1
|
Sudnitsyna J, Ruzhnikova TO, Panteleev MA, Kharazova A, Gambaryan S, Mindukshev IV. Chloride Gradient Is Involved in Ammonium Influx in Human Erythrocytes. Int J Mol Sci 2024; 25:7390. [PMID: 39000500 PMCID: PMC11242273 DOI: 10.3390/ijms25137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl- and HCO3-). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl-] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs.
Collapse
Affiliation(s)
- Julia Sudnitsyna
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Tamara O Ruzhnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya St., 109029 Moscow, Russia
| | - Alexandra Kharazova
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia
| |
Collapse
|
2
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
3
|
Floch A, Pirenne F, Barrault A, Chami B, Toly-Ndour C, Tournamille C, de Brevern AG. Insights into anti-D formation in carriers of RhD variants through studies of 3D intraprotein interactions. Transfusion 2021; 61:1286-1301. [PMID: 33586199 DOI: 10.1111/trf.16301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Many RhD variants associated with anti-D formation (partial D) in carriers exposed to the conventional D antigen carry mutations affecting extracellular loop residues. Surprisingly, some carry mutations affecting transmembrane or intracellular domains, positions not thought likely to have a major impact on D epitopes. STUDY DESIGN AND METHODS A wild-type Rh trimer (RhD1 RhAG2 ) was modeled by comparative modeling with the human RhCG structure. Taking trimer conformation, residue accessibility, and position relative to the lipid bilayer into account, we redefine the domains of the RhD protein. We generated models for RhD variants carrying one or two amino acid substitutions associated with anti-D formation in published articles (25 variants) or abstracts (12 variants) and for RHD*weak D type 38. We determined the extracellular substitutions and compared the interactions of the variants with those of the standard RhD. RESULTS The findings of the three-dimensional (3D) analysis were correlated with anti-D formation for 76% of RhD variants: 15 substitutions associated with anti-D formation concerned extracellular residues, and structural differences in intraprotein interactions relative to standard RhD were observed in the others. We discuss the mechanisms by which D epitopes may be modified in variants in which the extracellular residues are identical to those of standard RhD and provide arguments for the benignity of p.T379M (RHD*DAU0) and p.G278D (RHD*weak D type 38) in transfusion medicine. CONCLUSION The study of RhD intraprotein interactions and the precise redefinition of residue accessibility provide insight into the mechanisms through which RhD point mutations may lead to anti-D formation in carriers.
Collapse
Affiliation(s)
- Aline Floch
- Univ Paris Est Creteil, INSERM U955, Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France.,Etablissement francais du sang Ile-de-France, Creteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - France Pirenne
- Univ Paris Est Creteil, INSERM U955, Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France.,Etablissement francais du sang Ile-de-France, Creteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Aurélie Barrault
- Univ Paris Est Creteil, INSERM U955, Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France.,Etablissement francais du sang Ile-de-France, Creteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Btissam Chami
- Etablissement francais du sang Ile-de-France, Creteil, France
| | - Cécile Toly-Ndour
- Unité Fonctionnelle d'expertise en Immuno-Hémobiologie Périnatale, Centre National de Référence en Hémobiologie Périnatale (CNRHP), Service de Médecine Fœtale, Pôle Périnatalité, Hôpital Trousseau, GH HUEP, APHP, Paris, France
| | - Christophe Tournamille
- Univ Paris Est Creteil, INSERM U955, Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France.,Etablissement francais du sang Ile-de-France, Creteil, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alexandre G de Brevern
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université de la Réunion, Université des Antilles, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France
| |
Collapse
|
4
|
Grishin D, Kasap E, Izotov A, Lisitsa A. Multifaceted ammonia transporters. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1812443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- D.V. Grishin
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - E.Y. Kasap
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.A. Izotov
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
5
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
6
|
Wen J, Verhagen OJ, Jia S, Liang Q, Wang Z, Wei L, Luo H, Luo G, Vidarsson G, Akker E, Ji Y, Schoot CE. A variant RhAG protein encoded by theRHAG*572Aallele causes serological weak D expression while maintaining normal RhCE phenotypes. Transfusion 2018; 59:405-411. [DOI: 10.1111/trf.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Jizhi Wen
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Onno J.H.M. Verhagen
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Shuangshuang Jia
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Qianni Liang
- Department of Blood TransfusionGuangdong No. 2 Provincial People's Hospital Guangzhou People's Republic of China
| | - Zhen Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Ling Wei
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Hong Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Guangping Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Emile Akker
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| | - Yanli Ji
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center Guangzhou People's Republic of China
| | - C. Ellen Schoot
- Sanquin Research and Landsteiner Laboratory, Academic Medical CentreUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
7
|
Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 2018; 34:1-32. [PMID: 29651895 DOI: 10.1080/09687688.2018.1448123] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families ( http://slc.bioparadigms.org/ ) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.
Collapse
Affiliation(s)
- Xiaoyun Bai
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| | | |
Collapse
|
8
|
Srivastava K, Stiles DA, Wagner FF, Flegel WA. Two large deletions extending beyond either end of the RHD gene and their red cell phenotypes. J Hum Genet 2018; 63:27-35. [PMID: 29215093 PMCID: PMC5764804 DOI: 10.1038/s10038-017-0345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/22/2023]
Abstract
Only two partial deletions longer than 655 nucleotides had been reported for the RHD gene, constrained within the gene and causing DEL phenotypes. Using a combination of quantitative PCR and long-range PCR, we examined three distinct deletions affecting parts of the RHD gene in three blood donors. Their RHD nucleotide sequences and exact boundaries of the breakpoint regions were determined. DEL phenotypes were caused by a novel 18.4 kb deletion and a previously published 5.4 kb deletion of the RHD gene; a D-negative phenotype was caused by a novel 7.6 kb deletion. Examination of the deletion-flanking regions suggested microhomology-mediated end-joining, replication slippage, and non-homologous end-joining, respectively, as the most likely mechanisms for the three distinct deletions. We described two new deletions affecting parts of the RHD gene, much longer than any previously reported partial deletion: one was the first deletion observed at the 5' end of the RHD gene extending into the intergenic region, and the other the second deletion observed at its 3' end. Large deletions present at either end are a mechanism for a much reduced RhD protein expression or its complete loss. Exact molecular characterization of such deletions is instrumental for accurate RHD genotyping.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA
| | - David Alan Stiles
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA
| | - Franz Friedrich Wagner
- Red Cross Blood Service NSTOB, Institute Springe, Eldagsener Strasse 38, 31830, Springe, Germany
| | - Willy Albert Flegel
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, MSC 1184, 10 Center Drive, Bethesda, 20892, MD, USA.
| |
Collapse
|
9
|
Badens C, Guizouarn H. Advances in understanding the pathogenesis of the red cell volume disorders. Br J Haematol 2016; 174:674-85. [PMID: 27353637 DOI: 10.1111/bjh.14197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Badens
- APHM Department of Medical Genetics, Hôpital de la Timone, Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Hélène Guizouarn
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| |
Collapse
|
10
|
Polin H, Pelc-Klopotowska M, Danzer M, Suessner S, Gabriel C, Wilflingseder J, Żmudzin A, Orzińska A, Guz K, Michalewska B, Brojer E. Compound heterozygosity of two novelRHAGalleles leads to a considerable disruption of the Rh complex. Transfusion 2016; 56:950-5. [DOI: 10.1111/trf.13476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 11/19/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Helene Polin
- Red Cross Transfusion Service of Upper Austria; Linz Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Linz Austria
| | | | - Martin Danzer
- Red Cross Transfusion Service of Upper Austria; Linz Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Linz Austria
| | - Susanne Suessner
- Red Cross Transfusion Service of Upper Austria; Linz Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Linz Austria
| | - Christian Gabriel
- Red Cross Transfusion Service of Upper Austria; Linz Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Linz Austria
| | | | | | | | - Katarzyna Guz
- Institute of Hematology and Transfusion Medicine; Warsaw Poland
| | | | - Ewa Brojer
- Institute of Hematology and Transfusion Medicine; Warsaw Poland
| |
Collapse
|
11
|
Nakhoul NL, Lee Hamm L. The challenge of determining the role of Rh glycoproteins in transport of NH3and NH4+. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/wmts.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nazih L. Nakhoul
- Department of Physiology; Tulane University Medical School; New Orleans LA USA
- Department of Medicine, Section of Nephrology; Tulane University Medical School; New Orleans LA USA
| | - L. Lee Hamm
- Department of Medicine, Section of Nephrology; Tulane University Medical School; New Orleans LA USA
| |
Collapse
|
12
|
Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol Aspects Med 2013; 34:629-37. [PMID: 23506896 DOI: 10.1016/j.mam.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an "Rh complex" made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4(+) transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4(+) and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease.
Collapse
|
13
|
Abstract
The oxygenation state of erythrocytes is known to impact several cellular processes. As the only known O2-binding protein in red blood cells, haemoglobin has been implicated in the oxygenation-mediated control of cell pathways and properties. Band 3, an integral membrane protein linked to the spectrin/actin cytoskeleton, preferentially binds deoxygenated haemoglobin at its N-terminus, and has been postulated to participate in the mechanism by which oxygenation controls cellular processes. Because the ankyrin-binding site on band 3 is located near the deoxyHb (deoxygenated haemoglobin)-binding site, we hypothesized that deoxyHb might impact the association between band 3 and the underlying erythrocyte cytoskeleton, a link that is primarily established through band 3-ankyrin bridging. In the present paper we show that deoxygenation of human erythrocytes results in displacement of ankyrin from band 3, leading to release of the spectrin/actin cytoskeleton from the membrane. This weakening of membrane-cytoskeletal interactions during brief periods of deoxygenation could prove beneficial to blood flow, but during episodes of prolonged deoxygenation, such as during sickle cell occlusive crises, could promote unwanted membrane vesiculation.
Collapse
|
14
|
Fichou Y, Chen JM, Le Maréchal C, Jamet D, Dupont I, Chuteau C, Durousseau C, Loirat MJ, Bailly P, Férec C. Weak D caused by a founder deletion in the RHD gene. Transfusion 2012; 52:2348-55. [PMID: 22420867 DOI: 10.1111/j.1537-2995.2012.03606.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The RhD blood group system exemplifies a genotype-phenotype correlation by virtue of its highly polymorphic and immunogenic nature. Weak D phenotypes are generally thought to result from missense mutations leading to quantitative change of the D antigen in the red blood cell membrane or intracellularly. STUDY DESIGN AND METHODS Different sets of polymerase chain reaction primers were designed to map and clone a deletion involving RHD Exon 10, which was found in approximately 3% of approximately 2000 RHD hemizygous subjects with D phenotype ambiguity. D antigen density was measured by flow cytometry. Transcript analysis was carried out by 3'-rapid amplification of complementary DNA ends. Haplotype analysis was performed by microsatellite genotyping. RESULTS A 5405-bp deletion that removed nearly two-thirds of Intron 9 and almost all of Exon 10 of the RHD gene was characterized. It is predicted to result in the replacement of the last eight amino acids of the wild-type RhD protein by another four amino acids. The mean RhD antigen density from two deletion carriers was determined to be only 30. A consensus haplotype could be deduced from the deletion carriers based on the microsatellite genotyping data. CONCLUSION The currently reported deletion was derived from a common founder. This deletion appears to represent not only the first large deletion associated with weak D but also the weakest of weak D alleles so far reported. This highly unusual genotype-phenotype relationship may be attributable to the additive effect of three distinct mechanisms that affect mRNA formation, mRNA stability, and RhD/ankyrin-R interaction, respectively.
Collapse
Affiliation(s)
- Yann Fichou
- Etablissement Français du Sang (EFS)-Bretagne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Silvy M, Chapel-Fernandes S, Callebaut I, Beley S, Durousseau C, Simon S, Lauroua P, Dubosc-Marchenay N, Babault C, Mouchet C, Ferrera V, Chiaroni J, Bailly P. Characterization of novel RHD alleles: relationship between phenotype, genotype, and trimeric architecture. Transfusion 2012; 52:2020-9. [DOI: 10.1111/j.1537-2995.2011.03544.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Genetet S, Ripoche P, Picot J, Bigot S, Delaunay J, Armari-Alla C, Colin Y, Mouro-Chanteloup I. Human RhAG ammonia channel is impaired by the Phe65Ser mutation in overhydrated stomatocytic red cells. Am J Physiol Cell Physiol 2011; 302:C419-28. [PMID: 22012326 DOI: 10.1152/ajpcell.00092.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ∼50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.
Collapse
|
17
|
Kolondra A, Lenoir M, Wolny M, Czogalla A, Overduin M, Sikorski AF, Grzybek M. The role of hydrophobic interactions in ankyrin-spectrin complex formation. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:2084-9. [PMID: 20682284 DOI: 10.1016/j.bbamem.2010.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 12/15/2022]
Abstract
Spectrin and ankyrin are the key components of the erythrocyte cytoskeleton. The recently published crystal structure of the spectrin-ankyrin complex has indicated that their binding involves complementary charge interactions as well as hydrophobic interactions. However, only the former is supported by biochemical evidence. We now show that nonpolar interactions are important for high affinity complex formation, excluding the possibility that the binding is exclusively mediated by association of distinctly charged surfaces. Along these lines we report that substitution of a single hydrophobic residue, F917S in ankyrin, disrupts the structure of the binding site and leads to complete loss of spectrin affinity. Finally, we present data showing that minimal ankyrin binding site in spectrin is formed by helix 14C together with the loop between helices 15 B/C.
Collapse
Affiliation(s)
- Adam Kolondra
- University of Wrocław, Biotechnology Faculty, Laboratory of Cytobiochemistry, Przybyszewskiego 63-77, Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Silvy M, Simon S, Gouvitsos J, Di Cristofaro J, Ferrera V, Chiaroni J, Bailly P. Weak D and DEL alleles detected by routine SNaPshot genotyping: identification of four novel RHD alleles. Transfusion 2010; 51:401-11. [DOI: 10.1111/j.1537-2995.2010.02830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Nakhoul NL, Abdulnour-Nakhoul SM, Boulpaep EL, Rabon E, Schmidt E, Hamm LL. Substrate specificity of Rhbg: ammonium and methyl ammonium transport. Am J Physiol Cell Physiol 2010; 299:C695-705. [PMID: 20592240 DOI: 10.1152/ajpcell.00019.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pH(i)) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pH(i) consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pH(i). MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pH(i) increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pH(i) in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg.
Collapse
Affiliation(s)
- Nazih L Nakhoul
- Dept. of Medicine, Section of Nephrology, SL-45, Tulane Univ. School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
20
|
van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol Dis 2010; 45:1-8. [DOI: 10.1016/j.bcmd.2010.02.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
|
21
|
Goossens D, Trinh-Trang-Tan MM, Debbia M, Ripoche P, Vilela-Lamego C, Louache F, Vainchenker W, Colin Y, Cartron JP. Generation and characterisation of Rhd and Rhag null mice. Br J Haematol 2009; 148:161-72. [PMID: 19807729 DOI: 10.1111/j.1365-2141.2009.07928.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mouse Rhd* and Rhag* genes were targeted using insertional vectors; the resulting knockout mice, and double-knockout descendants, were analysed. Rhag glycoprotein deficiency entailed defective assembly of the erythroid Rh complex with complete loss of Rh and intercellular adhesion molecule 4 (ICAM-4), but not CD47, expression. Absence of the Rh protein induced a loss of ICAM-4, and only a moderate reduction of Rhag expression. Double knockout phenotype was similar to that of Rhag targeted mice. Rhd and Rhag deficient mice exhibited neither the equivalent of human Rh(null) haemolytic anaemia nor any clinical or cellular abnormalities. Rhd-/- and Rhag-/- erythrocytes showed decreased basal adhesion to an endothelial cell line resulting from defective ICAM-4 membrane expression. There was no difference in recovery from phenylhydrazine-induced haematopoietic stress for double knockout mice as compared to controls, suggesting that ICAM-4 might be dispensable during stress erythropoiesis. Ammonia and methylammonia transport in erythrocytes was severely impaired in Rhag-/- but only slightly in Rhd-/- animals that significantly expressed Rhag, supporting the view that RhAG and Rhag, but not Rh, may act as ammonium transporters in human and mouse erythrocytes. These knockout mice should prove useful for further dissecting the physiological roles of Rh and Rhag proteins in the red cell membrane.
Collapse
Affiliation(s)
- Dominique Goossens
- Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brown ACN, Hallouane D, Mawby WJ, Karet FE, Saleem MA, Howie AJ, Toye AM. RhCG is the major putative ammonia transporter expressed in the human kidney, and RhBG is not expressed at detectable levels. Am J Physiol Renal Physiol 2009; 296:F1279-90. [PMID: 19357182 PMCID: PMC2692438 DOI: 10.1152/ajprenal.00013.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhesus glycoprotein homologs RhAG, RhBG, and RhCG comprise a recently identified branch of the Mep/Amt ammonia transporter family. Animal studies have shown that RhBG and RhCG are present in the kidney distal tubules. Studies in mouse and rat tissue suggest a basolateral localization for RhBG in cells of the distal tubules including the alpha-intercalated cells (alpha-IC), but no localization of RhBG has been reported in human tissue. To date RhCG localization has been described as exclusively apical plasma membrane in mouse and rat kidney, or apical and basolateral in humans, and some mouse and rat tissue studies. We raised novel antibodies to RhBG and RhCG to examine their localization in the human kidney. Madin-Darby canine kidney (MDCKI) cell lines stably expressing human green fluorescent protein-tagged RhBG or RhCG and human tissue lysates were used to demonstrate the specificity of these antibodies for detecting RhBG and RhCG. Using immunoperoxidase staining and antigen liberation techniques, both apical and basolateral RhCG localization was observed in the majority of the cells of the distal convoluted tubule and IC of the connecting tubule and collecting duct. Confocal microscopic imaging of normal human kidney cryosections showed that RhCG staining was predominantly localized to the apical membrane in these cells with some basolateral and intracellular staining evident. A proportion of RhCG staining labeled kAE1-positive cells, confirming that RhCG is localized to the alpha-IC cells. Surprisingly, no RhBG protein was detectable in the human kidney by Western blot analysis of tissue lysates, or by immunohistochemistry or confocal microscopy of tissue sections. The same antibodies, however, could detect RhBG in rat tissue. We conclude that under normal conditions, RhCG is the major putative ammonia transporter expressed in the human kidney and RhBG is not expressed at detectable levels.
Collapse
Affiliation(s)
- Alice C N Brown
- Department of Biochemistry, School of Medical Sciences, Univ. Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Tremblay PL, Hallenbeck PC. Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Mol Microbiol 2008; 71:12-22. [PMID: 19007411 DOI: 10.1111/j.1365-2958.2008.06514.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the Amt/Rh family of transporters are found almost ubiquitously in all forms of life. However, the molecular state of the substrate (NH(3) or NH(4)(+)) has been the subject of active debate. At least for bacterial Amt proteins, the model emerging from computational, X-ray crystal and mutational analysis is that NH(4)(+) is deprotonated at the exterior, conducted through the membrane as NH(3), and reprotonated at the cytoplasmic interface. A proton concomitantly is transferred from the exterior to the interior, although the mechanism is unclear. Here we discuss recent evidence indicating that an important function of at least some eukaryotic and bacterial Amts is to act as ammonium sensors and regulate cellular metabolism in response to changes in external ammonium concentrations. This is now well documented in the regulation of yeast pseudohyphal development and filamentous growth. As well, membrane sequestration of GlnK, a PII signal transduction protein, by AmtB has been shown to regulate nitrogenase in some diazotrophs, and nitrogen metabolism in some gram-positive bacteria. Formation of GlnK-AmtB membrane complexes might have other, as yet undiscovered, regulatory roles. This possibility is emphasized by the discovery in some genomes of genes for chimeric Amts with fusions to various regulatory elements.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
24
|
Sohet F, Colin Y, Genetet S, Ripoche P, Métral S, Le Van Kim C, Lopez C. Phosphorylation and ankyrin-G binding of the C-terminal domain regulate targeting and function of the ammonium transporter RhBG. J Biol Chem 2008; 283:26557-67. [PMID: 18635543 DOI: 10.1074/jbc.m803120200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RhBG, a human member of the Amt/Mep/Rh/superfamily of ammonium transporters, has been shown to facilitate NH(3) transport and to be anchored to the basolateral plasma membrane of kidney epithelial cells, via ankyrin-G. We showed here that triple alanine substitution of the (419)FLD(421) sequence, which links the cytoplasmic C-terminal domain of RhBG to ankyrin-G, not only disrupted the interaction of RhBG with the spectrin-based skeleton but also delayed its cell surface expression, decreased its plasma membrane stability, and abolished its NH(3) transport function in epithelial cell lines. Similarly, we demonstrated that both anchoring to the membrane skeleton and ammonium transport activity are regulated by the phosphorylation status of the C-terminal tail of RhBG. Tyrosine 429, which belongs to the previously reported YED basolateral targeting signal of RhBG, was demonstrated to be phosphorylated in vitro using purified Src and Syk kinases and ex vivo by analyzing the effect of pervanadate treatment on wild-type RhBG or Y429A mutants. Then, we showed that Y429D and Y429E mutations, mimicking constitutive phosphorylation, abolished NH(3) transport and enhanced Triton X-100 solubilization of RhBG from the cell membrane. In contrast, the nonphosphorylated/nonphosphorylatable Y429A and Y429F mutants behaved the same as wild-type RhBG. Conversely, Y/A or Y/F but not Y/E or Y/D mutations of residue 429 abolished the exclusive basolateral localization of RhBG in polarized epithelial cells. All these results led to a model in which targeting and ammonium transport function of RhBG are regulated by both phosphorylation and membrane skeleton binding of the C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Fabien Sohet
- INSERM, U665, Paris F-75015, the Institut National de la Transfusion Sanguine, 6 Rue Alexandre Cabanel, Paris F-75015, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Gupta N, Chelluri LK, Ratnakar KS, Ravindhranath K, Vasantha A. Rh antigen expression during erythropoeisis: Comparison of cord and adult derived CD34 cells. Asian J Transfus Sci 2008; 2:69-80. [PMID: 20041081 PMCID: PMC2798767 DOI: 10.4103/0973-6247.42694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives: Concentrations of O2 and CO2 in the fetal circulation differ to that in maternal blood. Previous studies done in algae demonstrate the functional role of Rh antigen as CO2 transporter. As a preliminary study, it was the aim of this project to compare the expression of Rh polypeptides on cord and adult red blood cell progenitors during ex vivo proliferation and differentiation of CD34+ cells during erythropoeisis. Materials and Methods: CD34 positive hematopoeitic progenitor cells were isolated from umbilical cord blood and adult peripheral blood using an immunomagnetic system and cultured in serum free medium containing erythropoietin in order to compel them along the erythroid lineage. Cultured cells were analyzed for cell surface marker expression by flow cytometry, using monoclonal antibodies to RhAG, Glycophorin A, Rh polypeptides, CD47 and Band 3. Cytospin analysis was also done to study the morphology of cultured cells. Results: The appearance of cell surface markers analyzed on different days of culture varied slightly between samples. There was no evidence to suggest that RhAG, GPA, CD47 and Band 3 expression was any different between adult and cord derived cells. Nevertheless, the results of Rh antigenic expression suggest a reasonable difference between the two groups with adult sample derived cells showing higher and earlier expression than cord blood derived cells. These preliminary findings require further investigation. Conclusion: Comparing the expression of cell surface markers especially Rh polypeptides between adult and cord blood derived erythroid progenitors might assist in discerning their functions and could be valuable in the study of erythropoeisis.
Collapse
Affiliation(s)
- Namita Gupta
- Transplant Immunology and Stem cell Laboratory, Global Hospitals, Hyderabad, India
| | | | | | | | | |
Collapse
|
26
|
Kolondra A, Grzybek M, Chorzalska A, Sikorski AF. The 22.5 kDa spectrin-binding domain of ankyrinR binds spectrin with high affinity and changes the spectrin distribution in cells in vivo. Protein Expr Purif 2008; 60:157-64. [PMID: 18495489 DOI: 10.1016/j.pep.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/27/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
It was previously shown that ankyrins play a crucial role in the membrane skeleton arrangement. Purifying ankyrinR obtained from erythrocytes is a time-consuming process. Therefore, cloned and bacterially expressed ankyrinR-spectrin-binding domain (AnkSBD) is a demanded tool for studying spectrin-ankyrin interactions. In this communication, we report on the cloning and purification of AnkSBD and describe the results of binding experiments, in which we showed high-affinity interactions between the AnkSBD construct and isolated erythrocyte or non-erythroid spectrins. pEGFP-AnkSBD-transfected cells co-localised with non-erythroid spectrin in HeLa cells. The functional interactions of the AnkSBD construct in vivo and in vitro open many possibilities to study the structure and function of this domain, which has not yet been as extensively studied when compared to the aminoterminal domain of this protein.
Collapse
Affiliation(s)
- Adam Kolondra
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wroclaw, ul Przybyszewskiego 63/77, 51148 Wroclaw, Poland
| | | | | | | |
Collapse
|
27
|
Williamson RC, Toye AM. Glycophorin A: Band 3 aid. Blood Cells Mol Dis 2008; 41:35-43. [PMID: 18304844 DOI: 10.1016/j.bcmd.2008.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 11/24/2022]
Abstract
Band 3 (B3) is a major site of cytoskeletal attachment to the erythrocyte membrane and is important for gas exchange. A truncated isoform of B3 (kB3) is expressed in the alpha-intercalated cells of the kidney and its functional activity and basolateral localization are essential for acid secretion. B3 mutations generally lead to red blood cell (RBC) specific disease (hereditary spherocytosis (HS), Southeast Asian Ovalocytosis or hereditary stomatocytosis) or kidney disease (distal Renal Tubular Acidosis--dRTA). It is rare for both the RBC and kidney disease phenotypes to co-exist, but this does occur in knockout mice, and also in humans (B3 Coimbra and B3 Courcouronne) or cattle with homozygous HS mutations. This is because RBCs express a B3 chaperone-like molecule in the form of Glycophorin A that can rescue the majority of B3 mutations that cause dRTA but probably not the majority of HS mutations. The study of naturally occurring B3 variant blood and expression of B3 or kB3 mutants in heterologous expression systems has provided valuable information concerning B3 trafficking and interactions in the RBC and kidney. This article will review these studies and comment on our current understanding of the interaction between GPA with B3 and also on the proposed B3 centred macrocomplex.
Collapse
Affiliation(s)
- Rosalind C Williamson
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
28
|
Piermarini PM, Kim EY, Boron WF. Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. J Biol Chem 2007; 282:1409-21. [PMID: 17090540 DOI: 10.1074/jbc.m608261200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on solid-phase binding assays with enzyme-linked immunosorbent assay detection, previous investigators suggested that intracellular carbonic anhydrase II (CA II) interacts at high affinity with the C-terminal (Ct) domains of SLC4 bicarbonate-transport proteins, expressed as glutathione S-transferase (GST) fusion proteins, to form functional HCO3- metabolons. Here we re-evaluated this protein-protein interaction using two solid-phase binding assays. We first compared the ability of the Ct domain of three SLC4 transporters, SLC4-A1 (AE1), SLC4-A4 (NBCe1), and SLC4-A8 (NDCBE), to bind immobilized CA II, using enzyme-linked immunosorbent assay detection. We found that when expressed as GST fusion proteins, all three bind to CA II (Kd 300-600 nM) better than does pure GST. However, we detected no binding of pure SLC4-Ct peptides to immobilized CA II. Second, we reversed assay orientation by immobilizing the SLC4-Ct fusion proteins or peptides. We found that more CA II binds to GST than to any of the three GST-SLC4-Ct fusion proteins. Furthermore, we detected no binding of CA II to any of the immobilized pure SLC4-Ct peptides. Finally, we used surface plasmon resonance to detect possible rapid interactions between CA II and the pure peptides. Although we detected acetazolamide binding to immobilized CA II and specific antibodies binding to immobilized SLC4-Ct peptides, we detected no binding of CA II to immobilized SLC4-Ct or vice versa. Thus, although an HCO3 metabolon may exist, CA II cannot bind directly to pure SLC4-Ct peptides and can bind to GST-SLC4-Ct fusion proteins only when the CA II is immobilized and the fusion protein is soluble, and not vice versa.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Since the adoption of molecular blood-group typing, the considerable heterogeneity of the serologic entities weak D and DEL at the molecular level has come to light. I offer an approach to the management of donors and patients expressing D antigen weakly and carrying any of the various molecular types of weak D and DEL. RECENT FINDINGS More than 50 distinct weak D alleles have been described. An internet-based survey of anti-D immunizations occurring in D-positive transfusion recipients reveals that no allo-anti-D has been observed in patients carrying prevalent weak D types. Allo-immunizations are documented for weak D types 4.2 (also known as DAR), 11 and 15. Anti-D immunizations have been reported in D-negative persons transfused with weak D and DEL red blood cells. SUMMARY Patients carrying any of the prevalent weak D types 1, 2, 3 or 4.1 are not prone to allo-anti-D immunization and may safely be transfused with D-positive red blood cells. Pregnant women with these weak D types need not receive RhIg. We should pay attention to weak D- or DEL-positive blood units that are labelled D-negative. The clinical benefit of removing DEL blood units from our supply of D-negative red blood cell units should be determined.
Collapse
Affiliation(s)
- Willy A Flegel
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany.
| |
Collapse
|