, Huangpu District, Guangzhou, 510663, China
| | - Laith J Abu-Raddad
- Weill Cornell Medical College - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Zhang L, Zhao P, Liu Y, Shi N, Zhou Y, Peng S, Sun T, Zhang M, Wu Y, Yang X, Wen Y, Shi G, Gao X, Luo L. Detection of TNF-α using the established ab-MPs-CLIA. Talanta 2025; 285:127301. [PMID: 39637773 DOI: 10.1016/j.talanta.2024.127301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Tumor necrosis factor alpha (TNF-α) is a key cytokine in inflammation and immune responses, making its rapid and accurate detection essential for disease diagnosis and management. In this study, we developed a highly sensitive chemiluminescence immunoassay (CLIA) using antibody-coated magnetic particles (Ab-MPs-CLIA) for TNF-α detection. From nine candidate antibodies, we identified an optimal pair through epitope competition and affinity assessments, significantly improving assay performance. The Ab-MPs-CLIA achieved a detection limit of 0.25 pg/mL, 6.8 times more sensitive than Siemens commercial kits, with a broad linear range of 9.2-1077 pg/mL. The method demonstrated excellent stability, both under accelerated conditions at 37 °C for 7 days and long-term storage at 4 °C for 12 months. It showed no cross-reactivity with common interfering substances in human serum, ensuring high specificity. Notably, the entire process, from sample preparation to result, takes just 25 min, compared to 3-4 h for both ELISA and RIA, and CLIA typically offers 10-100 times higher sensitivity than these methods. These advantages make the Ab-MPs-CLIA an ideal option for clinical laboratories, providing superior sensitivity, specificity, broader dynamic range, and greater operational efficiency than existing TNF-α detection technologies.
Collapse
Affiliation(s)
- Liang Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shangde Peng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tieqiang Sun
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yahui Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Hunan Normal University School of Medicine, Changsha, Hunan Province, 410081, China
| | - Xuechen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yan Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Gang Shi
- Kangpu Biotechnology (Beijing) Co., Ltd., Beijing, 100102, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
5
|
Yu C, Xu J, Xiong L, Wang Y, Wang S, Geng F, Shang Z, Wu H, Zhao L, Wang Y. Enhanced Chemiluminescence Induced by Natural Light-Driven MIL-100(Fe)/TiO 2 for Dopamine Detection. Anal Chem 2025; 97:5283-5289. [PMID: 40022659 DOI: 10.1021/acs.analchem.4c07100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Luminol-based chemiluminescence (CL) systems, as a powerful tool for bioanalysis, are limited owing to their weak CL intensity and self-decomposition of the classic oxidant H2O2. Herein, we introduced a new luminol CL enhancer, the natural light-driven photocatalyst MIL-100(Fe)/TiO2, for the selective determination of dopamine (DA). By employing MIL-100(Fe)/TiO2 for the first time as an efficient enhancer, the MIL-100(Fe)/TiO2-luminol CL intensity was 100 times higher than that of the classical H2O2-luminol system. The CL spectrum, UV-vis absorption spectroscopy, radical scavenger experiments, and electron spin resonance spectroscopy were utilized to investigate the possible CL mechanism of the MIL-100(Fe)/TiO2-luminol system. All of the results indicated that MIL-100(Fe)/TiO2 can generate reactive oxygen species under mild natural light, which could react rapidly with the luminol anion radical and result in direct CL emission. The sensitive plate for DA was developed based on its inhibiting effect on CL intensity, and the linear range between CL intensity and DA concentration was 100 nM-1000 μM with a detection limit of 16.7 μM (S/N = 3). This study successfully achieved a stable reactant that can directly trigger the CL of luminol without the need for additional oxidizing agents under mild natural light and offers new possibilities for photoinduced amplification technology.
Collapse
Affiliation(s)
- Chengzhuo Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Xu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xiong
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yarui Wang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Silong Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Zesen Shang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huasheng Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310007, P. R. China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310007, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310007, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Kapoor A, Raghunathan M, Kumar P, Tripathi SC, Haque S, Pal DB. Molecularly Imprinted Polymers Coupled with Cellulosic Paper-Based Analytical Devices for Biosensing Applications. Indian J Microbiol 2025; 65:69-91. [PMID: 40371017 PMCID: PMC12069792 DOI: 10.1007/s12088-024-01300-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2025] Open
Abstract
Molecularly imprinted polymers (MIPs) function as versatile and highly selective elements in biosensing, mimicking biomolecular receptors and effectively interacting with target analytes within complex matrices. Integrating MIPs with paper-based analytical devices (PADs) allows for rapid, convenient, and cost-effective deployment of molecular imprinting technologies. This review provides an overview of the advances in the fabrication process of MIP-PADs and explores their diverse applications, highlighting their utility in on-site detection using various detection mechanisms such as colorimetric, fluorometric, chemiluminescent electrochemical, photoelectrochemical, and surface enhanced Raman spectroscopy. The fabrication process involves synthesizing MIPs tailored for specific target analytes and incorporating them into cellulosic paper-based analytical devices, resulting in MIP-PADs that offer advantages such as affordability, portability, and disposability. Applications of MIP-PADs extend across environmental monitoring, food safety, and biomedical analysis, demonstrating exceptional selectivity and sensitivity toward diverse biomolecules, pathogens, and small molecules. Their affordability and user-friendly design make them particularly suitable for resource-limited settings. Lastly, the challenges and future prospects of MIP-PAD technologies are presented in the context of real-world applications.
Collapse
Affiliation(s)
- Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh India
| | - Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203 India
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203 India
| | - S. C. Tripathi
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh 281406 India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142 Jazan, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh India
| |
Collapse
|
7
|
Wang Z, Zhu X, Jiang T, Sun Q, Zhao X, Suryoprabowo S, Liu S, Hu Q. Alkaline Phosphatase-Regulated DNAzyme Cleavage Coupled with CRISPR/Cas12a for Quantitative Detection of Deoxynivalenol in Agricultural Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4904-4912. [PMID: 39937074 DOI: 10.1021/acs.jafc.4c10262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Sensitive and simplified detection of a mycotoxin such as deoxynivalenol (DON) is crucial for food safety. In recent years, the CRISPR/Cas technology has demonstrated significant potential in detecting non-nucleic acids. Herein, we present a triple enzyme-assisted fluorescence immunoassay (TEFIA) that integrates alkaline phosphatase (ALP)-regulated DNAzyme cleavage with the CRISPR/Cas12a assay for the accurate detection of mycotoxin. By employing this method for detecting DON, we exhibit a low detection limit of 0.05 ng/mL and a satisfactory linear response between 0.1 and 10 ng/mL. This performance exceeds the conventional sensitivity levels found in traditional methods. TEFIA also demonstrates a good correlation with ic-ELISA for testing DON in real samples. Thus, it offers a robust and efficient detection platform for DON in complex matrices. Furthermore, TEFIA can be employed to identify various targets of interest by merely altering the antibody-antigen pairs, indicating its great potential in a wide range of applications.
Collapse
Affiliation(s)
- Zhongxing Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaoyan Zhu
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Ting Jiang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Qinglei Sun
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xinxin Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Steven Suryoprabowo
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Shuhua Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
8
|
Gao X, Bai R, Yang J, Luo S, Yuan H, Wang L, Fu Z. D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode. Anal Chim Acta 2025; 1339:343606. [PMID: 39832874 DOI: 10.1016/j.aca.2024.343606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers. As one of high-performance chirality selection components, chiral metal-organic frameworks (CMOFs) are bringing new opportunities for the establishment of chiral discrimination platform with merits of high enantioselectivity, low cost, and facile operation. RESULTS By introducing D-Histidine as a modulator, a CMOFs material termed as D-Histidine-ZIF-8 was prepared on chitosan (CS) with an in-situ growth protocol. The positively charged CMOFs/CS hybrids were adsorbed onto negatively charged polystyrene microplate via electrostatic interaction to form a chiral discrimination interface. This interface can effectively adsorb 3,4-Dihydroxyphenylalanine (DOPA) enantiomers, and the adsorbed molecules can be quantitated based on their quenching behavior on the chemiluminescent (CL) signal of Co2+-catalyzed luminol-H2O2 reaction. The results of contact angle measurements and density functional theory calculations imply that CMOFs/CS have stronger affinity towards D-isomer than L-isomer. Thus the sensitivity for quantifying D-isomer is 2.93 times of that for L-isomer, demonstrating the enantioselectivity of the CMOFs/CS hybrids. The content of D-isomer in nonracemic mixtures of DOPA enantiomers and real samples were assayed with satisfactory results, showing the practicality of this method. The strategy also exhibited discrimination capacity for many other chiral molecules. SIGNIFICANCE The CMOFs/CS hybrids prepared with in-situ growth protocol display satisfactory selectivity for discriminating enantiomers. Due to usage of multi-well microplate platform, the method is anticipated to achieve high-throughput assay in the future work. This study paves a pathway for facile chiral discrimination based on a chemiluminescence quenching mode to meet the demand of drug development and manufacture.
Collapse
Affiliation(s)
- Xinyue Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ruining Bai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Hongwei Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Mao F, Yang X, He Z, Sun Z, Zhang S, Liu X. Mimotope peptides for nanobodies: A nontoxic alternative to ochratoxin A and its application in chemiluminescence immunoassays for analysis of pepper samples. Food Chem 2025; 465:142061. [PMID: 39571434 DOI: 10.1016/j.foodchem.2024.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Ochratoxin A (OTA) is a common food contaminant and poses a significant threat to human health, which requires rigorous monitoring. Mimotope peptides (MPs) are commonly used as non-toxic alternatives to toxic small molecules in eco-friendly immunoassays. Herein, with an anti-OTA nanobody as the target protein, cyclic 7-mer MPs of OTA were screened using phage display and immunomagnetic separation. The phage MPs (PMP) with the highest sensitivity and its alkaline phosphatase-tagged MP fusion (ALP-MP) were used to develop a PMP-based chemiluminescent immunoassay (PMP-CLIA) and an ALP-MP-based CLIA (AMP-CLIA). After optimization, PMP-CLIA and AMP-CLIA exhibited a limit of detection of 0.128 ng/mL and 0.232 ng/mL. Good accuracy and selectivity were confirmed for both CLIAs by recovery experiments and cross-reactions. Moreover, they were validated by high performance liquid chromatography in detecting real pepper samples. Thus, two CLIAs based on the nanobody and MPs were demonstrated as reliable tools for monitoring OTA in pepper.
Collapse
Affiliation(s)
- Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Li X, Lv H, Luo W, Yang W, Kong L, Zhu Q, Zeng L. Recent advances in detection techniques for vitamin analysis: A comprehensive review. Food Chem X 2025; 26:102226. [PMID: 39995404 PMCID: PMC11848456 DOI: 10.1016/j.fochx.2025.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Vitamins are vital micronutrients that play critical roles in human growth and development. However, vitamins are highly susceptible to degradation by light, heat, oxygen, and interactions with other food components during processing and storage. Additionally, insufficient intake or malabsorption can lead to vitamin deficiencies, resulting in various diseases. Since the human body cannot synthesize most vitamins, they must be sourced through diet or supplementation. Therefore, vitamin analysis is critical for meeting human nutritional needs and ensuring quality control. In recent years, significant advancements have been made in vitamin analysis. Here, we propose a comprehensive and critical evaluation of detection methods for water- and fat-soluble vitamins that have been studied over the past five years, including microbiology-, spectroscopy-, liquid chromatography-mass spectrometry-, electrochemistry-, sensor-, and immunoassay-based analysis techniques. Notably, immunoassays are highlighted for their simplicity, affordability, and high sensitivity. Finally, the current challenges and prospects of vitamin analysis are discussed.
Collapse
Affiliation(s)
- Xiangrui Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Huan Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wencan Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - WenJia Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Linghong Kong
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Zeng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Wang M, Sun HN, Liu XY, Liu M, Li SS. A sensitive electrochemical biosensor based on Pd@PdPtCo mesoporous nanopolyhedras as signal amplifiers for assay of cardiac troponin I. Bioelectrochemistry 2025; 161:108838. [PMID: 39442495 DOI: 10.1016/j.bioelechem.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Cardiac troponin I (cTnI) has been widely used in clinical diagnosis of acute myocardial infarction (AMI). Herein, a sensitive electrochemical biosensor for cTnI analysis was designed, in which the simple synthesized Pd@PdPtCo mesoporous nanopolyhedras (MNPs) were utilized as signal amplifiers. The mesoporous polyhedral structure of Pd@PdPtCo MNPs endows them with more specific surface area and more active sites, as well as the synergistic effect between multiple metal elements, all of which increase the electrocatalytic performance of Pd@PdPtCo MNPs in efficiently oxidizing hydroquinone (HQ) to benzoquinone (BQ). Experimental results showed that Pd@PdPtCo MNPs had better performance in oxidation of HQ to BQ compared with their corresponding monometallic and bimetallic nanomaterials. With the aid of the interaction between antigens and antibodies, the peak current of HQ to BQ showed an upward trend with increasing concentration of cTnI, thus the quantitative detection of cTnI could be achieved. Under optimal conditions, the biosensor prepared in this work has a wider linear range (1.0 × 10-4-200 ng mL-1) and a lower detection limit (0.031 pg mL-1) than other sensors reported in literatures, coupled by good stability and high sensitivity. More importantly, it also performed well in complex serum environment, proving that the electrochemical sensor has a practical application potential in this field.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xing-Yu Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
12
|
Duan K, Xiang Y, Deng Y, Chen J, Liu P. Detection of serum CC16 by a rapid and ultrasensitive magnetic chemiluminescence immunoassay for lung disease diagnosis. Clin Chem Lab Med 2025; 63:193-207. [PMID: 39072498 DOI: 10.1515/cclm-2024-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES It has been reported that serum Clara cell secreted protein 16 (CC16) is a potential biomarker for lung injury diseases, but currently, there is no other method that is faster, more accurate, or more sensitive being applied in clinical practice apart from ELISA. The current study was designed to established a magnetic nanoparticles chemiluminescence immunoassay (MNPs-CLIA) for highly sensitive automated detection of serum Clara cell secretory protein 16 (CC16), and validated its diagnostic performance for lung disease. METHODS The study included the expression of CC16 recombinant protein, the preparation and screening of its monoclonal antibody (MAb), as well as the construction, optimization and analytical evaluation of the MNPs-CLIA method. The clinical application value of this method was investigated by detecting CC16 level in 296 serum samples. RESULTS The linear range of the MNPs-CLIA assay system was 0.2-50 ng/mL, and the limit of detection was 0.037 ng/mL. Performance parameters such as specificity, recovery rate, and precision can meet the industry standards of in vitro diagnostic reagents. The established method reveals consistent results with ELISA (R2=0.9962) currently used clinically, and it also exhibits satisfactory diagnostic efficacy of silicosis, chronic obstructive pulmonary disease (COPD), and pulmonary sarcoidosis, with areas under the curve (AUC) of 0.9748, 0.8428 and 0.9128, respectively. CONCLUSIONS Our established MNPs-CLIA method has the advantages of automation, high throughput, rapidity, and simplicity, and can be promoted for widely popularized in clinical applications. MNPs-CLIA detection of serum CC16 has efficient diagnostic potentiality for predicting and diagnosing lung diseases.
Collapse
Affiliation(s)
- Kaili Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| | - Yu Xiang
- Department of Laboratory Medicine, 12550 The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yilong Deng
- Bioscience (Tianjin) Diagnostic Technology Co., Ltd, Tianjin, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| | - Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| |
Collapse
|
13
|
Chu X, Ma D, Yu J, Zhou J, Miao M, Hu S, Zhu S, Liu Q, Wang Z. Enhanced Protein Immobilization Capacity through Grafting of Poly(sodium methacrylate) onto Magnetic Bead Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1078-1085. [PMID: 39744781 DOI: 10.1021/acs.langmuir.4c04393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study aims to improve the signal-to-noise ratio (SNR) of chemiluminescence immunoassay (CLIA) by increasing the amount of protein immobilized on the surface of the magnetic bead (MB). Proteins are macromolecules with three-dimensional structures, and merely increasing the density of functional groups on the two-dimensional surface of the MB cannot significantly enhance protein immobilization. Therefore, we grafted spatially extended functional polymer to not only increase the density of functional groups on the MB surface but also expand their distribution in three-dimensional space, ultimately increasing protein immobilization. We synthesized poly(sodium methacrylate) (P-COONa) using atom transfer radical polymerization (ATRP) and examined its grafting density and behavior on the MB surface via nuclear magnetic resonance (NMR). Dynamic light scattering (DLS) results showed that grafting P-COONa increased the hydrodynamic radius of MBs, indicating its spatial extension. Next, we investigated the effect of P-COONa grafting on the immobilization of bovine serum albumin (BSA). Experimental results demonstrated that P-COONa grafting increased BSA immobilization from 19.9 to 42.92 mg/g. Finally, we evaluated the impact of P-COONa grafting on the SNR by detecting the D-dimer biomarker using CLIA. The results indicated that P-COONa grafting increased the low-value-to-background and high-value-to-background ratios by 4.21× and 17.17×, respectively. This study demonstrates that grafting spatially extended P-COONa increases protein immobilization on the MB surface, significantly improving the SNR of CLIA.
Collapse
Affiliation(s)
- Xianfeng Chu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Di Ma
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Junpeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Miao Miao
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Shaojun Hu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Shihong Zhu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| |
Collapse
|
14
|
Ao H, Xiao W, Hu W, Wu J, Ju H. DNA Conformation-Regulated Hemin Switch for Lab-on-Chip Chemiluminescent Detection of an Antibody Secreted from Hybridoma Cells. Anal Chem 2024; 96:18502-18509. [PMID: 39503400 DOI: 10.1021/acs.analchem.4c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
This work designed a DNA conformation-regulated hemin switch for rapid chemiluminescent (CL) detection of a monoclonal antibodies. This switch was performed with an affinity probe and an inhibition probe, which were conveniently prepared by hybridizing hemin-labeled DNA1 with KHL peptide-labeled DNA2 and binding biotin-labeled DNA3 to streptavidin, respectively. In the absence of the target antibody, streptavidin-DNA3 could hybridize with hemin-DNA1/KHL-DNA2 to release KHL-DNA2, which led to the loss of hemin activity due to the affinity hindrance of streptavidin-DNA3. After the KHL peptide was recognized by the target antibody, the strand replacement hybridization could be inhibited by the bound antibody, which retained the high catalytic activity of hemin overhung on the antibody-bound affinity probe for a CL reaction, leading to a "signal-on" process for CL antibody detection. Using a KHL-specific antibody, anti-proprotein convertase subtilisin/kexin type 9 antibody (PCSK9-Ab), as a target model and common L012-1,2,4-triazole-H2O2 CL system, the designed switch showed a detection range of 10 ng mL-1 to 1 μg mL-1 with a detection limit of 4.16 ng mL-1 (56.2 pM) and a short analytical time of 6.5 min. The proposed quick method could simply be used for lab-on-chip CL detection of PCSK9-Ab in situ-secreted from PCSK9-6E3 hybridoma cells, which showed an accuracy of 90.2% compared with the statistical results from general fluorescence imaging, providing a potential technique for screening specific hybridoma cells.
Collapse
Affiliation(s)
- Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wencheng Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenrui Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Wang C, Rao J, Fang Z, Zhang H, Yin J, Li T, Zhang C. Evaluation of the MAGLUMI HIV Ab/Ag combi test for the detection of HIV infection. Virol J 2024; 21:290. [PMID: 39538348 PMCID: PMC11562348 DOI: 10.1186/s12985-024-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection screening and diagnosis are critical to control the HIV epidemic. Testing for anti-HIV antibodies (Ab) and antigens (Ag) in blood samples is the first step to screen people who have been potentially exposed to the virus. This study aimed to evaluate the performance of the MAGLUMI HIV Ab/Ag Combi for detection of HIV antibodies and antigens. METHODS We used residual samples to assess the diagnostic specificity and sensitivity of the MAGLUMI HIV Ab/Ag Combi retrospectively. All samples that met the test criteria were tested with the MAGLUMI HIV Ab/Ag Combi according to manufacturer's instruction. Results of the MAGLUMI HIV Ab/Ag Combi were compared with the Architect HIV Ag/Ab Combo test. RESULTS The specificity of the MAGLUMI HIV Ab/Ag Combi was 99.85% in 5,057 unselected blood donors and 100.00% in 213 hospitalized patient samples, respectively. The sensitivity of the Test in 614 HIV-1 Ab, HIV-1 Ag or HIV-2 Ab positive samples was 100.00%. Seroconversion sensitivity from results of 30 panels was comparable between the MAGLUMI HIV Ab/Ag Combi and the Architect assay. CONCLUSIONS The reactivity of the MAGLUMI HIV Ab/Ag Combi test is comparable to the Architect HIV Ag/Ab Combo assay.
Collapse
Affiliation(s)
- Chunling Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jie Rao
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Zhonggang Fang
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Hongwei Zhang
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Jun Yin
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Tinghua Li
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China.
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
16
|
Zhu S, Du D, Zhao Z, Chu X, Su D, Yu S, Tao T, Jiang Y, Wang Z. Fabrication of functional interface on magnetic beads via various amino acids and their application in chemiluminescent immunoassay as carrier. Colloids Surf B Biointerfaces 2024; 245:114364. [PMID: 39527882 DOI: 10.1016/j.colsurfb.2024.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Magnetic polymer microspheres with superparamagnetism, high specificity, and monodispersity play a crucial role in the field of in vitro diagnostics. However, the surface modification process of magnetic beads is often complex, and it remains a significant challenge to prepare high-performance magnetic beads easily. To overcome these drawbacks, herein we fabricated functional interface on magnetic bead with the various amino acid via the ring-opening reaction of amino acids with epoxy groups, with attempt to produce carboxylated magnetic beads (MPS-GA) in a convenient way. Results indicate that when compared to other amino acids, the phenylalanine magnetic beads (MPS-GA1) developed in this study exhibit strong adsorption for mouse immunoglobulin (IgG), streptavidin (SA), and protamine (PA), with an IgG adsorption capacity of 53.5 μg/mg and a coupling capacity of 52.5 μg/mg. It is found that electrostatic forces and hydrophobic interactions are key factors influencing biomolecular interactions. Additionally, these magnetic beads can generate strong chemiluminescent signals, significantly reducing background levels by up to 99.7 %. Therefore, the magnetic beads proposed in this paper can serve as carriers for chemiluminescent immunoassay (CLIA), providing new insights into the synthesis of high-quality magnetic bead.
Collapse
Affiliation(s)
- Shihong Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Daohang Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhimin Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xianfeng Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Daoxiang Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuli Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ting Tao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
17
|
Wang X, He L, Li Y, Guo J, Wang C. A chemiluminescence immunosensor for biomarker detection based on boronic acid-modified magnetic composite microspheres. J Mater Chem B 2024; 12:10285-10293. [PMID: 39301709 DOI: 10.1039/d4tb01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
High-sensitivity detection of biomarkers in biological samples is crucial for the early diagnosis and treatment of diseases. In this paper, a versatile and flexible immobilization technique based on the specific affinity interaction between boronic acid and cis-diol groups of antibodies was developed for biomarker detection. As a model, the boronic acid-modified immunomagnetic beads were used for facile and quick immobilization of the alpha-fetoprotein (AFP) antibody due to the specific affinity interactions. Based on this new class of immunomagnetic beads, the chemiluminescence immunosensor could efficiently detect the biomarker of AFP. Under optimal conditions, the limit of detection (LOD) is as low as 8 fM (S/N = 3), showcasing superior sensitivity and detection specificity for AFP. Subsequently, the system was successfully applied to the detection of AFP in fetal bovine serum samples, and the average recovery rate is greater than 95%. Its performance surpassed that of commercial immunomagnetic beads, showcasing the potential application of this new strategy for bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Leyi He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Yaoxia Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Chen M, Xie Y, Li M. Molecular-Sieving Label-Free Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Trace Small-Molecule Biomarkers in Clinical Samples. NANO LETTERS 2024; 24:11520-11528. [PMID: 39234992 DOI: 10.1021/acs.nanolett.4c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Small-molecule biomarkers are ubiquitous in biological fluids with pathological implications, but major challenges persist in their quantitative analysis directly in complex clinical samples. Herein, a molecular-sieving label-free surface-enhanced Raman spectroscopy (SERS) biosensor is reported for selective quantitative analysis of trace small-molecule trimetazidine (TMZ) in clinical samples. Our biosensor is fabricated by decorating a superhydrophobic monolayer of microporous metal-organic frameworks (MOF) shell-coated Au nanostar nanoparticles on a silicon substrate. The design strategy principally combines the hydrophobic surface-enabled physical confinement and preconcentration, MOF-assisted molecular enrichment and sieving of small molecules, and sensitive SERS detection. Our biosensor utilizes such a "molecular confinement-and-sieving" strategy to achieve a five orders-of-magnitude dynamic detection range and a limit of detection of ≈0.5 nM for TMZ detection in either urine or whole blood. We further demonstrate the applicability of our biosensing platform for longitudinal label-free SERS detection of the TMZ level directly in clinical samples in a mouse model.
Collapse
Affiliation(s)
- Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
19
|
Mostafa IM, Abdussalam A, Liu H, Dong Z, Xia S, Alboull AMA, Lou B, Xu G. Signal-On Detection of Dopamine and Tyrosinase Using Tris(hydroxypropyl)phosphine as a New Lucigenin Chemiluminescence Coreactant. Anal Chem 2024; 96:14741-14748. [PMID: 39234648 DOI: 10.1021/acs.analchem.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Dopamine (DA) is a very imperative neurotransmitter in our body, since it contributes to several physiological processes in our body, for example, memory, feeling, cognition, cardiovascular diseases, and hormone secretion. Meanwhile, tyrosinase is a critical biomarker for several dangerous skin diseases, including vitiligo and melanoma cancer. Most of the reported chemiluminescent (CL) methods for monitoring DA and tyrosinase are signal-off biosensors. Herein, we introduce a new chemiluminescent "signal-on" system, lucigenin-tris(hydroxypropyl)phosphine (THPP), for the selective determination of DA and tyrosinase. THPP is well known as a versatile and highly water-soluble sulfhydryl-reducing compound that is more highly stable against air oxidation than common disulfide reductants. By employing THPP for the first time as an efficient lucigenin coreactant, the lucigenin-THPP system has shown a high CL response (approximately 16-fold) compared to the lucigenin-H2O2 classical CL system. Surprisingly, DA can remarkably boost the CL intensity of the lucigenin-THPP CL system. Additionally, tyrosinase can efficiently catalyze the conversion of tyramine to DA. Therefore, lucigenin-THPP was employed as an ultrasensitive and selective signal-on CL system for the quantification of DA, tyrosinase, and THPP. The linear ranges for the quantification of DA, tyrosinase, and THPP were 50-1000 nM, 0.2-50 μg/mL, and 0.1-800 μM, respectively. LODs for DA and tyrosinase were estimated to be 24 nM and 0.18 μg/mL, respectively. Additionally, the CL system has been successfully employed for the detection of tyrosinase in human serum samples and the assay of DA in human serum samples as well as in dopamine injection ampules with excellent obtained recoveries.
Collapse
Affiliation(s)
- Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Department of Chemistry, College of Natural and Pharmaceutical Sciences, Bayero University, PMB 3011, Kano 700006, Nigeria
| | - Hongzhan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhiyong Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ala'a Mhmoued Abdllh Alboull
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
20
|
Zhu J, Xu L, Zhang J, Wang Y, Yu H, Hao C, Cheng G, Liu D, Chen M. High catalytic nickel-platinum nanozyme enhancing colorimetric detection of Salmonella Typhimurium in milk. J Dairy Sci 2024:S0022-0302(24)01073-7. [PMID: 39154726 DOI: 10.3168/jds.2024-25111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Colorimetric qualitative and sensitive quantitative detection of Salmonella Typhimurium (S. Typhimurium) holds significant importance for ensuring food safety and preventing foodborne illnesses. In the study, an ultra-high catalytic activity and biocompatible nickel-platinum nanoparticle (NiPt NP) nanozyme is successful synthesized to prepare a NLISA strategy for the detection of S. Typhimurium. The synthesized NiPt NPs exhibit high oxidase-like catalytic efficiency, with a Michaelis constant (Km) of 0.493 mM, similar to that of natural horseradish peroxidase (HRP). The maximal reaction velocity (Vmax) was determined to be 1.97 × 10-7 M·s-1 exhibiting a 1.97-fold higher than that of the HRP (1.0 × 10-7 M·s-1). Meanwhile, the antibody employed in this NiPt NPs-based NLISA exhibits exceptional capture efficacy, generating a stable immune complex with S. Typhimurium. The NiPt NPs-based NLISA demonstrates sensitivity, specificity, convenience, and cost-efficiency for the detection of S. Typhimurium. Under optimal conditions, this NiPt NPs-based NLISA demonstrates a quantitative range of 103∼106 cfu/mL with a detection limit as low as 103 cfu/mL. A single-blind experimental testing detects different concentrations of S. Typhimurium spiked skim milk, indicating the application potential of the proposed NLISA in real samples. In all, this research provides novel insights into the synthesis of nanozymes with excellent catalytic activity and their applications in S. Typhimurium biosensing.
Collapse
Affiliation(s)
- Jie Zhu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Lingyue Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Junlin Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yuxin Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Hongyue Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Chuanchuan Hao
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Guohui Cheng
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, P.R. China.
| |
Collapse
|
21
|
Zhong J, Zhu Y, Xing M, Li M, Wu R, Zhang L, Guan W. Enhanced chemiluminescence resonance energy transfer using surfactant-modified AIE carbon dots. LUMINESCENCE 2024; 39:e4827. [PMID: 39048529 DOI: 10.1002/bio.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Chemiluminescence resonance energy transfer (CRET) efficiency can be enhanced by confining CRET donors and acceptors within nanoscale spaces. However, this enhanced efficiency is often affected by uncertainties stemming from the random distribution of CRET donors and acceptors in such confined environments. In this study, a novel confined nanospace was created through the surfactant modification of carbon dots (CDs) exhibiting aggregation-induced emission (AIE) characteristics. Hydrophobic CRET donors could be effectively confined within this nanospace. The distance between the CRET donors and acceptors could be controlled by anchoring the AIE-CDs as the CRET acceptors, resulting in significantly improved CRET efficiency. Furthermore, this AIE-CDs-based CRET system was successfully applied to the detection of hydrogen peroxide (H2O2) in rainwater, showcasing its potential for practical applications.
Collapse
Affiliation(s)
- Jinpan Zhong
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing, China
| | - Yangwen Zhu
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing, China
| | | | - Mengyan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Li Zhang
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
23
|
Bartkova S, Zapotoczna M, Sanka I, Scheler O. A Guide to Biodetection in Droplets. Anal Chem 2024; 96:9745-9755. [PMID: 38842026 PMCID: PMC11190884 DOI: 10.1021/acs.analchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Droplet-based methods for optical biodetection enable unprecedented high-throughput experimental parameters. The methods, however, remain underused due to the accompanying multidisciplinary and complicated experimental workflows. Here, we provide a tutorial for droplet-based optical biodetection workflows with a focus on the key aspect of label selection. By discussing and guiding readers through recent state-of-the-art studies, we aim to make droplet-based approaches more accessible to the general scientific public.
Collapse
Affiliation(s)
- Simona Bartkova
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Marta Zapotoczna
- Faculty
of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Immanuel Sanka
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ott Scheler
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
24
|
Ren X, Tian Z, Gao X, Ai Y, Li M, Zhang B, Zou G. Finely-Tuning Chemiluminescent Color of CdTe Nanocrystals and Its Application for Near-Infrared Semi-Automatic Immunoassay. Anal Chem 2024; 96:7643-7650. [PMID: 38708712 DOI: 10.1021/acs.analchem.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhijian Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
25
|
Li D, Wu A, Liu L, Kuang H, Xu C, Wu X. An immunochromatographic strip sensor for rapid and sensitive detection of candesartan, olmesartan medoxomil, and irbesartan in herbal beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2359-2367. [PMID: 38567492 DOI: 10.1039/d4ay00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sartans, as a class of antihypertensive drugs, pose a threat to human health when illegally added to herbal beverages. It is crucial to detect sartans in herbal beverages. We have developed a highly sensitive monoclonal antibody against candesartan (CAN), olmesartan medoxomil (OLM), and irbesartan (IRB), with 50% inhibitory concentrations (IC50) that were obtained via indirect enzyme-linked immunosorbent assay (ic-ELISA) as 0.178 ng mL-1, 0.185 ng mL-1, and 0.262 ng mL-1 against CAN, OLM, and IRB, respectively. Based on this monoclonal antibody, we developed a rapid screening method for CAN, OLM, and IRB in herbal beverage samples using an immunochromatographic assay (ICA) strip. Test for 15 minutes after simple and rapid sample pre-treatment and the results of this method can be obtained through naked eye observation. The detection limits (LODs) of the ICA strip for CAN, OLM, and IRB in herbal beverage samples are lower than 0.15 ng mL-1, and the results of the ICA strip and ic-ELISA are consistent in spiked samples and recovery experiments. Therefore, this method can quickly, efficiently, and reliably achieve high-throughput on-site rapid detection of illegally added CAN, OLM, and IRB in herbal beverages.
Collapse
Affiliation(s)
- Dingyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
26
|
Zeng X, Li J, Xu L, Deng A, Li J. Development of a flow injection chemiluminescence immunoassay based on DES-mediated CuCo 2O 4 nanoenzyme for ultrasensitive detection of zearalenone in foods. Mikrochim Acta 2024; 191:175. [PMID: 38436786 DOI: 10.1007/s00604-024-06242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for 15 repetitive injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
27
|
Ji Y, Heidari A, Nzigou Mombo B, Wegner SV. Photoactivation of LOV domains with chemiluminescence. Chem Sci 2024; 15:1027-1038. [PMID: 38239695 PMCID: PMC10793642 DOI: 10.1039/d3sc04815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
Collapse
Affiliation(s)
- Yuhao Ji
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| |
Collapse
|
28
|
Lei J, Zhang L, Li M, Liu W, Jin Y, Li B. Surface Oxygen Vacancy-Rich Co 3O 4 Nanowires as an Effective Catalyst of Luminol-H 2O 2 Chemiluminescence for Sensitive Immunoassay. Anal Chem 2023; 95:17937-17944. [PMID: 37991222 DOI: 10.1021/acs.analchem.3c04409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oxygen vacancy is one intrinsic defect in metal oxide materials. Interestingly, we herein found that the surface oxygen vacancy can significantly enhance the catalytic activity of Co3O4 nanowires in the luminol-H2O2 chemiluminescence (CL) reaction. 0.1 ng/mL Co3O4 nanowires containing 51.3% surface oxygen vacancies possessed ca. 2.5-fold catalytic activity of free Co2+ (the best metal ionic catalyst for the luminol-H2O2 CL reaction). The superior catalytic efficiency is attributed to the enhanced adsorption of H2O2 by surface oxygen vacancies, which in turn accelerates the cleavage of O-O bonds and generates •OH radicals. More importantly, the surface oxygen vacancy-rich Co3O4 nanowires retained about 90% catalytic activity after modification with antibodies. The surface oxygen vacancy-rich Co3O4 nanowires were used to label the secondary antibody, and one sandwich-type CL immunoassay of carcinoembryonic antigen was established. The detection limit was 0.3 ng/mL with a linear range of 1-10 ng/mL. This proof-of-concept work proves that surface oxygen vacancy-rich Co3O4 nanowires are suitable for labeling biomolecules in CL bioanalysis and biosensing.
Collapse
Affiliation(s)
- Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Mei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
29
|
Shi F, Peng M, Zhu H, Li H, Li J, Hu X, Zeng J, Yang Z. Functional Zonation Strategy of Heterodimer Nanozyme for Multiple Chemiluminescence Imaging Immunoassay. Anal Chem 2023; 95:14516-14520. [PMID: 37672313 DOI: 10.1021/acs.analchem.3c03702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Although nanozymes with intrinsic enzyme-like characteristics have aroused great interest in the biosensing field, the challenge is to keep high enzyme-like activity of the nanozyme after the modification of biomolecules onto nanozymes. Herein, a functional zonation strategy of a heterodimer nanozyme was proposed to tackle the challenge and further construct a multiple chemiluminescence (CL) imaging immunoassay. Here Fe3O4-Au as a heterodimer nanozyme model was divided into two zones, in which Fe3O4 nanoparticles (NPs) were regarded as a nanozyme zone and AuNPs were defined as an antibody immobilization zone. A signal amplification probe (Fe3O4-Au-Ab2) was prepared by modifying the secondary antibody (Ab2) on AuNPs of the Fe3O4-Au heterodimer owing to the Au-S bond. The exposed Fe3O4 of the Fe3O4-Au-Ab2 probe shows very high peroxidase-like activity and can efficiently catalyze H2O2-luminol to produce strong CL imaging signals for multiple antigens detection. Using chicken interleukin-4 (ChIL-4) and chicken gamma interferon (ChIFN-γ) as models, the proposed CL imaging immunoassay shows wide linear ranges (0.005-0.10 ng/mL for both ChIL-4 and ChIFN-γ) and low detection limits (0.58 pg/mL for ChIL-4, 0.47 pg/mL for ChIFN-γ) with the characteristics of high sensitivity, high specificity, and good stability. This work provides a promising functional zonation concept for nanozymes to construct new types of nanozyme probes for immunoassay of multiple biomolecules.
Collapse
Affiliation(s)
- Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Maoying Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Haibing Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P.R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| |
Collapse
|
30
|
Hu X, Abbasi R, Wachsmann-Hogiu S. Microfluidics on lensless, semiconductor optical image sensors: challenges and opportunities for democratization of biosensing at the micro-and nano-scale. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3977-4008. [PMID: 39635640 PMCID: PMC11501743 DOI: 10.1515/nanoph-2023-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 12/07/2024]
Abstract
Optical image sensors are 2D arrays of pixels that integrate semiconductor photodiodes and field effect transistors for efficient photon conversion and processing of generated electrons. With technological advancements and subsequent democratization of these sensors, opportunities for integration with microfluidics devices are currently explored. 2D pixel arrays of such optical image sensors can reach dimensions larger than one centimeter with a sub-micrometer pixel size, for high spatial resolution lensless imaging with large field of view, a feat that cannot be achieved with lens-based optical microscopy. Moreover, with advancements in fabrication processes, the field of microfluidics has evolved to develop microfluidic devices with an overall size below one centimeter and individual components of sub-micrometer size, such that they can now be implemented onto optical image sensors. The convergence of these fields is discussed in this article, where we review fundamental principles, opportunities, challenges, and outlook for integration, with focus on contact-mode imaging configuration. Most recent developments and applications of microfluidic lensless contact-based imaging to the field of biosensors, in particular those related to the potential for point of need applications, are also discussed.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | |
Collapse
|
31
|
Qin N, Liu J, Li F, Liu J. Recent Advances in Aptasensors for Rapid Pesticide Residues Detection. Crit Rev Anal Chem 2023; 54:3592-3613. [PMID: 37708008 DOI: 10.1080/10408347.2023.2257795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Pesticides are applied widely to increase agricultural output and quality, however, this practice results in residual issues that not only harm the environment but also put people and animals' lives and health at risk. As a result, it is critical to find pesticide residues in a variety of sources, including crops, water supplies, and soil. Aptamers are more flexible in their synthesis and modification, have a high level of specificity, are inexpensive, and have good stability compared to conventional detection methods. They have therefore attracted a lot of interest in the industry. This study reviews the most recent aptasensor advancements in the detection of pesticide residues. Firstly, aptamers specifically binding to many pesticides are summarized. Secondly, the combination of aptasensors with colorimetric, fluorescent, surface enhanced Raman spectroscopy (SERS), resonance Light Scattering (RLS), chemiluminescence (CL), electrochemical, and electrochemiluminescence (ECL) technologies are systematically introduced, and their advantages and disadvantages are expounded. Importantly, the aptasensors for the detection of various pesticides (organochlorine, organophosphorus, neonicotinoids, carbamates, and pyrethroids) that have been developed so far are systematically analyzed and discussed. Finally, the furture prospects and challenges of the aptasensors are highlighted. It is expected to offer suggestions for the later creation of novel, highly effective and sensitive aptasensors for the detection of pesticide residues.
Collapse
Affiliation(s)
- Na Qin
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Jinfeng Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
32
|
Jiang T, Dai L, Lou Y, Wang H, Gao Z, Wu D, Ma H, Wei Q. Hierarchically Structured and Highly Dispersible MOF Nanozymes Combining Self-Assembly and Biomineralization for Sensitive and Persistent Chemiluminescence Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42404-42412. [PMID: 37642196 DOI: 10.1021/acsami.3c10776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal-organic frameworks (MOF) are promising candidates for the construction of artificial nanozymes and have found applications in many fields. However, the preparation of nanosized MOF materials with high performance and good dispersibility is still a big challenge and is in great demand as signal labels for immunoassays. In this work, hierarchically structured and highly dispersible MOF nanoparticles were facilely prepared in a one-pot method. Self-assembled micelles from PEGylated hematin were used as structured templates to mediate the formation of zeolitic imidazole framework-8 (ZIF-8) nanoparticles in aqueous solution. The encapsulation of micelles in ZIF-8 frameworks produces well-dispersed nanoparticles and generates dual-confinement effects for catalytic hematin. Owing to the hierarchical structures, the formed MOF nanozymes show enhanced peroxidase-like activity and enable persistent chemiluminescence behaviors for the luminol system. Sandwich-type chemiluminescence immunoassays for carcinoembryonic antigen (CEA) were proposed using MOF nanozymes as signal labels, and good analytical performances were achieved. The combination of self-assembly and biomineralization may open new avenues for the development of MOF nanomaterials.
Collapse
Affiliation(s)
- Tong Jiang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanan Lou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Zhongfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
34
|
Ren X, Gao X, Zou G. Enhanced Photon Emission of Chemiluminescent Luminophore for Ultra-Fast and Semi-Automatic Immunoassay toward Single Molecule Detection. Anal Chem 2023; 95:8070-8076. [PMID: 37167106 DOI: 10.1021/acs.analchem.3c01060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2-4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
35
|
Song D, Xu W, Yang R, Han X, Zhuo Y, Liu J, Long F. Universal and rapid detection of atrazine and bisphenol A using a reusable optical fiber chemiluminescent biosensor. Talanta 2023; 255:124252. [PMID: 36630785 DOI: 10.1016/j.talanta.2023.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Timely and accurately detection of small molecule pollutants is quite necessary to control environmental pollution and reduce harmfulness. Herein, a reusable optical fiber chemiluminescent biosensor (ROFC) was proposed for universal and rapid detection of two representative pollutants, pesticide atrazine (ATZ) and endocrine disruptor bisphenol A (BPA). The optical fiber modified with hapten-protein conjugates was regarded as both bio-probe and chemiluminescence signal transmission element, which effectively improved the light transmission efficiency and signal-to-noise ratio of the system. High-sensitive chemiluminescence signal detection is realized with a miniaturized ultrasensitive photodiode detector. Good regeneration performance of bio-probe can reduce detection cost and ensure detection reproducibility. Based on indirect competitive immunoassay principle, the chemiluminescence signal decreased with increasing pollutant concentration resulting from the less amount of antibody combined on the bio-probe surface. Under optimal conditions, the whole assay was achieved within 25 min with linear range of 1-100 μg/L and detection limits (LOD) for atrazine and BPA are 0.029 μg/L and 0.025 μg/L, respectively. The immunosensing optical fiber probe can be reused for 150 times at least without losing obvious bioactivity. The method was successfully applied to the detection of ATZ and BPA in three environmental samples, where recoveries between 93.4% and 116.6% were achieved. The ROFC biosensor provides a feasible platform for rapid detection of multiple small molecule pollutants in the environment.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiangzhi Han
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yuxin Zhuo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jiayuan Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
36
|
Chen F, Xia X, Ye D, Li T, Huang X, Cai C, Zhu C, Lin C, Deng T, Liu F. A Green-Emitting Luminol Analogue as the Next-Generation Chemiluminescent Substrate in Biochemical Analysis. Anal Chem 2023; 95:5773-5779. [PMID: 36919412 DOI: 10.1021/acs.analchem.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Luminol and its derivatives are extensively used as chemiluminogenic substrates in bioimaging and biochemical analysis. Luminol reagents can typically emit blue chemiluminescence (CL), whose wavelength is normally outside the most sensitive detection range of human naked eyes and most CL analyzers with silicon-based charge-coupled device (CCD) detectors. Development of luminol analogues with longer wavelength emission is thus attractive. Herein, four new phthalhydrazide CL probes (GL-1/2/3/4) have been prepared through the derivatization of luminol. The most promising one, 5-(4-hydroxy-1,3-dioxoisoindolin-2-yl)-2,3-dihydrophthalazine-1,4-dione (GL-1), emits bright green CL upon oxidation and shows enhanced CL performance compared to its parent luminol. Bloodstain imaging, horseradish peroxidase (HRP)-based immunoassay, and the analysis of glucose/glucose oxidase reaction have been performed using the GL-1 reagent. These results indicate that GL-1 is a new chemiluminogenic luminol analogue with great potential in real analytical applications and will be an alternative to replace luminol in practical CL analysis.
Collapse
Affiliation(s)
- Fuqian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaotong Xia
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Dong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ting Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xinxin Huang
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Tao Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
37
|
Mao X, Ye R. One-Pot Synthesis of Enzyme and Antibody/CaHPO 4 Nanoflowers for Magnetic Chemiluminescence Immunoassay of Salmonella enteritidis. SENSORS (BASEL, SWITZERLAND) 2023; 23:2779. [PMID: 36904982 PMCID: PMC10006971 DOI: 10.3390/s23052779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In this study, through a bioinspired strategy, the horseradish peroxidase (HRP) and antibody (Ab) were co-embedded into CaHPO4 to prepare HRP-Ab-CaHPO4 (HAC) bifunctional hybrid nanoflowers by one-pot mild coprecipitation. The as-prepared HAC hybrid nanoflowers then were utilized as the signal tag in a magnetic chemiluminescence immunoassay for application in the detection of Salmonella enteritidis (S. enteritidis). The proposed method exhibited excellent detection performance in the linear range of 10-105 CFU/mL, with the limit of detection (LOD) of 10 CFU/mL. This study indicates great potential in the sensitive detection of foodborne pathogenic bacteria in milk with this new magnetic chemiluminescence biosensing platform.
Collapse
|
38
|
Yi Z, Ren Y, Li Y, Long F, Zhu A. Development of portable and reusable optical fiber chemiluminescence biosensing platform for rapid on-site detection of Aflatoxin B1. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Chu K, Adsetts JR, Whitworth Z, Kumar S, Zysman-Colman E, Ding Z. Elucidation of an Aggregate Excited State in the Electrochemiluminescence and Chemiluminescence of a Thermally Activated Delayed Fluorescence (TADF) Emitter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2829-2837. [PMID: 36763045 PMCID: PMC9948541 DOI: 10.1021/acs.langmuir.2c03391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The electrochemistry, electrochemiluminescence (ECL), and chemiluminescence (CL) properties of a thermally activated delayed fluorescence (TADF) emitter 4,4'-(1,2-dihydroacenaphthylene-5,6-diyl)bis(N,N-diphenylaniline) (TPA-ace-TRZ) and three of its analogues were investigated. TPA-ace-TRZ exhibits both (a) delayed onset of ECL and (b) long-persistent luminescence, which we have attributed to the formation of an aggregate excited state in excimer or exciplex form. The evidence of this aggregate excited state was consistent across ECL annihilation and coreactant pathways as well as in CL. The absolute ECL efficiency of TPA-ace-TRZ using benzoyl peroxide (BPO) as a coreactant was found to be 0.028%, which was 9-fold stronger than the [Ru(bpy)3]2+/BPO reference coereactant system. Furthermore, the absolute CL quantum efficiency of TPA-ace-TRZ was determined to be 0.92%. The performance and flexibility of the TADF emitter TPA-ace-TRZ under these various emissive pathways are highly desirable toward applications in sensing, imaging, and light-emitting devices.
Collapse
Affiliation(s)
- Kenneth Chu
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | | | - Zackry Whitworth
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | - Shiv Kumar
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Zhifeng Ding
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
40
|
Luo L, Pan Y, Li Q, Zhang Y, Chen C, Shen J, Wang Z. Current progress in the detection of adrenergic receptor agonist residues in animal-derived foods. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Nanoparticle-antibody conjugate-based immunoassays for detection of CKD-associated biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
43
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
45
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Abstract
Although the onset time of chemical reactions can be manipulated by mechanical, electrical, and optical methods, its chemical control remains highly challenging. Herein, we report a chemical timer approach for manipulating the emission onset time of chemiluminescence (CL) reactions. A mixture of Mn2+, NaHCO3, and a luminol analog with H2O2 produced reactive oxygen species (ROS) radicals and other superoxo species (superoxide containing complex) with high efficiency, accompanied by strong and immediate CL emission. Surprisingly, the addition of thiourea postponed CL emission in a concentration-dependent manner. The delay was attributed to a slow-generation-scavenging mechanism, which was found to be generally applicable not only to various types of CL reagents and ROS radical scavengers but also to popular chromogenic reactions. The precise regulation of CL kinetics was further utilized in dynamic chemical coding with improved coding density and security. This approach provides a powerful platform for engineering chemical reaction kinetics using chemical timers, which is of application potential in bioassays, biosensors, CL microscopic imaging, microchips, array chips, and informatics.
Collapse
|
47
|
A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation. BIOSENSORS 2022; 12:bios12090764. [PMID: 36140149 PMCID: PMC9496958 DOI: 10.3390/bios12090764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
As an important detection tool in biochemistry, fluorescence detection has wide applications. Quantitative detection can be achieved by detecting fluorescence signals excited by excitation light at a specific wavelength range. Therefore, the key to fluorescence detection is the stable control of the excitation light and the accurate acquisition of weak photoelectric signals. Moreover, to improve portability and instantaneity, devices are developing in miniaturization and integration. As the core of such devices, fluorescence detectors should also have these features. Under this circumstance, we designed a highly integrated and diminutive fluorescence detector and focused on its excitation light driving and photoelectric signal processing. A current–light dual negative feedback light-emitting diode (LED) driving circuit was proposed to obtain constant current and luminance. In addition, a silicon photodiode (PD) was used to receive and convert the fluorescence signal to an electric signal. Then, amplifying, filtering, and analog-to-digital (A/D) converting were applied to make the detection of weak fluorescence signals possible. The test results showed that the designed circuit has wonderful performance, and the detector shows good linearity (R2 = 0.9967) and sensitivity (LOD = 0.077 nM) in the detection of fluorescein sodium solution. Finally, a real-time fluorescence polymerase chain reaction (real-time PCR) of Legionella pneumophila was carried out on a homemade platform equipped with this detector, indicating that the detector met the requirements of real-time PCR detection.
Collapse
|
48
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
49
|
Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022; 247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
50
|
Maia R, Carvalho V, Faria B, Miranda I, Catarino S, Teixeira S, Lima R, Minas G, Ribeiro J. Diagnosis Methods for COVID-19: A Systematic Review. MICROMACHINES 2022; 13:1349. [PMID: 36014271 PMCID: PMC9415914 DOI: 10.3390/mi13081349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
At the end of 2019, the coronavirus appeared and spread extremely rapidly, causing millions of infections and deaths worldwide, and becoming a global pandemic. For this reason, it became urgent and essential to find adequate tests for an accurate and fast diagnosis of this disease. In the present study, a systematic review was performed in order to provide an overview of the COVID-19 diagnosis methods and tests already available, as well as their evolution in recent months. For this purpose, the Science Direct, PubMed, and Scopus databases were used to collect the data and three authors independently screened the references, extracted the main information, and assessed the quality of the included studies. After the analysis of the collected data, 34 studies reporting new methods to diagnose COVID-19 were selected. Although RT-PCR is the gold-standard method for COVID-19 diagnosis, it cannot fulfill all the requirements of this pandemic, being limited by the need for highly specialized equipment and personnel to perform the assays, as well as the long time to get the test results. To fulfill the limitations of this method, other alternatives, including biological and imaging analysis methods, also became commonly reported. The comparison of the different diagnosis tests allowed to understand the importance and potential of combining different techniques, not only to improve diagnosis but also for a further understanding of the virus, the disease, and their implications in humans.
Collapse
Affiliation(s)
- Renata Maia
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Violeta Carvalho
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Bernardo Faria
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Miranda
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - Senhorinha Teixeira
- ALGORITMI, Production and Systems Department, School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
- CEFT, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
| | - João Ribeiro
- ALiCE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|