1
|
Wang P, Gong M, Zhao R, Li Z, Kang H, Hou Y, Zhang W, Niu H, Zhang S. Advancements in small molecule fluorescent probes for the detection of formaldehyde in environmental and food samples: A comprehensive review. Food Chem 2025; 481:144041. [PMID: 40174380 DOI: 10.1016/j.foodchem.2025.144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
Formaldehyde (FA), a hazardous substance with carcinogenicity and mutagenicity, necessitates sensitive and accurate detection methods for protecting public health and the environment. While numerous reviews have explored FA fluorescent probes, the current literature predominantly emphasizes biological systems, leaving a gap in addressing FA's roles in environmental monitoring and food safety. This review discusses recognition mechanisms for FA detection, including 2-aza-Cope rearrangement, methylenehydrazine reaction, formimine formation, and other mechanisms. Furthermore, this review underscores the practical applications of these probes in real-world contexts, namely their incorporation into test strips, hydrogels, and membranes for environmental monitoring and food safety. Moreover, this review highlights future directions for developing intelligent detection systems that combine fluorescent probes with data processing algorithms and artificial intelligence technologies. By synthesizing the current knowledge in this area, this review aims to stimulate future research and advancements in FA detection technology, ultimately contributing to improved environmental management and public health protection.
Collapse
Affiliation(s)
- Pengfei Wang
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Minggui Gong
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Rui Zhao
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhaozhou Li
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Huaibin Kang
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ying Hou
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Wenfen Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, PR China
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China; Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shusheng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, PR China
| |
Collapse
|
2
|
Zhang ZH, Liang ZQ, Xu SH, Wang P, Dai GL, Ye CQ, Wang DM. Dye-sensitized lanthanide-doped upconversion nanoprobes for homocysteine sensing in human serum and living cells via a spatial optimization strategy. J Mater Chem B 2025; 13:6093-6100. [PMID: 40331320 DOI: 10.1039/d5tb00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Homocysteine (Hcy) is an established risk factor for cardiovascular and neurodegenerative diseases, making its real-time detection critical for maintaining physiological balance and monitoring disease progression. However, developing probes that specifically recognize Hcy with a high signal-to-background ratio remains a significant challenge. In this study, we present a novel upconversion nanoprobe for Hcy detection, which integrates NIR cyanine dyes (CyPd) with β-NaGdF4:Yb20%,Er2%@NaGdF4:Yb10%,Nd10% upconversion nanoparticles (UNs). CyPd, featuring α,β-unsaturated ketone and pyridine functional groups, serves as both an efficient energy donor and a recognition antenna for the UNs. Benefiting from a hydrogen bonding-assisted two-site strategy of CyPd, coupled with highly efficient energy transfer from CyPd to UNs, the nanoprobe demonstrates high selectivity and sensitivity for Hcy in aqueous solutions, achieving a low detection limit of 0.19 μM. Importantly, the nanoprobe exhibits excellent performance in human serum, with recovery rates ranging from 97.9% to 103.2% and a low relative standard deviation of less than 3.51%. Furthermore, it was successfully applied for both exogenous and endogenous Hcy bioimaging. This innovative nanoprobe offers a promising tool for the accurate and efficient detection of Hcy, with potential applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Zi-Hang Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Pu Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Dong-Mei Wang
- Baoji University of Arts and Sciences, College of Chemistry and Chemical Engineering, Baoji 721013, China
| |
Collapse
|
3
|
Liu S, Wang Y, Chang X, Li N, Gao N, Guo W, Wang B. A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb 2+ in groundwater. Anal Chim Acta 2025; 1340:343638. [PMID: 39863309 DOI: 10.1016/j.aca.2025.343638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
The presence of lead ion (Pb2+) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb2+ in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb2+ in groundwater. The CM-L/CG membrane can be integrated into the portable laser-induced fluorescence spectrometer (LIFs) for on-site detection of Pb2+, with a low detection limit of 1.02 ppb. Moreover, the CM-L/CG membrane demonstrates an outstanding 99 % removal rate and an adsorption capacity of 247.6 mg g-1 for Pb2+ and the adsorption process is mainly controlled by chemisorption. Importantly, the CM-L/CG membrane enables the real-time and on-site detection of Pb2+ in groundwater samples via a smartphone-based RGB (Red Green Blue) color analysis-assisted portable platform and portable LIFs-based platform, achieving acceptable results. This dual-functional fluorescent sensing membrane represents a breakthrough in environmental monitoring technology, offering a comprehensive solution for sensitive detection and efficient removal of Pb2+ from groundwater.
Collapse
Affiliation(s)
- Shuangshuang Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yueyue Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyue Chang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China
| | - Ningshuang Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China.
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Ma H, Ni WP, Lin Q, Sun R, Ge JF. Near-infrared fluorescent probes based on naphthyridine derivatives for mitochondrial nucleic acid imaging. Analyst 2025; 150:642-649. [PMID: 39829413 DOI: 10.1039/d4an01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Most current nucleic acid-responsive fluorescent probes are enhanced ones with short emission wavelengths. Therefore, the development of novel near-infrared, turn-on response nucleic acid fluorescent probes is of great significance. Herein, three cationic fluorescent dyes 1a-1c were synthesized by reacting naphthalidine salt with suitable aldehydes. These probes exhibited excellent photostability, maintaining over 95% of their absorption rate after 5 h of irradiation. Notably, probes 1a-1c exhibited an OFF-ON fluorescence response to DNA and RNA. The maximum emission wavelength could reach the near-infrared region (661-762 nm), with large Stokes shifts (153-222 nm) upon binding to DNA/RNA. The fluorescence intensity was enhanced 143 fold and 127 fold for 1b upon interaction with DNA and RNA, respectively. Co-staining and nucleic acid digestion assays showed that probes 1a-1c could target the mitochondria of fixed cells with low cytotoxicity. These findings may be useful for the early screening of genetic mutations related to mitochondrial diseases.
Collapse
Affiliation(s)
- Huan Ma
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Wen-Pei Ni
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Qi Lin
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
5
|
He L, Wei X, Zhang W, Xu N, Wu J, Yu F, Liu H. Fabrication of a Redox-Reversible Near-Infrared Fluorogenic Probe for Ferroptosis Process Monitoring and the Early Diagnosis of Diabetes. Anal Chem 2025; 97:2411-2417. [PMID: 39838582 DOI: 10.1021/acs.analchem.4c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a type of cell death triggered by the iron-dependent accumulation of lipid peroxides in cells. Diabetes, a chronic metabolic disorder characterized by hyperglycemia, can lead to various health complications. The process of ferroptosis and the progression of diabetes are closely linked to redox homeostasis, which is regulated by the levels of reactive oxygen and sulfur species. Currently, there are no fluorescent probes available to monitor changes in redox homeostasis during ferroptosis and diabetes. Here, we report the first endeavor to create a reversible near-infrared fluorogenic (NIRF) probe for monitoring the process of ferroptosis reversal and precise diabetes diagnosis. In vitro data demonstrated that NIR-CSTe could cyclically and reversibly detect ONOO- and GSH up to four times with minimal loss in fluorescence intensity. With the help of NIR-CSTe, we observed that HT-1080 cells, induced to undergo ferroptosis by erastin after being washed with PBS for 24 h and then treated with ferrostatin-1, showed a recovery in intracellular GSH levels. In contrast, treatment with deferoxamine did not yield similar results. Lastly, NIR-CSTe was also utilized for the early diagnosis and efficacy assessment of diabetes in relation to ONOO-/GSH redox balance, with results illustrating that the combined administration of metformin and empagliflozin was more effective than using either drug alone. Thus, this smart probe holds significant potential as an essential tool for clinical diagnosis and treatment of diseases associated with redox homeostasis.
Collapse
Affiliation(s)
- Lingchao He
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xiao Wei
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Wei Zhang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ningge Xu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jinsheng Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
6
|
Wang X, Wu H, Wang T, Chen Y, Jia B, Fang H, Yin X, Zhao Y, Yu R. NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties. Anal Chem 2025; 97:1992-2002. [PMID: 39818744 DOI: 10.1021/acs.analchem.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Small molecule near-infrared (NIR) fluorophores play a critical role in disease diagnosis and early detection of various markers in living organisms. To accelerate their development and design, a deep learning platform, NIRFluor, was established to rapidly screen small molecule NIR fluorophores with the desired optical properties. The core component of NIRFluor is a state-of-the-art deep learning model trained on 5179 experimental big data. First, novel hybrid fingerprints including Morgan fingerprints, physicochemical properties, and solvent properties were proposed. Then, a powerful deep learning model, multitask fingerprint-enhanced graph convolutional network (MT-FinGCN), was designed, which combines fingerprint information and molecule graph structure information to achieve accurate prediction of six properties (absorption wavelength, emission wavelength, Stokes shift, extinction coefficient, photoluminescence quantum yield, and lifetime) of different small molecule NIR fluorophores in different solvents. Furthermore, the "black-box" of the GCN model was opened through interpretability studies. Finally, the well-trained models were placed on the web platform NIRFluor for free use (https://nirfluor.aicbsc.com).
Collapse
Affiliation(s)
- Xiaozhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hailong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412008, China
| | - Baoshuo Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huan Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoyue Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanping Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Chen Z, Shimizu S, Ji S, Pan J, Wang Y, Feng R. A novel BODIPY-based fluorescent probe for naked-eye detection of the highly alkaline pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125083. [PMID: 39260237 DOI: 10.1016/j.saa.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
A novel alkaline pH-responsive probe based on an asymmetric aza-BODIPY was synthesized in a one-pot Schiff base formation reaction. This pH-sensitive probe comprises an asymmetric aza-BODIPY as the luminescent core, with a benzothiazole moiety connected via an imine bond serving as the recognition site. The probe exhibits a turn-off fluorescence response upon exposure to alkaline pH (9.6-12.4), while a bathochromic band in the absorption emerges due to its extended π-conjugation system, accompanied by a visible colorimetric change from yellow to orange to red. Furthermore, the probe responds linearly in the highly alkaline region, with a pKa of 11.65. The recognition mechanism of the probe towards alkaline pH relies on the deprotonation of the imine group on the aza-BODIPY core, leading to an enhanced degree of π-electron conjugation. The quenched fluorescence intensity is attributed to the increased non-radiative decay of the deprotonated form of the probe. The probe demonstrates high reliability for practical applications due to its photostability and reversibility. This study provides new insights into the design of probes for detecting high alkaline pH levels.
Collapse
Affiliation(s)
- Zuoxu Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Soji Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| | - Sheng Ji
- Jiangsu Chunlan Clean Energy Academy Co., Ltd., Taizhou 225300, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ru Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Liu QQ, Zhu ZQ, Lv HY, Huang BY. Developing a vanillin-derived imidazo-pyridin-containing fluorescent probe for imaging cysteine in living pulmonary cells under oxygen supply variation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125107. [PMID: 39260242 DOI: 10.1016/j.saa.2024.125107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
In this work, derived from vanillin and imidazo-pyridin backbone, a fluorescent probe IPV-Cys was developed for imaging the cysteine (Cys) level in living pulmonary cells under oxygen supply variation. By mimicking the oxygen supply variation in both the solution test and cellular imaging, the optical performance and imaging effect of IPV-Cys was investigated. In the solution system, the oxygen supply variation caused no impact on the reporting signals. The fluorescence reporting signal intensity at 490 nm suggested the enhancement along with the increase of the Cys concentration. The advantages of IPV-Cys included relatively high sensitivity, high stability, and high selectivity. On the basis of the low cyto-toxicity, IPV-Cys achieved the monitoring the endogenous Cys level in in living pulmonary cells and the impact of the oxygen supply variation by reporting fluorescence signals. The information here was meaningful for both the pre-clinical diagnosis and surgical techniques.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Zhong-Quan Zhu
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Hua-Yan Lv
- Department of Anesthesiology, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, 321000, Jinhua, China
| | - Bao-Yan Huang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine (Pujiang County Peoples Hospital), 322200, Jinhua, China.
| |
Collapse
|
9
|
Xu W, Yi S, Liu J, Jiang Y, Huang J. Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging. Nat Commun 2025; 16:8. [PMID: 39747031 PMCID: PMC11695607 DOI: 10.1038/s41467-024-55452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNAP-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma. This probe comprises a nitrile-substituted hemicyanine scaffold with a cysteine tail dually locked with biomarker-responsive moieties. Upon dual cleavage by tumor-specific cathepsin B and biothiols, the 1,2-aminothiol residue is exposed and spontaneously reacts with nitrile group for in situ intramolecular macrocyclization, enabling near-infrared fluorescence (NIRF) turn-on as well as self-assembly. In living male mice, such 'cleavage-click-assembly' regimen allows for real-time and ultrasensitive detection of small cancerous lesions (~2 mm in diameter) with improved SBR (~5) and extended detection window (~36 h), outperforming conventional clinical assays. This study not only presents NAT click reaction-based fluorogenic probes but also highlights a generic dual-locked design of these probes.
Collapse
Affiliation(s)
- Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, P. R. China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Chen HW, Cao HW, Li JZ, Chen YS, Li LY, Li ZK, Wang HJ, Wang MQ. D-π-A type fluorescent dyes: Effect of π-bridge units on optical and G4 DNA binding properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124901. [PMID: 39094268 DOI: 10.1016/j.saa.2024.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Fluorescent solvatochromic dyes that are sensitive to the nature of local microenvironmental, have been explored as probes in applications ranging from the imaging biomolecules to understanding of basic biomolecule functions. To expand the scope of fluorescent solvatochromic dyes for G-quadruplex (G4) DNA structures, and to illustrate the relationship between structure and properties, three newly designed D-π-A type fluorescent dyes were synthesized by introducing diarylimidazole to carbazole skeleton linked to benzene, furan or thiophene π-conjugated bridge and connected with pyridinium acceptor, respectively. Their structural characteristics, optical properties, and G4 DNA binding properties were discussed in detail. In general, the incorporation of furan and thiophene as π-conjugated bridges leads the better conjugation and molecular coplanarity with more efficient intramolecular charge transfer (ICT) effect compared with benzene bridge. The fluorescence intensities induced upon interaction were found that TP-6 with thiophene π-conjugated bridge had the strongest response toward G4 DNAs. In addition, the application of this dye as a fluorescent agent for living cell imaging was also demonstrated.
Collapse
Affiliation(s)
- Hai-Wen Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao-Wen Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing-Zhi Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan-Song Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lu-Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ze-Kai Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hai-Jiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Wang B, Quinto M, He W, Qiu H, Li X, Zhao W. Visual monitoring of hydrazine in food and environmental samples by wearable probe. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136384. [PMID: 39531825 DOI: 10.1016/j.jhazmat.2024.136384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Hydrazine is a poisonous compound that has been widely applied in the agricultural and chemical industry, leading to serious environmental pollution. Thus, the detection of hydrazine remained extremely important for ensuring food safety and environmental protection. Considering the importance of hydrazine detection for human health, a novel colorimetric/fluorescent probe (TPB) for the detection of hydrazine in various samples has been developed. In the presence of hydrazine, TPB emits a blue emission band at 452 nm with high sensitivity (limit of detection equal to 40 nM), ultrafast detection (less than 10 s), broad working pH range (6 -10), and strong anti-interference capabilities. These excellent performances have been exploited to fabricate hydrogel-based sensing labels (test kits, cotton swabs, glass rods, and gloves), which allowed the detection of hydrazine traces in soil, earthworms, plant samples, and living cells. This work presents a novel sensing approach for future research, aiming to develop a novel fluorescent probe exploiting the ICT process for the detection of hydrazine.
Collapse
Affiliation(s)
- Beibei Wang
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Maurizio Quinto
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, via Napoli 25, I-71122 Foggia, Italy.
| | - Wenmeng He
- Department of Life Science, Faculty of Science and Technology, BNU-HKBU United International College, Postal address: 2000, Jintong Road, Tangjiawan, Zhuhai, Guangdong 519087, China
| | - Hongtu Qiu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Xiangli Li
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Wei Zhao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
12
|
Ma L, Yang Y, Anwar G, Xie M, Yang J, Yan J, Wu J, Liu C. A unique near-infrared fluorescent probe based on dual-DNP binding sites for rapid monitoring of hydrogen sulfide in food samples and living cells. Chem Commun (Camb) 2024; 60:13895-13898. [PMID: 39499546 DOI: 10.1039/d4cc05081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A new NIR fluorescent probe (DCIQ-2DNP), which combined the thiolysis of dinitrophenyl (DNP) ether and DNP-marked electron-deficient quaternary carbon, was reported for the first time for detection of H2S. The DCIQ-2DNP probe showed an NIR emission signal (740 nm), a large Stokes shift (128 nm), and rapid monitoring of hydrogen sulfide (within 60 s) in food samples and living cells.
Collapse
Affiliation(s)
- Lili Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Yinliang Yang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Gulziba Anwar
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Minqi Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jie Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Chuanxiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
13
|
Yang Z, Jiang Q, Zhong T, Hu X, Cao B, Han Z, Zhao S, Qin J. Large stokes shift and near-infrared fluorescent probe for bioimaging and evaluating the HClO in an rheumatoid arthritis mouse model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124547. [PMID: 38823237 DOI: 10.1016/j.saa.2024.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
It is crucial to identify aberrant HClO levels in living things since they pose a major health risk and are a frequent reactive oxygen species (ROS) in living organisms. In order to detect HClO in various biological systems, we created and synthesized a near-infrared fluorescent probe with an oxime group (-C = N-OH) as a recognition unit. The probe DCMP1 has the advantages of fast response (10 min), near-infrared emission (660 nm), large Stokes shift (170 nm) and high selectivity. This probe DCMP1 not only detects endogenous HClO in living cells, but also enables further fluorescence detection of HClO in living zebrafish. More importantly, it can also be used for fluorescence imaging of HClO in an rheumatoid arthritis mouse model. This fluorescent probe DCMP1 is anticipated to be an effective tool for researching HClO.
Collapse
Affiliation(s)
- Zhengmin Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Qingke Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Tiantian Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Bingying Cao
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Zhongyao Han
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
14
|
Gu S, Huang Y, Li X, Xin H, Mu H, Zhang Y, Li K, Yang G, Zhao S, Cao D. Near-infrared and multifunctional fluorescent probe enabled by cyanopyridine cyanine dye for bisulfite recognition and biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135369. [PMID: 39088949 DOI: 10.1016/j.jhazmat.2024.135369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
SO2 derivatives, sulfite/bisulfite, are widely employed in both the food processing and drug synthesis industries. Despite their widespread application, excessive levels of sulfite/bisulfite can negatively impact human health. Most probes for detecting sulfite/bisulfite are restricted by their fluorescence within the visible spectrum range and poor solubility in aqueous solution, which limit their use in food testing and biological imaging. Herein, a near-infrared probe comprising of the cyanopyridine cyanine skeleton, 4-((Z)-2-((E)-2-chloro-3-(2-cyano-2-(1-methylpyridine-4(1H)-ylidene)ethylidene)cyclohex-1-en-1-yl)-1-cyanovinyl)-1-methylpyridin-1-ium (abbreviated as CCP), was developed. This probe enables precise quantification of bisulfite (HSO3-) in almost pure buffered solutions, showing a near-infrared fluorescence emission at 784 nm with an impressively low detection limit of 0.32 μM. The probe stands out for its exceptional selectivity, minimal susceptibility to interference, and strong adaptability. The probe CCP utilizes the CC bond to trigger a near-infrared fluorescence quenching reaction with HSO3- via nucleophilic addition, which effectively disrupts the large delocalization within the molecule for accurate HSO3- identification. Moreover, the probe has been successfully applied in detecting HSO3- in various food products and living cells, simplifying the measurement of HSO3- content in water samples. This advancement not only enhances the analytical capabilities but also contributes to ensuring food safety and environmental protection. ENVIRONMENTAL IMPLICATION: SO2 derivatives including sulfite/bisulfite, serving dual roles as preservatives and antioxidants, have widespread application across various sectors including food preservation, water sanitation, and the pharmaceutical industry. Despite their widespread application, excessive levels of sulfite/bisulfite can affect human health. Developing methods for precisely and sensitively detecting sulfite/bisulfite in food products and biological samples is important for ensuring food safety and environmental protection. Here, a sensitive near-infrared and multifunctional fluorescent probe in a 99.9 % buffered solution, along with water gel encapsulation, has been successfully applied for the detection of bisulfite in food, authentic water samples, and biological cells.
Collapse
Affiliation(s)
- Shangcong Gu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Xinxin Li
- School of Chemical Engineering, Northwest University, Xian 710127, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Haoran Mu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Keyi Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
15
|
Hu Y, Zhou W, Wu Q, Xia Y. Development of Novel Fluorescent Probes for Specific Detection of Hypochlorous Acid. Crit Rev Anal Chem 2024:1-23. [PMID: 39264749 DOI: 10.1080/10408347.2024.2399197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Hypochlorous acid (HClO) is widely used in everyday life for bleaching and disinfecting tap water, and also in human metabolism, where it plays an important role in destroying foreign bacterial invaders and pathogens as well as immune defense and cellular functioning maintenance. Abnormal levels of hypochlorous acid have the potential to cause joint inflammation, neuronal degeneration, and even life-threatening cancer. Specific identification and effective detection of hypochlorous acid are important for monitoring human health and the environment. In recent years, organic fluorescent probes have attracted much attention because of their simple synthesis, easy operation, high sensitivity, and high specificity, and a variety of hypochlorous acid fluorescent probes based on low-cost, easy-to-operate, and rapid identification have been developed. In this paper, we review the fluorescent probes that have been developed in the past five years for the specific recognition of hypochlorous acid based on different fluorophores, such as triphenylamine, coumarin, 1,8-naphthalize, etc., as well as recognition units, such as N-N dimethyl thiosemicarbazone, and describe how the probes and hypochlorous acid interact for identification in the same manner as other fluorescent probes. In addition, the reaction mechanism between the probe and hypochlorous acid, the fluorescence change of the probe, and the detection limit are described to illustrate the progress in the detection of hypochlorous acid in recent years and to provide ideas for the development of hypochlorous acid fluorescent probes in the future.
Collapse
Affiliation(s)
- Yubin Hu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Wenqi Zhou
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Qing Wu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
16
|
Arachchige DL, Dwivedi SK, Olowolagba AM, Peters J, Beatty AC, Guo A, Wang C, Werner T, Luck RL, Liu H. Dynamic insights into mitochondrial function: Monitoring viscosity and SO 2 levels in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112986. [PMID: 39084140 PMCID: PMC11419399 DOI: 10.1016/j.jphotobiol.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Ashlyn Colleen Beatty
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Alicia Guo
- Trinity School at River Ridge/Eagan, St Paul, MN 55121, United States of America
| | - Crystal Wang
- Houghton High School, 1603 Gundlach Rd, Houghton, MI 49931, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| |
Collapse
|
17
|
Olowolagba AM, Idowu MO, Arachchige DL, Aworinde OR, Dwivedi SK, Graham OR, Werner T, Luck RL, Liu H. Syntheses and Applications of Coumarin-Derived Fluorescent Probes for Real-Time Monitoring of NAD(P)H Dynamics in Living Cells across Diverse Chemical Environments. ACS APPLIED BIO MATERIALS 2024; 7:5437-5451. [PMID: 38995885 PMCID: PMC11333170 DOI: 10.1021/acsabm.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
18
|
Hanczyc P. Role of Alkali Cations in DNA-Thioflavin T Interaction. J Phys Chem B 2024; 128:7520-7529. [PMID: 38833533 PMCID: PMC11317975 DOI: 10.1021/acs.jpcb.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the role of alkali cations in modulating the interaction between deoxyribonucleic acid (DNA) and Thioflavin T (ThT) in dilute and condensed phases. The emission characteristics of ThT were analyzed in the presence of double-stranded DNA and G-quadruplex structures with a focus on the effects of four cations: sodium, potassium, calcium, and magnesium. The ThT emission in double-stranded DNA was influenced by direct DNA binding and steric hindrance within the hydration shell of DNA, which was modulated by the presence of alkali cations. Lasing spectroscopy experiments further highlighted ThT sensitivity to the spatial arrangement of water molecules in the DNA hydration shell. Lasing was exclusively observed in the presence of Mg2+ in the G-quadruplex structure, suggesting that the parallel propeller configuration of G4 provides an optimal environment for ThT light amplification. This study highlights the critical role of cations in DNA-dye interactions and reaffirms the significance of ThT in biophysical studies.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| |
Collapse
|
19
|
Zhang T, Li Z, Qin M, Zhang J, Sun Y, Liu C. Visulization of peroxynitrite variation for accurate diagnosis and assessing treatment response of hepatic fibrosis using a Golgi-targetable ratiometric fluorescent probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112950. [PMID: 38851042 DOI: 10.1016/j.jphotobiol.2024.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.
Collapse
Affiliation(s)
- Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
20
|
Shang Z, Wu M, Meng Q, Jiao Y, Zhang Z, Zhang R. A near-infrared fluorescent probe for rapid and on-site detection of sulfur dioxide derivative in biological, food and environmental systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133165. [PMID: 38061127 DOI: 10.1016/j.jhazmat.2023.133165] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Emission of toxic gaseous sulfur dioxide (SO2) and its derivative bisulfite (HSO3-) from various industrial applications, like food processing, transportation, and the coking process, has raised substantial concerns regarding environmental quality and public health. The probes for specific and sensitive detection of SO2 derivatives plays an essential role in their regulation, and ultimately mitigating their environmental and health implications, but the one that can detect SO2 derivatives onsite by end users remains limited. Herein, we report a new near-infrared fluorescence probe (SL) for rapid and onsite detection of SO2 derivative, HSO3- in industrial wastewater, food samples and for sensing its interaction with biological organisms. The SL is developed through coupling of quinolinium and coumarin moiety through an electron deficit CC bond that can specifically react with HSO3- via a Michael addition. By recording the blue shift of absorption and emission spectra, SL can sensitively detect HSO3- (limit of detection, 38 nM) in aqueous solution within 40 s SL is biocompatible, can be used for evaluating toxicity of SO2 derivatives in living organisms. The preparation of SL-stained test paper allows the colorimetric/fluorometric analysis for quantification of HSO3- onsite in food, river and coking wastewater samples using a smartphone. The successful development of SL not only provides a new tool to investigate HSO3- in biological, food and environmental systems, but also potentially promotes the application of fluorescence technique for rapid and onsite analysis of real-world samples by end users.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
21
|
Izquierdo-García E, Rovira A, Forcadell J, Bosch M, Marchán V. Exploring Structural-Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins. Int J Mol Sci 2023; 24:17427. [PMID: 38139255 PMCID: PMC10743691 DOI: 10.3390/ijms242417427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Organic fluorophores operating in the optical window of biological tissues, namely in the deep-red and near-infrared (NIR) region of the electromagnetic spectrum, offer several advantages for fluorescence bioimaging applications owing to the appealing features of long-wavelength light, such as deep tissue penetration, lack of toxicity, low scattering, and reduced interference with cellular autofluorescence. Among these, COUPY dyes based on non-conventional coumarin scaffolds display suitable photophysical properties and efficient cellular uptake, with a tendency to accumulate primarily in mitochondria, which renders them suitable probes for bioimaging purposes. In this study, we have explored how the photophysical properties and subcellular localization of COUPY fluorophores can be modulated through the modification of the coumarin backbone. While the introduction of a strong electron-withdrawing group, such as the trifluoromethyl group, at position 4 resulted in an exceptional photostability and a remarkable redshift in the absorption and emission maxima when combined with a julolidine ring replacing the N,N-dialkylaminobenzene moiety, the incorporation of a cyano group at position 3 dramatically reduced the brightness of the resulting fluorophore. Interestingly, confocal microscopy studies in living HeLa cells revealed that the 1,1,7,7-tetramethyl julolidine-containing derivatives accumulated in the mitochondria with much higher specificity. Overall, our results provide valuable insights for the design and optimization of new COUPY dyes operating in the deep-red/NIR region.
Collapse
Affiliation(s)
- Eduardo Izquierdo-García
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Rovira
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Joan Forcadell
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Vicente Marchán
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|