1
|
Ma H, Ma X, Dong T, Bian X, Zhang X, Wei Y. Aptamer-functionalized biomimetic supramolecular nanozyme constructed by dipeptide, glutaraldehyde and hemin and its excellent sensing performances for tetrodotoxin. Biosens Bioelectron 2025; 283:117524. [PMID: 40324912 DOI: 10.1016/j.bios.2025.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Bioinspired nanozymes hold promise for simulating natural processes and creating optimized functional systems, but their application is hindered by limited catalytic activity and selectivity. These challenges can be addressed by reconstructing enzymatic active sites to enhance catalytic efficiency and integrating biological recognition units for specificity. In this work, we developed a peroxidase-mimicking nanozyme by stabilizing hemin on a supramolecular scaffold of diphenylalanine (FF) and glutaraldehyde (GA). To enable specific recognition, we conjugated a tetrodotoxin (TTX) aptamer, yielding the He@FF/GA-Apt composite nanozyme. This nanozyme demonstrated robust catalytic activity in 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The TTX aptamer conferred specific TTX recognition, with the aptamer-TTX complex blocking the nanozyme active site and reducing its activity. Based on this mechanism, we created a dual-mode TTX detection method using UV-vis spectroscopy and smartphone RGB analysis. The UV-vis mode achieved a linear range of 1.0-40.0 ng mL-1 and a limit of detection (LOD) of 0.61 ng mL-1, while the smartphone mode had a LOD of 1.43 ng mL-1 in a linear range of 2.0-40.0 ng mL-1. Both methods performed well in real samples, with recoveries of 96.29 %-102.57 % (UV-vis mode) and 92.07 %-109.46 % (RGB mode). In comparation, the UV-vis mode offers high sensitivity but requires lab equipment, whereas smartphone RGB mode enables rapid on-site detection despite a little lower sensitivity. This work provides a promising approach for developing target-specific nanozyme sensors.
Collapse
Affiliation(s)
- Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China.
| | - Xifeng Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Tiantian Dong
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Xinyu Bian
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Xiaokang Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yanhui Wei
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
2
|
Mansouri S. Nanozymes-Mediated Lateral Flow Assays for the Detection of Pathogenic Microorganisms and Toxins: A Review from Synthesis to Application. Crit Rev Anal Chem 2025:1-20. [PMID: 40249095 DOI: 10.1080/10408347.2025.2491683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In today's context, there is an increasing awareness among individuals regarding the importance of healthy and safe food consumption. Consequently, there is a growing demand for food products that are safeguarded against the detrimental effects of pathogens and harmful microbial metabolites. Actually, these organisms and their associated toxins pose a significant risk to food safety and are recognized as a critical threat to human health because of their capacity to induce foodborne infections and intoxications. Consequently, in order to address such challenges, it is imperative to enhance recognizing systems comprising bio/nanosensors for detections, which are trustworthy, quick, beneficial and economical. The advent of digital color imaging technology has led to the gradual establishment of lateral flow assays (LFAs) as one of the most significant sensors for point-of-care applications. Unlike colloidal gold nanoparticles (AuNPs), nanozymes offer enhanced color intensity through target-induced precise enrichment of nanozymes at the test line. Additionally, they amplify the color signal by facilitating the catalytic oxidation of colorless substrates into colored products. This dual functionality presents significant potential for the development of well-organized LFAs. In light of this, significant attempts are dedicated to the development of nanozyme-based LFAs. This review aims to outline recent advancements in the synthesis and design of nanozymes with varying compositions that exhibit distinct activities, as well as the structure and employment of nanozyme-based LFAs for the detection of pathogenic microorganisms and their associated toxins. Furthermore, the existing challenges and prospective development directions are outlined to assist readers in advancing the nanozyme-based LFAs performance.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
3
|
Fatah SA, Omer KM. Aptamer-Modified MOFs (Aptamer@MOF) for Efficient Detection of Bacterial Pathogens: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11578-11594. [PMID: 39951394 DOI: 10.1021/acsami.4c21944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Detecting pathogenic bacteria is crucial for controlling infectious diseases, safeguarding public health, and ensuring food and water safety. The integration of metal-organic frameworks (MOFs) with aptamers offers a promising approach to enhance bacterial detection. Aptamers provide high specificity for target recognition, while MOFs contribute tunable porous structures and stability, forming robust biosensors. This synergy improves sensitivity, selectivity, and versatility, enabling real-time and quantitative detection. Applications span food safety, environmental monitoring, and point-of-care diagnostics. This review highlights the significance of aptamer@MOF biosensors, discussing various detection techniques and aptamer immobilization methods. It also addresses challenges like enhancing sensitivity, improving selectivity, minimizing interference, ensuring stability, and advancing scalability for real-world applications. Additionally, limitations such as the need for miniaturization, multimode detection, and multiplex analysis are highlighted. Future directions focus on optimizing the design and expanding applications to overcome these limitations. The versatility and potential of aptamer@MOF biosensors underscore their promise as high-performance platforms for bacterial detection in diverse fields.
Collapse
Affiliation(s)
- Shilan Arif Fatah
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaymaniyah, Kurdistan Region, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Guo W, Zhang X, Deng B, Chen H, Wu S, Wu Y, Wang Y, Ning G. Dual-signal ratiometric electrochemical aptasensor for Zearalenone detection based on magnetic-assisted enrichment and hybridization chain reaction. Food Chem 2025; 465:141963. [PMID: 39531970 DOI: 10.1016/j.foodchem.2024.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this work, a dual-signal ratiometric electrochemical aptasensor based on the hybrid chain reaction (HCR) and streptavidin-modified magnetic beads (SA-MBs) was developed to rapidly detect zearalenone (ZEN). The HCR, as a powerful signal amplification technique to imporve the signal of sonser. When the target is present, they specifically bind with ZEN-Apt and release ZEN-cDNA to trigger HCR. Simultaneously, more double-stranded DNA causes the signal of Thi to be blocked. As a result, the two signals tend to change in the opposite direction as the ZEN concentration changes. Additionally, the peak current ratio of IThi/IFc showed a positive correlation with the ZEN concentration. Under optimal conditions, the constructed biosensor showed an excellent linear detection range (1.0 × 10-10 mol/L to 1.0 × 10-6 mol/L), a low detection limit (4.4 × 10-11 mol/L) and high specificity for ZEN. In addition, the detection method retains the characteristics of low cost and rapid detection of electrochemical detection, while improving the detection limit and detection accuracy via SA-MBs and internal reference signal. This provides a new idea for the practical detection of ZEN.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bin Deng
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Chen
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; Yuelushan Laboratory, Changsha 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Hu B, Wang Y, Wu M, Shang X, Duan F, Guo C, Zhang S, Zhang Z. Construction of a portable and sensitive electrochemical immunosensor for the rapid detection of erythromycin based on semiconductive bimetallic MOF. Talanta 2025; 283:127187. [PMID: 39520919 DOI: 10.1016/j.talanta.2024.127187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The sensitive determination of antibiotics in food products is vital for ensuring food safety and protecting human health. Herein, we have fabricated a novel electrochemical portable and sensitive electrochemical immunosensor for the efficient detection of erythromycin (ERY) containing in food stuffs. For this, a semiconductive cooper/ferric bimetallic metal-organic framework (scMOF), which was synthesized using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) as linking ligand (denoted as CuxFe3-x(HHTP)2), was utilized simultaneously as the platform for anchoring antibody and for modifying the sprinted printed electrode (SPE) to construct the electrochemical immunosensor. The obtained scMOF, CuxFe3-x(HHTP)2, exhibited high porosity, promoted conductivity, and enhanced anchoring ability toward antibody. Thereby, the developed SPE immunosensor demonstrated the superior biosensing performance for the detection of ERY. Within a wide range from 1.0 fg mL-1 to 1.0 ng mL-1, the CuxFe3-x(HHTP)2-based portable SPE immunosensor had an ultralow detection limit of 0.69 fg mL-1, together with high selectivity, good reproducibility, and excellent long-term stability, as well as acceptable practicality. The present SPE immunosensor based on scMOFs not only provides an innovative biosensing strategy for the sensitive inspection of antibiotics, but also extends the application of scMOF in the field of food analysis.
Collapse
Affiliation(s)
- Bin Hu
- College of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China.
| | - Yifei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Min Wu
- College of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Xiaohong Shang
- College of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Fenghe Duan
- College of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Hu M, Wen C, Liu J, Li M, Leng N, Guo X, Fang Q, Kou Q, Huang R, Lin XC. Ratiometric surface-enhanced Raman spectroscopy detection of 5-hydroxyindole-3-acetic acid based on Au@MIL-125@MIPs substrates. Talanta 2025; 281:126880. [PMID: 39277938 DOI: 10.1016/j.talanta.2024.126880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
5-Hydroxyindole-3-acetic acid (5-HIAA) is a molecular marker that can be used in the early diagnosis of carcinoid tumors, and the development of sophisticated 5-HIAA assays is therefore of great importance. Surface-enhanced Raman spectroscopy (SERS) has been widely used for the rapid and sensitive detection of disease biomarkers. Insufficient specificity for tumor markers and poor spectral reproducibility are the bottlenecks in the practical use of SERS technology. In this study, based on MIL-125 surface-loaded gold nanoparticles (Au@MIL-125), a novel strategy was proposed to obtain Au@MIL-125@molecularly imprinted polymers (MIPs) as functional SERS substrates by wrapping a thin MIP shell around the Au@MIL-125 surface for selective separation followed by a 5-HIAA assay. The Raman peak intensity ratio (I865/I1078) was used to quantify 5-HIAA after a SERS spectral calibration with an embedded internal standard (i.e., 4-aminobenzenethiol) to improve the quantitative accuracy. The linear range was from 10-11 to 10-7 M, and the limit of detection (LOD) was 5.45 × 10-13 M. The method of integrating the MIPs with the metal MOF-based nanocomposites was shown to be useful in the analysis of real samples using SERS. The application of SERS for the selective and quantitative detection of analytes in real sample analysis, therefore, has great potential.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China; Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Minzhe Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Nan Leng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohuan Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qi Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qinjie Kou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Huang
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
7
|
Feng L, Zhang M, Fan Z. Current trends in colorimetric biosensors using nanozymes for detecting biotoxins (bacterial food toxins, mycotoxins, and marine toxins). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6771-6792. [PMID: 39319401 DOI: 10.1039/d4ay01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Biotoxins, predominantly bacterial food toxins, mycotoxins, and marine toxins, have emerged as major threats in the fields of seafood, other foods, feeds, and medicine. They have potential teratogenic, mutagenic, and carcinogenic effects on humans, occasionally triggering high morbidity and mortality. One of the apparent concerns relates to the increasing consumption of fast food resulting in the demand for processed food without adequate consideration of the toxins they may contain. Therefore, developing improved methods for detecting biotoxins is of paramount significance. Nanozymes, a type of nanomaterials exhibiting enzyme-like activity, are increasingly being recognized as viable alternatives to natural enzymes owing to their benefits, such as customizable design, controlled catalytic performance, excellent biocompatibility, and superior stability. The remarkable catalytic activity of nanozymes has led to their broad utilization in the development of colorimetric biosensors. This has emerged as a potent and efficient approach for rapid detection, enabling the creation of innovative colorimetric sensing methodologies through the integration of nanozymes with colorimetric sensors. In this review, recent development in nanozyme research and their application in colorimetric biosensing of biotoxins are examined with an emphasis on their characteristics and performance. The study particularly focuses on the peroxidase (POD) activity, oxidase (OXD) activity, superoxide dismutase (SOD), and catalase (CAT) activity of nanozymes in colorimetric biosensors. Ultimately, the challenges and future prospects of these assays are explored.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Mingcheng Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Zhiyi Fan
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
8
|
Li H, Murugesan A, Shoaib M, Sheng W, Chen Q. Functionalized metal-organic frameworks with biomolecules for sensing and detection applications of food contaminants. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39323356 DOI: 10.1080/10408398.2024.2406482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The increasing demand for toxin-free food, driven by the rise in fast food consumption and changing dietary habits, necessitates advanced and efficient detection methods to address the potential risks associated with contaminated food. Nanomaterial-based detection methods have shown significant promise, particularly using metal-organic frameworks (MOFs) combined with biomolecules. This review article provides an overview of recent advancements in using functionalized metal-organic frameworks (FMOFs) with biomolecules to detect various food contaminants, including heavy metals, antibiotics, pesticides, bacteria, mycotoxins and other chemical contaminants. We discuss the fundamental principles of detecting food contaminants, evaluate existing analytical techniques, and explore the development of biomacromolecule-functionalized MOF-based sensors encompassing colorimetric, optical, electrochemical, and portable variants. The review also examines sensing mechanisms, uses FMOFs as signal probes and carriers for capture probes, and assesses sensitivity. Additionally, we explore the opportunities and challenges in producing FMOFs with biomacromolecules for food contaminant assessment. Future directions include improving sensor sensitivity and specificity, developing more cost-effective production methods, and integrating these technologies into real-world food safety monitoring systems. This work aims to pave the way for innovative and reliable solutions to ensure the safety of our food supply.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arul Murugesan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, PR China
| |
Collapse
|
9
|
Gong L, Liang J, Zhang Y, Zhang M, Ao H, Yang T. An antifouling electrochemical biosensor using self-signal for Salmonella typhimurium direct detection in food sample. Food Chem 2024; 452:139536. [PMID: 38723569 DOI: 10.1016/j.foodchem.2024.139536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Eating food contaminated by foodborne pathogens can lead to illness. The development of electrochemical sensors for pathogen detection has received widespread attention. However, the analytical performance of electrochemical sensors is inevitably affected by the non-specific adsorption of molecules in the sample. Moreover, the external signal probes might be affected by the complex components in the sample accompanied with signal suppression. This work presents an electrochemical aptasensor for Salmonella typhimurium detection based on the self-signal of poly-xanthurenic acid and the antifouling ability of chondroitin sulfate. The detection time was 60 min. The linear range was from 101 to 107 CFU/mL, and the detection limit was 3 CFU/mL. The biosensors presented good repeatability and storage stability. And the biosensors has been successfully applied in milk and orange juice. This strategy is expected to be applied in the design of other antifouling biosensors, to achieve rapid detection of pathogens and ensure food safety.
Collapse
Affiliation(s)
- Liangke Gong
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Jianwei Liang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yu Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Mengyao Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Huan Ao
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Tao Yang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China.
| |
Collapse
|
10
|
Lu C, Tang Z, Wang D, Chen L, Zhao J. Advances in polyoxometalate-based electrochemical sensors in the last three years. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5133-5145. [PMID: 39007918 DOI: 10.1039/d4ay01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a famous subclass of metal-oxide cluster materials, polyoxometalates (POMs) feature variable architectures, reversible multi-electron transport capability, catalytic activity, and redox capacity. These attributes endow POMs with great potential as promising electrode materials in electrochemical sensors (ECSs). Up to now, POM-based ECSs have been passionately studied, and diverse POM-based redox ECSs, aptasensors and immunosensors have emerged. And these POM-based ECSs generally demonstrate fast response, low detection limit, strong selectivity and high antijamming capability. This review mainly focuses on the remarkable advancement of POM-based ECSs in environmental monitoring, food safety and biomedicine from 2021, aiming to furnish theoretical insights that inform the design and development of innovative sensors.
Collapse
Affiliation(s)
- Changyuan Lu
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Solanki R, Patra I, Kumar TCA, Kumar NB, Kandeel M, Sivaraman R, Turki Jalil A, Yasin G, Sharma S, Abdulameer Marhoon H. Smartphone-Based Techniques Using Carbon Dot Nanomaterials for Food Safety Analysis. Crit Rev Anal Chem 2024; 54:923-941. [PMID: 35857650 DOI: 10.1080/10408347.2022.2099733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The development of portable and efficient nanoprobes to realize the quantitative/qualitative onsite determination of food pollutants is of immense importance for safeguarding human health and food safety. With the advent of the smartphone, the digital imaging property causes it to be an ideal diagnostic substrate to point-of-care analysis probes. Besides, merging the versatility of carbon dots nanostructures and bioreceptor abilities has opened an innovative assortment of construction blocks to design advanced nanoprobes or improving those existing ones. On this ground, massive endeavors have been made to combine mobile phones with smart nanomaterials to produce portable (bio)sensors in a reliable, low cost, rapid, and even facile-to-implement area with inadequate resources. Herein, this work outlines the latest advancement of carbon dots nanostructures on smartphone for onsite detecting of agri-food pollutants. Particularly, we afford a summary of numerous approaches applied for target molecule diagnosis (pesticides, mycotoxins, pathogens, antibiotics, and metal ions), for instance microscopic imaging, fluorescence, colorimetric, and electrochemical techniques. Authors tried to list those scaffolds that are well-recognized in complex media or those using novel constructions/techniques. Lastly, we also point out some challenges and appealing prospects related to the enhancement of high-efficiency smartphone based carbon dots systems.
Collapse
Affiliation(s)
- Reena Solanki
- Department of Chemistry, Dr APJ Abdul Kalam University, Indore, India
| | | | - T Ch Anil Kumar
- Department of Mechanical Engineering, Vignan's Foundation for Science Technology and Research, Vadlamudi, India
| | - N Bharath Kumar
- Department of Electrical and Electronics Engineering, Vignan's Foundation for Science Technology and Research, Guntur, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Arumbakkam, Chennai, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Ghulam Yasin
- Department of Botany, university of Bahauddin Zakariya, Multan, Pakistan
| | - Sandhir Sharma
- Chitkara Business School, Chitkara University, Punjab, India
| | - Haydar Abdulameer Marhoon
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Iraq
| |
Collapse
|
12
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Parviz M, Shokorlou YM, Heidarzadeh H. Structure of plasmonic multi spectral Apta sensor and analyzing of bulk and surface sensitivity. Sci Rep 2024; 14:13245. [PMID: 38853163 PMCID: PMC11163006 DOI: 10.1038/s41598-024-64249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, a multispectral aptasensor structure, including a sub-layer and two side walls, was presented. The cells are positioned at the down and top of the structure, with the down cells oriented perpendicular to the walls and the top cells aligned parallel to the walls. The validity of the findings was verified by the utilization of a numerical simulation technique known as 3D Finite Difference Time Domain (FDTD). The biosensor under consideration exhibits sensitivities of 1093.7 nm/RIU, 754 nm/RIU, and 707.43 nm/RIU in mode III, mode II, and mode I, respectively. In the majority of instances, the quantity of analyte available is insufficient to coat the surface of the sensor thoroughly. Consequently, in this study, the evaluation of surface sensitivity was undertaken alongside bulk sensitivity. The surface sensitivity of the suggested structure for mode II in the sensor layer, with thicknesses of 10, 20, 30, and 70 nm, is measured to be 25, 78, 344, and 717.636 nm/RIU, respectively. Our design incorporates a unique arrangement of sub-layer and side walls, with cells positioned to maximize interaction with the target analyte. This innovative configuration, combined with Ag for its superior plasmonic properties, enables the detection of E. coli O157 with remarkable sensitivity.
Collapse
Affiliation(s)
- Mahya Parviz
- Department of Electrical Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Younes Majd Shokorlou
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Heidarzadeh
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
14
|
Guo W, Hu Y, Zhang X, Wang Y, Li Y, Wang Y, Ning G. An electrochemical aptasensor for zearalenone detection based on the Co 3O 4/MoS 2/Au nanocomposites and hybrid chain reaction. Mikrochim Acta 2024; 191:367. [PMID: 38832980 DOI: 10.1007/s00604-024-06439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuda Hu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanjun Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yihao Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
15
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Hsu CY, Saleh RO, Pallathadka H, Kumar A, Mansouri S, Bhupathi P, Jasim Ali SH, Al-Mashhadani ZI, Alzubaidi LH, Hizam MM. Advances in electrochemical-optical dual-mode biosensors for detection of environmental pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1306-1322. [PMID: 38344759 DOI: 10.1039/d3ay02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
17
|
Shruti A, Bage N, Kar P. Nanomaterials based sensors for analysis of food safety. Food Chem 2024; 433:137284. [PMID: 37703589 DOI: 10.1016/j.foodchem.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
The freshnessof the food is a major issue because spoiled food lacks critical nutrients for growth and could be harmful to human health if consumed directly. Nanomaterials are captivating due to their unique properties like large surface area, high selectivity, small dimension, great biocompatibility and conductivity, real-time onsite analysis, etc. which give them an advantage over conventional evaluation techniques. Despite these advantages of nanomaterials used in food safety and their preservation, food products can still get affected by various environmental factors (like pH, temperature, etc.), making the use of time-temperature indicators more condescending. This review is a comprehensive study on food safety, its causes, the responsible analytes, their remedies by various nanomaterials, the development of various nanosensors, and the various challenges faced in maintaining food safety standards to reduce the risk of contaminants.
Collapse
Affiliation(s)
- Asparshika Shruti
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Nirgaman Bage
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pradip Kar
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
18
|
Saleh RO, Almajidi YQ, Mansouri S, Hammoud A, Rodrigues P, Mezan SO, Maabreh HG, Deorari M, Shakir MN, Alasheqi MQ. Dual-mode colorimetric and fluorescence biosensors for the detection of foodborne bacteria. Clin Chim Acta 2024; 553:117741. [PMID: 38158002 DOI: 10.1016/j.cca.2023.117741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Due to the growing demand for detection technologies, there has been significant interest in the development of integrated dual-modal sensing technologies, which involve combining two signal transduction channels into a single technique, particularly in the context of food safety. The integration of two detection signals not only improves diagnostic performance by reducing assumptions, but also enhances diagnostic functions with increased application flexibility, improved accuracy, and a wider detection linear range. The top two output signals for emerging dual-modal probes are fluorescent and colorimetric, due to their exceptional advantages for real-time sensitive sensing and point-of-care applications. With the rapid progress of nanotechnology and material chemistry, the integrated colorimetric/fluorimetric dual-mode systems show immense potential in sensing foodborne pathogenic bacteria. In this comprehensive review, we present a detailed summary of various colorimetric and fluorimetric dual-modal sensing methods, with a focus on their application in detecting foodborne bacteria. We thoroughly examine the sensing methodologies and the underlying principles of the signal transduction systems, and also discuss the challenges and future prospects for advancing research in this field.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait.
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, KSA, Saudi Arabia
| | - Salim Oudah Mezan
- Optical Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq; Republic of Iraq, Ministry of Education, Open Educational College, Studies Muthanna Centre, Iraq
| | - Hatem Ghaleb Maabreh
- RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), department of dermatovenerology, foreign languages, Moscow, Russia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
19
|
Chen N, Wang C, Kong F, Wang S. In situ facile synthesis and antibacterial activity of Ag-MOFs/cellulose filter paper composites for fruit fresh-keeping. Int J Biol Macromol 2024; 256:128424. [PMID: 38008139 DOI: 10.1016/j.ijbiomac.2023.128424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
A large number of fresh fruits are wasted in the supply chain due to spoilage, so it is crucial to develop fruit preservation materials. Herein, two novel Ag-MOFs/carboxymethyl filter paper (Ag-MOFs/CMFP) composites were successfully synthesized by in situ facile synthesis, which can be used as packaging materials to delay fruit spoilage. The synthesis process is simple and environmentally friendly, and the reaction conditions are mild. The mechanical property, water stability, and antibacterial activity of the as-synthesized Ag-MOFs/CMFP composites were investigated. Specifically, the composites exhibited high mechanical performance and the tensile strength was >10.00 MPa. Moreover, the composites displayed good water stability and can remain stable in water environment for >7 days, which can be attributed to the strong interaction between Ag-MOFs and CMFP. Significantly, Ag-MOF particles endow the composite papers with excellent antibacterial activity, which can inactivate 99.9 % of the bacteria. Attributed to these characteristics, these composite papers were used as fruit fresh-keeping materials and can prolong the shelf-life of cherry tomatoes and peaches for >10 days. This research not only provides a facile synthesis strategy for the flexible MOFs paper, but also provides instructive guidance for related research on fruit preservation materials.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
20
|
Ahmadi Tabar F, Lowdon JW, Bakhshi Sichani S, Khorshid M, Cleij TJ, Diliën H, Eersels K, Wagner P, van Grinsven B. An Overview on Recent Advances in Biomimetic Sensors for the Detection of Perfluoroalkyl Substances. SENSORS (BASEL, SWITZERLAND) 2023; 24:130. [PMID: 38202993 PMCID: PMC10781331 DOI: 10.3390/s24010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors.
Collapse
Affiliation(s)
- Fatemeh Ahmadi Tabar
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Joseph W. Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Thomas J. Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| |
Collapse
|
21
|
Kong Y, Li Z, Zhang L, Song J, Liu Q, Zhu Y, Li N, Song L, Li X. A novel Nb 2C MXene based aptasensor for rapid and sensitive multi-mode detection of AFB 1. Biosens Bioelectron 2023; 242:115725. [PMID: 37837938 DOI: 10.1016/j.bios.2023.115725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Rapid and accurate on-site detection of aflatoxin B1 (AFB1) is of great significance for ensuring food safety. This work developed a dual mode aptasensor and a dual channel artificial neural network (ANN) intelligent sensor detection platform for simple and convenient quantitative detection of AFB1 in food. This sensor was prepared by encoding manganese ion (Mn2+) mediated surface concave niobium carbide MXene nanomaterials (Nb2C-MNs) using fluorescent group labeled aptamers (ssDNA-FAM). Mn2+-mediated Nb2C-MNs exhibited better peroxidase-like and fluorescence quenching properties. Moreover, ssDNA-FAM as a fluorescent probe for the sensor also significantly enhanced the enzyme activity of Nb2C-MNs. When AFB1 existed, ssDNA-FAM preferentially bonded to AFB1, resulting in fluorescence signal recovery and colorimetric signal weakening. Consequently, the multimodal biosensor could achieve fluorescence/colorimetric detection without the need for material and reagent replacement. In on-site detection, both ratio fluorescence and colorimetric signals could be collected using smartphones and analyzed and modeled on the developed ANN platform, achieving visual intelligent sensing. This multimodal biosensor had a detection line as low as 0.0950 ng/mL under optimal conditions, and also had the advantages of simple operation, fast and sensitive, and high specificity, which can meet the real-time on-site detection needs of AFB1 in remote areas.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Lili Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Na Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
22
|
An X, Jiang D, Ni Y, Wang W, Zhu Q, Xu F, Shiigi H, Chen Z. Synergistic Multieffect Catalytic Amplified Cathodic Electrochemiluminescence Biosensor via Target Binding-Induced Aptamer Conformational Changes for the Ultrasensitive Detection of Synthetic Cathinone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55369-55378. [PMID: 37987692 DOI: 10.1021/acsami.3c12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Signal amplification is a powerful approach to increasing the detection sensitivity of electrochemiluminescence (ECL). Here, we developed synergistic multieffect catalytic strategies based on CuCo2O4 nanorod combination of Ag NPs as coreaction accelerators to fabricate an efficient covalent organic framework (PTCA-COF)-based ternary ECL biosensor. Concretely, the high redox reversibility of Co3+/Co2+ and Cu2+/Cu+ would constantly promote the decomposition of S2O82- for ECL emission. Meanwhile, the introduction of Ag NPs with excellent electrocatalytic activity further realized multiple amplification of the ECL signal. Furthermore, the good hydrogen evolution reaction (HER) ability of Ag@CuCo2O4 nanorods could accelerate the proton transmission rate of the system to amplify ECL behavior. In the presence of the target synthetic cathinone 4-chloroethcathinone (4-CEC) as the quenching ECL signal-response probe, the Ferrocene (Fc)-labeled aptamer folded into the conformationally limited stem-loop structure, bringing Fc near the ECL luminophore and resulting in quenched ECL emission. The quenching effect was connected with target-induced aptamer conformational changes and consequently reflected the target concentration. Under optimum conditions, the proposed biosensor realized a highly sensitive assay for 4-CEC with a large dynamic range from 1.0 × 10-12 to 1.0 × 10-6 g/L and a detection limit as low as 2.5 × 10-13 g/L. This study integrated multiple amplification strategies for efficient ECL enhancement, which provided a novel approach to constructing highly bioactive and sensitive sensors.
Collapse
Affiliation(s)
- Xiaomei An
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yuan Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qiaoyong Zhu
- Changzhou fine test technology Co., Ltd., Changzhou 213000, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi 214431, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
23
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
24
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023; 54:3614-3631. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
25
|
Tavassoli M, Khezerlou A, Khalilzadeh B, Ehsani A, Kazemian H. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Mikrochim Acta 2023; 190:371. [PMID: 37646854 DOI: 10.1007/s00604-023-05937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC, V2N4Z9, Canada.
| |
Collapse
|
26
|
Li N, Zhang Y, Xu Y, Liu X, Ma W, Xiang T, Hou C, Huo D. An ultrasensitive label-free fluorescent aptamer sensor based on pH-gated release coumarin for detect HER2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122641. [PMID: 36989691 DOI: 10.1016/j.saa.2023.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Evaluation of human epidermal growth factor receptor 2 (HER2) molecular markers is a very suitable option for early diagnosis of breast cancer. Metal-organic frameworks (MOFs) have large porosity and surface interactions such as π-π stacking, electrostatics, hydrogen bonding, and coordination. Here, we integrated the HER2 aptamer and fluorescent probe coumarin (COU) with zeolite imidazolic acid framework-8 (ZIF-8) to construct a label-free fluorescent aptamer sensor with pH-gated release of COU. In the presence of the target-HER2, the aptamer adsorbed on the surface of ZIF-8@COU specifically recognizes and falls off the HER2 protein, exposing a portion of the pore size of ZIF-8@COU while reducing the negative charge on the sensor surface, under alkaline hydrolysis conditions, a large number of COU fluorescent molecules can be produced and released in the detection system.The aptamer fluorescence sensor has good detection performance, sensitivity and low background interference, the detection linearity range of HER2 protein is 0.05-10 ng/mL, the detection limit is 0.0005 ng/mL, and it has good recovery rate for the serum detection of clinical breast cancer patients. Therefore, this sensor has high potential in detecting and monitoring HER2 levels for the care and clinical diagnosis of breast cancer patients.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wenhao Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Tingxiu Xiang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
27
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
28
|
Khalaf EM, Sanaan Jabbar H, Mireya Romero-Parra R, Raheem Lateef Al-Awsi G, Setia Budi H, Altamimi AS, Abdulfadhil Gatea M, Falih KT, Singh K, Alkhuzai KA. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Shelash Al-Hawary SI, Sapaev IB, Althomali RH, Musad Saleh EA, Qadir K, Romero-Parra RM, Ismael Ouda G, Hussien BM, Ramadan MF. Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials. Crit Rev Anal Chem 2023; 54:3066-3082. [PMID: 37307199 DOI: 10.1080/10408347.2023.2222412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.
Collapse
Affiliation(s)
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Saudi Arabia
| | - Kamran Qadir
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin, China
| | | | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
30
|
Karimzadeh Z, Rahimpour E, Jouyban A. A follow-up study on "A sensitive determination of morphine in plasma using AuNPs@UiO-66/PVA hydrogel as an advanced optical scaffold". Heliyon 2023; 9:e15267. [PMID: 37095988 PMCID: PMC10121456 DOI: 10.1016/j.heliyon.2023.e15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
A double solvent-assisted approach was developed for the preparation of AuNPs@UiO-66 based polyvinyl alcohol hydrogel nanocomposite and evaluated its potential as a nanoprobe for the determination of morphine. The characterization and morphology of the synthesized platform were studied and performance comparison for morphine determination was done between the synthesized scaffold and the reported one in our previous work and discussed in detail. Due to the encapsulation of AuNPs inside UiO-66 in a double solvent-assisted approach, no energy transfer was performed with UiO-66 and finally, morphine could not bind with AuNPs. Given these values, such a hydrogel-based matrix prepared with different methodologies with the same thermal stability demonstrates dissimilar potential toward morphine determination in biological samples.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author. Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
32
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Cao Q, Jiang D, Zheng L, Xu F, Shiigi H, Shan X, Wang W, Chen Z. Dual-binding domain electrochemiluminescence biosensing platform with self-checking function for sensitive detection of synthetic cathinone in e-cigarettes. Biosens Bioelectron 2023; 224:114963. [PMID: 36603282 DOI: 10.1016/j.bios.2022.114963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Current single signal electrochemiluminescence (ECL) sensors are susceptible to false positive or false negative phenomena due to experimental conditions. Therefore, sensors with "self-checking" function are attracting democratic attention. In quick succession, a highly sensitive single-cathode dual ECL signal aptasensor with self-checking function to improve the shortcomings mentioned above was designed. This aptasensor used In-based metal-organic framework (MIL-68) as load and stabilizer to effectively attenuate the aggregation-induced quenching (ACQ) effect of porphyrin derivatives (Sn-TCPP) while improve ECL stability. The introduction of cooperative-binding split-aptamers" (CBSAs) aptamers increased the specificity of the aptasensor and its unique double-binding domains detection accelerated the detection efficiency. When analyzing 3,4-methylenedioxypyrovalerone (MDPV), we could calculate two concentrations based on the strength of ECL 1 and ECL 2. If the concentrations are the same, the result would be obtained; if not, it should be retested. Depending on the above operation, the results achieve self-check. It was found that the designed aptasensor could quantify the concentration of MDPV between 1.0 × 10-12 g/L and 1.0 × 10-6 g/L with the limit of detection (LOD) of 1.4 × 10-13 g/L and 2.0 × 10-13 g/L, respectively (3 σ/slope). This study not only improves the detection technology of MDPV, but also explores the dual-signal detection of porphyrin for the first time and enriches the definition of self-checking sensor.
Collapse
Affiliation(s)
- Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Lingli Zheng
- Changzhou Institute of Mechatronic Technology, Changzhou, 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi, 214431, China
| | - Hiroshi Shiigi
- Osaka Prefecture University, Department of Applied Chemistry, Naka Ku, 1-2 Gakuen, Sakai, Osaka, 5998570, Japan
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
34
|
Li X, Jia M, Yu L, Li Y, He X, Chen L, Zhang Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem 2023; 402:134239. [DOI: 10.1016/j.foodchem.2022.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
35
|
Biochemical analysis based on optical detection integrated microfluidic chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Alameri AA, Sanaan Jabbar H, Altimari US, Sultonov MM, Mahdi AB, Solanki R, Shaker Shafik S, Sivaraman R, Aravindhan S, Hadi JM, Mahmood Saleh M, Mustafa YF. Advances in Biosensing of Chemical Food Contaminants Based on the MOFs-Graphene Nanohybrids. Crit Rev Anal Chem 2022; 54:2166-2182. [PMID: 36580293 DOI: 10.1080/10408347.2022.2160923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety issue is becoming an international challenge for human health owing to the presence of contaminants. In this context, reliable, rapid, and sensitive detecting technology is extremely demanded to establish food safety assurance systems. MOFs (Metal-organic frameworks) are a new type of porous crystalline material with particular physical and chemical characteristics presented in food safety requirements. (Bio)sensors driven MOF materials have emerged as a promising alternative and complementary analytical techniques, owing to their great specific area, high porosity, and uniform and fine-tunable pore buildings. Nevertheless, the insufficient stability and electrical conductivity of classical MOFs limit their utilization. Employing graphene-derived nanomaterials with high functional elements as patterns for the MOF materials not only improves the structural instability and poor conductivity but also impedes the restacking and aggregation between graphene layers, thus significantly extending the MOFs application. A review of MOFs-graphene-based material used in food contamination detection is urgently needed for encouraging the advance of this field. Herein, this paper systematically outlines current breakthroughs in MOF-graphene-based nanoprobes, outlines their principles, and illustrates their employments in identifying mycotoxins, heavy metal ions, pathogens, antibiotics, and pesticides, referring to their multiplexing and sensitivity ability. The challenges and limitations of applying MOF-graphene composite for precise and efficient assessment of food were also debated. This paper would maybe offer some inspired concepts for an upcoming study on MOF-based composites in the food security context.
Collapse
Affiliation(s)
- Ameer A Alameri
- Department of Chemistry, Faculty of Science, University of Babylon, Babylon, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Marat Mirzaevich Sultonov
- Jizzakh State Pedagogical Institute, Department of Chemistry and Teaching Methods, Jizzakh, Uzbekistan
| | - Ahmed B Mahdi
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Reena Solanki
- Department of Chemistry, Dr APJ Abdul Kalam University, Indore, India
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jihad M Hadi
- Nursing Department, College of Nursing, University of Human Development, Kurdistan Regional Government, Sulaimani, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
37
|
Kandeel M, Turki Jalil A, hadi Lafta M, Ziyadullaev S, Fakri Mustafa Y. Recent progress in synthesis and applications of MXene-based nanomaterials (MBNs) for (bio)sensing of microbial toxins, pathogenic bacteria in food matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
39
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
40
|
Karimzadeh Z, Jouyban A, Ostadi A, Gharakhani A, Rahimpour E. A sensitive determination of morphine in plasma using AuNPs@UiO-66/PVA hydrogel as an advanced optical scaffold. Anal Chim Acta 2022; 1227:340252. [DOI: 10.1016/j.aca.2022.340252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
|
41
|
Patra I, Madjeed Kammoud K, Haleem Al-Qaim Z, Mamadoliev II, Abed Jawad M, Hammid AT, Salam Karim Y, Yasin G. Perspectives and Trends in Advanced MXenes-Based Optical Biosensors for the Recognition of Food Contaminants. Crit Rev Anal Chem 2022; 54:633-652. [PMID: 35749278 DOI: 10.1080/10408347.2022.2091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fabricating novel biosensing constructs with high sensitivity and selectivity is highly demanded in food contaminants detection. In this prospect, various nanostructured materials were envisaged to build (bio)sensors with superior sensitivity and selectivity. The desirable biocompatibility, brilliant mechanical strength, ease of surface functionalization, as well as tunable optical and electronic features, portray 2D MXenes as versatile scaffolds for biosensing. In this review, we overviewed the state-of-the-art MXenes-based optical biosensing devices to detect mycotoxins, pesticide residues, antibiotic residues, and food borne-pathogens from foodstuff and environmental matrices. Firstly, the synthesis methods and surface functionalization/modification of MXenes are discussed. Secondly, according to the target analytes, we categorized and presented a detailed account of the newest research progress of MXenes-based optical probes for food contaminants monitoring. The efficiency of all the surveyed probes was assessed on the basis of important factors like response time, detection limit (DL), and sensing range. Lastly, the necessity and requirements for future advances in this emerging MXenes material are also given, followed by challenges and opportunities. We hope that this study will bridge the gap between nanotechnology and food science, offering insights for engineers or scientists in both areas to accelerate the progress of MXenes-based materials for food safety detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | | | - Ghulam Yasin
- Department of Botany, university of Bahauddin Zakariya, Multan, Pakistan
| |
Collapse
|